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ABSTRACT

A four-dimensional variational data assimilation (4DVar) system of the LASG/IAP Climate Ocean
Model, version 1.0 (LICOM1.0), named LICOM-3DVM, has been developed using the three-dimensional
variational data assimilation of mapped observation (3DVM), a 4DVar method newly proposed in the past
two years. Two experiments with 12-year model integrations were designed to validate it. One is the as-
similation run, called ASSM, which incorporated the analyzed weekly sea surface temperature (SST) fields
from Reynolds and Smith (OISST) between 1990 and 2001 once a week by the LICOM-3DVM. The other
is the control run without any assimilation, named CTL. ASSM shows that the simulated temperatures of
the upper ocean (above 50 meters), especially the SST of equatorial Pacific, coincide with the Tropic Atmo-
sphere Ocean (TAO) mooring data, the World Ocean Atlas 2001 (WOAO01) data and the Met Office Hadley
Centre’s sea ice and sea surface temperature (HadISST) data. It decreased the cold bias existing in CTL
in the eastern Pacific and produced a Nifio index that agrees with observation well. The validation results
suggest that the LICOM-3DVM is able to effectively adjust the model results of the ocean temperature,
although it’s hard to correct the subsurface results and it even makes them worse in some areas due to the
incorporation of only surface data. Future development of the LICOM-3DVM is to include subsurface in

situ observations and satellite observations to further improve model simulations.
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1. Introduction

The ocean plays an important role in seasonal, an-
nual and long term climate changes, which is the key
area in investigating the global climate variation, espe-
cially since the frequent burst of El Nino can impact lo-
cal, regional and global climate variations to different
extents. The sparseness and irregularly temporal and
spatial distributions of ocean measurements, however,
make it difficult to study oceanic and related climate
issues. In the last 20 years, the ocean data assimilation
combining the observational data and model results in
an optimal way provides us a useful tool to understand
the physical principles of the ocean, following the de-
velopment and improvement of the ocean observation
system.
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Since the 1980s, scientists have made great ef-
forts in ocean data assimilation. For example, Derber
and Rosati (1989) developed a global four-dimensional
ocean data assimilation system; Anderson et al. (1996)
reviewed advances in application of data assimilation
techniques to problems in physical oceanography such
as the evolution of ocean mesoscale eddies in middle
latitudes, the development of El Nifo events in the
tropical Pacific, and the evolution of ocean surface
waves; Ji et al. (1995, 1996), Ji and Leetmaa (1997),
and Ji et al. (2000) focused on the initialization of the
tropical Pacific and the prediction of ENSO; Evensen
and Leeuwen (1996, 2000), Evensen (1997), devoted a
lot to ensemble Kalman filter and nonlinear dynamics;
Fukumori et al. (1999) studied the feasibility of as-
similating satellite altimetry data into a global ocean
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general circulation model; Stammer et al. (2002) esti-
mated a three-dimensional oceanic state and found a
useful first solution to the global time-dependent ocean
state estimation problem; Zhu et al. (2006), Yan et
al. (2004) and Han et al. (2004) developed a three-
dimensional variational (3DVar) ocean data assimila-
tion system which takes temperature-salinity (T-S) re-
lation into consideration and estimates temperature
and salinity profiles from surface dynamic height in-
formation. In the operational application of data as-
similation, 3DVar is widely used in most operational
meteorological centers around the world, such as the
Met Office (Lorenc, 1997), Canadian Meteorological
Centre (Gauthier et al., 1999), National Centers for
Environmental Prediction (NCEP) for Global Ocean
Data Assimilation System (Seo and Xue, 2005) and
the Japan Meteorological Agency for the ENSO pre-
diction by the coupled ocean-atmosphere General Cir-
culation Model (JMA-CGCMO02) (Bloom et al., 1996).
Furthermore, the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Rabier et al., 2000;
Mahfouf and Rabier, 2000; Klinker et al., 2000) and
the Canadian Meteorological Centre have also updated
their ocean data assimilation systems to 4DVar sys-
tems.

At present, the methods of ocean data assimilation
include optimal interpolation (OI), 3DVar, 4DVar and
filtering. 3DVar is a popular method in operational
forecasts and scientific research because of its low com-
puting cost. Due to the lack of model constraints in
3DVar, however, 4DVar has been paid more and more
attention. The major difficulty for the wide applica-
tion of 4DVar in operational centers and research in-
stitutes is its huge computing costs for calculating the
gradient of the cost function with model constraints
by the adjoint technique.

To avoid the limitations of the traditional 4DVar,
Wang and Zhao (2005, 2006) proposed a new 4DVar
approach—three-dimensional variational data assimi-
lation of mapped observation (3DVM). Like the avail-
able 4ADVar method, 3DVM produces an optimal initial
condition (IC) consistent with the prediction model
due to the inclusion of model constraints and best fit-
ting into the observations in the assimilation window
through the model solution trajectory. Different from
the old 4DVar, 3DVM requires much less computing
cost closer to that of 3DVar (Wang and Zhao, 2005,
2006). This is the reason why this method is named
3DVM. So far, 3DVM has been used successfully in
the initialization of typhoons and has achieved signif-
icant effects that are timesaving and efficient (Wang
and Zhao, 2005, 2006; Zhao et al., 2007). May 3DVM
be applicable for ocean data assimilation? Will it
avoid the limitations in the old ocean data assimila-
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tion methods? This is what we attempt to answer in
this paper.

The outline of this paper is as follows: Section
2 briefly describes the new 4DVar data assimilation
method—3DVM. Sections 3 and 4 describe the data
assimilation scheme, experiment design, the ocean
model and the data used in this paper. Section 5 fur-
ther analyzes the experiment results. A brief summary
and conclusions are presented in the final section 6.

2. A brief description of 3DVM

According to Wang and Zhao (2005, 2006), the cost
function of the old 4DVar may be expressed in incre-
mental form (after tangential linear approximation):

J(xg) =(a)" By g+
N
Z(Ltoﬂtim(/) - y;)TOi_l(LtOHtiwé) - y;) 3

- (1)

where, x{, and y; are defined by

!

Ty =Ty — To,b
/

Y; = Tiobs — Li

xo,p 1s the background field at to, ;=M —, (To,bT)
(t=1,2,...,N) and z; obs are model forecast and ob-
servation at t;, respectively, By is the background er-
ror covariance matrix at tg, O; is the observational er-
ror covariance matrix at t;, M is the forecast model
and M, ., (zop, 7) is a mapping from to to ¢; by the
model integration starting from xg 1, with the time step
7. L is the tangential linear model of the prediction
model M which is invertible. 3DVM revised the back-
ground penalty term in the cost function based on the
old 4DVar and produced the optimal IC at the end of
the assimilation window, in contrast to the IC at the
beginning of the window in the old 4DVar. The cost
function of 3DVM can be expressed as an equivalent
form of Eq. (1):

(@) = J(ah) =(@)"B7+
N
Z(Lto**til{) - y:)TOz_l X
i=1
(Lto—”fixé) - y;) s (2)

where z{, is the increment at the beginning of the win-
dow and 7’ at the end of the window. These two initial
perturbations satisfy

i‘/ =T — l’N7b ~ Lt0—>tix6 ) (3)
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where z is at the end of the window.
The relationship between By and By is

By = Liy—iyBoL ;. (4)
which shows that the background error covariance ma-
trix of 3DVM is flow-dependent. In Wang and Zhao
(2005, 2006), the observationat x; obs at t; is mapped
to the end of the window through model mapping and
the mapped observation z;mo at ty is then found,
where x; 1, satisfies

Timo = Mt¢—>tN (wi,obsa T) = Mti—nﬁN (xi,obs) . (5)

For simplicity, we can omit 7 in Eq. (5), since the time
step is a constant. After a series of strict deductions,
a neat form of the 3DVM cost function at the end of
the time window is obtained:

J(z) =(z — xNyb)TBJ_Vl(x —INb)+

N

Z(x - zi,mo)T

i=1

~—1

oy (z - Ii,mO) > (6)

where O; = Ly, oty OZ-LtTthN.

For the details of 3DVM, the papers by Wang and
Zhao (2005, 2006) can be referred. Note that all these
studies are under the assumption that all variables at
the model degrees of freedom are measured like other

theoretical studies on 4DVar.
3. 3DVM-Based data assimilation scheme

Based on 3DVM, we developed a 4DVar system
on the LASG/IAP Climate system Ocean Model (LI-
COM) (Liu et al., 2004a). The assimilation time
length is seven days with 0000 UTC on Monday as
the beginning of the window and the same time 7
days later as the end of the window. For the mo-
ment, the observational data used in this study is only
the weekly-mean SST of the OISST from 1990-2001.
Therefore, it’s a challenge to satisfy the assumption of
3DVM. In the following section, we will address how
to deal with this challenge.

To simplify the discussion, the same weekly-mean
OISST data are supposed to be the observations at 8
different time points with an equivalent interval of one
day in the assimilation window (including the begin-
ning and the end of the window). Not only will such
a supposition keep the average of the 8 observations
consistent with the original OISST data, but it will
also make up for the sparseness of the observations.
Moreover, to meet the requirement of the 3SDVM sup-
position that all variables at the model degrees of free-
dom are measured at the observation time, the model
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integration constraint is used to spread the observa-
tion information from the sea surface to other model
layers which includes the following steps:

(1) choose a time such as 0000 UTC on Monday;

(2) use the OISST data to replace the temperature
on the first model level (12.5 m) with the wind stress
unchanged;

(3) integrate a time step by the model;

(4) repeat the steps (2) and (3) until balance is
reached.

We have done experiments to determine when the
model integration reaches balance. The normals of
the global temperature field are calculated and when
it becomes stable, we say it reaches balance. Usu-
ally, it needs at most 240 step iterations to reach the
balance. In this way, the temperature field Tp ops
is obtained with observation information on every
layer. The temperatures with observation informa-
tion T;ops(t = 1,2,3,...,7) at other times can be
calculated similarly or are just assumed to be Tp, ops,
ie., Tiobs = Toobs(t = 1,2,3,...,7) according to the
above supposition. There are 8 time points ¢;(i =
0,1,2,...,7) in the assimilation window with ¢ at the
beginning and t7 at the end. The prediction model is
defined as M) which satisfies:

M(T) = M(T) (T, W) 5

where T is temperature, W represents other vari-
ables such as surface elevation, velocity and salinity,
and subscript (T) means temperature. This shows
Mty is only the temperature part of M. Wi(i =
0,1,2,...,7) is marked to be the value of W at the
time, tg,t1,...,t7. Here, T and W are considered dif-
ferently in order to obtain Eq. (15) and Eq. (16)
since we treat T and W differently in our assimilation,
which can be seen from Eq. (11) to Eq. (16). Map-
ping 1o, obs from #g to t7, a mapped observation at t7
is produced:

TO,mo = M(T)to—rt'y (TO,ObS7 WO) . (7)

Likewise, the other 7 mapped observations at the end
of the window, respectively from t¢1,...,ts and t7, can
be generated:

Tl,mo = M(T)t1—>t7 (Tl,ObS7 Wl)v

T6,m0 = M(T)t6—>t7 (T6,0b57 WG) )

T7,m0 = T7,0bs .

(8)

Finally, 8 mapped observations at the end of the win-
dow through the model integration constraint are ob-
tained:

Timo(i=0,1,2,....7). 9)



NO. 4

Actually, we don’t really need to integrate the model
respectively for 7 days, 6 days, ... and 1 day to pro-
duce 79 mo, L1,mo, - -- and Tx e in the 3DVM. Only
one 7-day model integration is required to generate
all the mapped observations. In fact, when the ocean
model is integrated from #y to ¢1, the temperature at

t1, marked T g, is simulated:
Tl,s = M(T)t0—>t1 (T0,0b57 WO) . (10)

Then, the model integration from ¢; to t5 continues

with a new IC:
Ty = (05" + 07 HOg ' Th s + O Thons)  (11)

rather than with the original 77 ,, and the temperature

at to is produced:
TQ,S = M(T),t1—>t2 (Tl*a Wl) . (12)

Similarly, continuing the model integration until the
end of the window, a general formula to calculate the
temperature and the new IC at t;(i = 1,2,...,7) is
deduced

T(T = TO,obs ;
Tis = My, (T, Wii1)

i -1 i—1
Ty = QZ 0k1> K v Okl) ﬂ7s+oiln,obs:| .
=0 k=0
(13)

Using the approximate equality: f(az+8y) = af (z)+
Bf(y), whose proof is provided in the appendix, it is
not difficult to deduce that

7 -1 7
T ~ <Z o;1> ZO;lTi’mo ) (14)
i=0 i=0
If the 3DVM cost function of LICOM 1.0 is written as
follows according to Eq. (6):
J(T) =(T — Ti,)"ByNT — T+

7

ST = Timo) 05 (T = Timo)
=0

(15)

the solution to VyJ(T) = 0 is easily reached as the
following

7 -1 7
T, = (B;f +> 0-1> (B,—VlTb +> 0, 1Ti,mo>
i=0

=0
—1
1 ~—1

]~

)

7
BNm(zé:l)T;

=0
(16)

I
o
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where T and T}, are respectively the IC and back-
ground of temperature at the end of the window,

By = LiyyyBoLf ., ,0; = Ly O;LE

ti—tN
Clearly, the suggestion that only one 7-day model in-
tegration is needed is proved.

The observational error covariance matrix O; at t;

is defined by:

0; = olo;F .
Then,
éi = (Lti*’tNOi>(Lti*>tNoi)T = 615? )
where 0, = L, _+,0;. 0; is the observational root

mean square error, 0; consists of some samples created
by integrating the tangential linear model. Therefore,
67; can be found through 6;. Then the adjoint model
is avoided and only the transpose of matrix is needed.
As described in Wang and Zhao (2005, 2006), the tan-
gential linear operator Ly, _,;, can be formulated as the
following:

Lig—t; = I +7D[Myy_y, (2),7)]

where I is the unit operator, D[My,_., (2D, 7)] is the
tangent linear tendency operator with respect to the
basic state. And the term 7D[M;, ., (2, 7)] is very
small when the time step 7 is limited in some range
and the assimilation window is not too long, i.e.,

17 D[Mey—t, (2, DI < I

So Ly ,—+, can be approximated to I. In our experi-
ment, we assume:

Byv=By=B, 0,=0,=0.

As a theoretical study, B and O; here are all supposed
to be diagonal. According to Behringer et al. (1998),
matrix B can be calculated experientially using the
following formula

(dT/dz)"/?
[(dT'/dz)/?]imax

where a, = 1.3. The OISST product consists of
both SST data and its normalized error variance E.
Thereby, the variance of the observation error can be
formulated as

B(z,y,2) ~ ay (17)

0’ =0E, (18)

where O = O(z,y),0?2, is the guess error variance
which is afforded by R. W. Reynolds (2006, personal
communication). Suppose the subsurface covariance
matrix of mapped observation error as the following:

(19)

22
0(x7y,z) = 0(£E7y) exp {1{2} )
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where H is the depth from the surface to the bottom
at the location (x,y), z is the depth from the surface
to the point (z,y,2). According to the assumption:

Ti,obs = TO,ObS(i = la 25 37 R 7) )

we can set O; = O(i = 0,1,2,...,7). When the dif-
ference between the observation and the background
satisfies:

AT > 5°C,

the variance matrix of observation error may be de-
fined as:

O(z,y,2)[1 + (|AT] - 5)%] . (20)

At last, Eq. (16) may be expressed as the following
form:

T,=(B ' 4+80 ") Y(B™'T, +807'Ty). (21)

Using the above assimilation scheme, the assimila-
tion run is designed based on a 12-year integration
from January 1990 to December 2001 to assimilate
OISST data.

4. The ocean model and datasets

The LASG/IAP Climate System Ocean Model,
version 1.0 (LICOM1.0) has two versions at present,
one with a high resolution of 0.5° x 0.5° and the other
with a coarse resolution of 1° x 1°. In this study, we
choose the 1° x 1° version of LICOM 1.0 for both CTL
and ASSM, which is a global model covering the open
sea from 90°N to 79°S. There are 30 vertical levels with
20 concentrated in the top 1000 m of the ocean. This
model can simulate temperature, salinity and velocity
well, and can reproduce the basic climate characters
reasonably (Zhang et al., 2003a,b; Liu et al., 2004a;
Wu et al., 2005). Also, it has been widely used in
many aspects of climate modeling during the recent
years (Liu et al., 2005; Yu et al., 2004; Yu et al., 2007;
Zheng and Yu, 2007). A more detailed description of
the model can be referred to Liu et al. (2004a).

The model was driven by the external forcing fields
including net shortwave radiation, non-shortwave flux,
the coupling coefficient from OMIP (Frank, 2001) and
the daily wind stress from ERA40. World Ocean Atlas
(WOA98) (Levitus et al., 1998) was applied to relax
SST and sea surface salinity (SSS) towards their clima-
tology. The 12-year integration from January 1990 to
December 2001, without any assimilation, is referred
to as CTL.

The SST observations used in the assimilation run
(name ASSM) are Reynolds OISST with 1° x 1° reso-
lution, derived from analyzing the in situ data from all
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ship and buoy observations available in National Mete-
orological Center (NMC) on the Global Telecommuni-
cation System (GTS) using OI (Reynolds and Smith,
1994). The ship data depend on shipping traffic and
are most dense in the mid-latitude Northern Hemi-
sphere while sparse in the Southern Hemisphere. The
buoy data have been designed to fill in some areas with
little ship data. The satellite observations are obtained
from the Advanced Very High Resolution Radiometer
(AVHRR) on the U.S. National Oceanic and Atmo-
spheric Administration (NOAA) polar orbiting satel-
lites. The data used to validate the LICOM-3DVM
system are WOAO1 (Conkright et al., 2002), TAO
(Hayes et al., 1991; McPhaden, 1995) and HadISST
(Rayner et al., 2003). TAO data are daily and mainly
distributed to the tropical Pacific, between 30°N-30°S.
HadISST is the monthly mean SST dataset built by
the Met Office Hadley Centre with a resolution of
1° x 1° (Rayner et al., 2003).

5. Experiment results

The control and assimilation runs were performed
on LASG cluster Lenovo 1801. The values of the cost
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Fig. 1. RMSE of SST from (a) CTL and (b) ASSM, us-
ing the HadISST from January 1990-December 2001 as
the true data. (Units: °C.)
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Fig. 2. Horizontal distributions of the 12-year averaged
SST over tropical Pacific from (a) WOAO1, (b) CTL mi-
nus WOAO1, (¢) ASSM minus WOAO1. (Units: °C.)

function which are the average of the 12-year exper-
iment are respectively 1252090.1 before assimilation
and 48454.9 after the assimilation. This indicates the
success of ASSM in fitting the observation and demon-
strates the efficiency of the LICOM-3DVM system in
reducing the cost function. We will focus on the anal-
ysis and comparison of the temperatures, due to the
only use of SST observation in the experiments.

The horizontal distributions of the root mean
square errors (RMSEs) of the simulated SSTs from two
experiments are calculated using the HadISST data as
a reference, which are shown in Fig. 1. It is eas-
ily found that the RMSEs after assimilation are ob-
viously less than those from CTL, especially in the
regions where western boundary currents exist, such
as the Kuroshio and the Gulf regions. The large RM-
SEs with the maximum value of 5°C in these regions
from CTL are due to the narrow width of the regions,
which are only 100 km wide and are hard for the ocean
model to resolve horizontally. The use of 3DVM al-
lows for significant improvement of the simulation in
the regions. Also, the maximum RMSE in CTL is
reduced to 10°C. As for the central and eastern Equa-
torial Pacific oceans, the RMSEs that reach 3°C and
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Fig. 3. The 12-year averaged temperature profile (aver-
aged between 2°N and 2°S) from (a) WOAO1, (b) CTL
minus WOAO1, (¢) ASSM minus WOAO1. (Units: °C.)

2°C respectively in the control run are reduced to no
more than 1°C after assimilation. Moreover, the glob-
ally averaged RMSE decreases from 1.082°C in CTL
to 0.388°C in ASSM.

Consistent with the conclusion in Stockdale et al.
(1998) that all ocean models have a cold bias in the
equatorial upwelling region, the excessively-eastern-
extension cold tongue with a 1°C cold bias is found
in CTL (see Fig. 2) when comparing the 12-year aver-
aged model SST over tropical Pacific with the WOAO01
data. The result from ASSM eliminates the cold bias
and coincides with the WOAOL. In addition, the top-
layer temperatures of CTL are much higher in the
coast of South America while those from ASSM are
closer to the observation.

From the 12-year averaged temperature profile
(zonally averaged between 2°N and 2°S) in Fig. 3, we
find that the main improvement occurs in the mixed
layer, especially in the Equatorial central-eastern Pa-
cific after assimilation. Beneath the mixed layer, how-
ever, little improvement is made by ASSM, compared
with CTL. The most likely reason is that the subsur-
face temperatures in the tropical ocean are mainly af-
fected by the upwelling and vertical mixing, but not
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and (d1) and (d2) Nino-4 SSTA and its differences between the model results and observations from
January 1990 to December 2001. (al), (bl), (cl) and (d1) are the time serials of observation, (a2),
(b2), (c2) and (d2) are the differences between the model SSTA and that of HadISST for the CTL

(the solid line) and the ASSM (the dashed line)

by SST due to the very small correlation between the
SST and the subsurface temperature. The work of Zhu
et al. (2002) confirms our results because the subsur-
face temperature in that study was not improved ei-
ther after assimilating SST observations with an adap-
tive variational method. It was suggested in Zhu et
al. (2002) that the temperature front at the bottom
of the mixed layer is an obstacle for transmission of
sea surface information to the subsurface. Tang and
Kleeman (2004) analyzed the relationship between the
temperatures at different levels and pointed out that
the statistical relations between SST and subsurface
temperature decay with the depth.

Plotted in Fig. 4 is the seasonal cycle of monthly
SST anomaly (SSTA) (averaged between 2°N and
2°S). According to the WOAOQL, the SSTA is positive
in spring due to the decreased trade winds and nega-
tive in autumn because of the strongly extended cold
tongue in the eastern equatorial Pacific. The results
of CTL, however, show a lower positive anomaly and
a higher negative abnormality. Good agreements be-
tween ASSM and WOAO1 can be seen clearly in Fig.

. Units: °C.

4.

Figure 5 shows the time-longitude distributions of
SSTA averaged between 2°N and 2°S. While the cold
and warm events described in CTL are of weaker
strength, especially with the bias of —1.5°C in the
strong 1997-98 El Nino event, the SSTA simulation
from ASSM is good and is closer to the HadISST data.

The time series and the differences between the
model results and observations for the Nino-1, Nino-2,
Nino-3 and Nifio-4 SSTA from January 1990 to De-
cember 2001 are shown in Fig. 6. Clearly, CTL fails
to produce the Nino-1 and Nino-2 SSTA, which reveals
a big model bias in these areas, though it’s better for
the Nino-3 and Nifio-4 SSTA except at the peak. In
contrast, ASSM provides good SSTA for all 4 Nino ar-
eas especially for the Nino events, compared with the
HadISST.

After having analyzed the annual mean climatol-
ogy, seasonal cycle and annual cycle of the tempera-
ture field above, the monthly averaged SST is taken
into account. Compared with TAO data, the assimi-
lation run successfully simulated SST in contrast with
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Fig. 7. The time series of monthly SST and the differences between the model SST and the TAO SST at
point (al), (a2), (2°N, 165°E), (b1), (b2), (0°N, 125°W). (al) and (bl) are the time serials of TAO, (a2)
and (b2) are the differences between the model SST and the TAO SST for the CTL (the solid line) and
the ASSM (the dashed line). There are no observations from May 1991 to January 1992 for (2°N, 165°E)
and from December 1990 to February 1991 for (0°N, 125°W). (Units: °C.)
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Fig. 8. The RMSE profile from ASSM (the solid line)
and CTL (the dashed line), using the monthly TAO data
during 1 January 1990-31 December 1999 as the truth.
(Units: °C.)

CTL, which reveals good performance of the LICOM-
3DVM system for SST simulation. This conclusion is
supported by the results in Fig. 7, which gives the time
series of SST and the differences between the model
SST and the TAO SST for the CTL and the ASSM at
points (0°N, 125°W) and (2°N, 165°E).

Figure 8 shows the RMSE profiles of the two ex-
periments where TAO data from 1 January 1997 to
31 December 1999 are used as the observations. Com-
pared with CTL, ASSM improved the temperature at
the upper layers with the maximum depth of 50 meters
by reducing the bias of 0.5°C, but did not improve the
simulations below 50 meters.

The analysis above gives us a fact that ASSM is
able to improve the simulations of temperature in the
mixed layer. However, the univariate data assimi-
lation of SST does not result in an improvement of
other model variables, for example salinity and veloc-
ity field (Cooper, 1988; Masina et al., 2001). A com-
parison on the salinity between the two experiments
shows no obvious differences are found (the figure is
not given) since the variation of the salinity changes
slowly. Also, the velocity field of ASSM shows no im-
provement when compared with the CTL (the figure
is not given).

6. Conclusions

The main purpose of this paper is to apply a new
4DVar method—3DVM to the development and eval-
uation of an ocean data assimilation named LICOM-
3DVM, based on the ocean model LICOM1.0. The
model results can be improved through incorporating
the weekly-mean OISST data into the model simula-
tion by this new assimilation system.

Firstly, we gave an introduction of the 3DVM ap-
proach and formulated its implementation scheme ap-
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plicable for the ocean data assimilation. The key point
of 3DVM is to move the optimal initial condition of
4DVar from the beginning to the end of the assimila-
tion window to avoid the adjoint technique for gradient
calculation. A skill to map the observations at a differ-
ent time up to the end of the window, newly proposed
in this paper, highlights the efficiency of the 3DVM,
which uses only one 7-day model integration to replace
7 model integrations with different time interval from
1 day to 7 day.

Secondly, the weekly OISST data were assimilated
into the model simulations using the LICOM-3DVM
system and the results were compared with those of
CTL, the WOAO1, the HadISST and the TAO data.
The globally averaged RMSE of SST decreased from
1.082°C to 0.388°C after assimilation, which showed a
good improvement in modeling SST. Great improve-
ments on monthly-mean and annual-mean tempera-
ture in the mixed layer were also achieved by ASSM.
It produced smaller cold bias of SST in the equatorial
Pacific than CTL. Furthermore, the Nino SSTA coin-
cides with the observation after assimilation. The ex-
periment results strongly support the suggestion that
the new 4DVar method—3DVM is effective for ocean
data assimilation.

Due to the sparseness of observation, however, the
improvements from ASSM occurred only at the upper
layers such as the sea surface and the mixed layer. Fur-
ther improvements of model simulations are required
to incorporate more observed information, especially
the subsurface data, which are underway.
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APPENDIX A

The Proof of an Important Formula

Prove the formula below:

flax + By) — [af(z) + B(y)] = o(z —y)*,

where f is a function, x,y, « and [ are all real number,
x and y are any variables, and « and [ are constants
satisfy a + 8 = 1.

Prove:

(A1)
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Suppose Az =y —x, s = ax+ By, then
s—x=ax+0y— (a+ 0z =Py —x) =p0Ax,

(A2a)
s=ux+ pAzx, (A2b)
s—y=ar+ Py —(a+ Py =al@-y)=—alz,

(A3a)
s=y—alzx, (A3b)
f(s)=f(a+PAx) = f(z)+fAzf (x) +o(Az?)

(Ada)
f(s)=f(y—adz)=f(y)—adzf'(y)+o(Az?),

(A4b)
f(s) = (a+B)f(s) = af(s) + Bf(s) =

af(z)+aBAzf'(x)+Bf(y)—aBAf (y),  (Ade)

f(s)=laf(@)+8f(y)]=f(az+PBy)-

[af (z) + Bf(y)]
=afAz[f'(x)—f'(y)]+o(Ax)?
= afAzf"(z)(z —y) + o(Az?)
= —afAZ? f"(x) + o(Ax?)
= o(Ax?) (A4d)

So  flaz+By)~laf(x)+Bf(y)]=o(z—y)*. (Ade)

When o(z — y)? is minor, the above equation can be
written approximately as:

flax + By) = af (x) + Bf(y) -
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