
ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 25, NO. 5, 2008, 805–814

Diagnosing Ocean Tracer Transport from Sellafield

and Dounreay by Equivalent Diffusion and Age

Steinar ORRE∗1,2, Yongqi GAO1,2,3, Helge DRANGE1,2,3,4, and Eric DELEERSNIJDER5

1Nansen Environmental and Remote Sensing Center, Bergen, Norway

2Bjerknes Centre for Climate Research, Bergen, Norway

3Nansen-Zhu International Research Centre, Institute of Atmospheric Physics (IAP),

Chinese Academy of Sciences (CAS), Beijing 100029

4Geophysical Institute, University of Bergen, Bergen, Norway

5Centre for Systems Engineering and Applied Mechanics (CESAME), Louvain School of Engineering,

Universite catholique de Louvain, Louvain-la-Neuve, Belgium

(Received 2 August 2007; revised 28 January 2008)

ABSTRACT

A simple approach for estimating the equivalent diffusion for diagnosing tracer transport is proposed.
Two different expressions are derived; one is based directly on an analytical solution of the two-dimensional
advection-diffusion equation, the other uses the variance of the tracer distribution. To illustrate some features
of the equivalent diffusion and possible applications thereof, idealized releases of passive tracers from the
nuclear fuel reprocessing plants at Sellafield in the Irish Sea and Dounreay on the northern coast of Scotland
have been simulated with a regional isopycnic co-ordinate Ocean General Circulation Model. Both continuous
and pulse releases are considered; the former being representative of the actual historical discharges from the
reprocessing plants, the latter resembling an accidental scenario. Age tracers are included to calculate the
mean time elapsed since the tracers left their source regions. It is found that in the Nordic Seas the age of
tracers from Dounreay is approximately 2 years younger than the age from Sellafield. Although tracers from
both sources eventually end up along the same transport routes, significant qualitative differences regarding
the dispersion properties are found. It is argued that one single parameter, the equivalent horizontal diffusion,
which is estimated to be in the range of 20–56 m2 s−1 from Sellafield and 170–485 m2 s−1 from Dounreay,
determines these differences.
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1. Introduction

Estimating the integrated effect of processes acting
to spread any tracer signal carried by currents in the
ocean is of crucial importance for environmental stud-
ies. The presence of numerous contaminant sources
and the need to predict the circulation of biogeochemi-
cal tracers influencing the oceanic carbon cycle are just
two examples of where such information is needed. In

an Ocean General Circulation Model (OGCM) these
mixing processes are not only an effect of the parame-
terized isopycnal and diapycnal diffusion, but also ev-
ery other effect acting to spread and dilute a tracer
patch, e.g. velocity shear and mesoscale eddies.

This paper does not intend to contribute to the
chaotic dispersion paradigm of mixing in the ocean
(e.g., Wiggins, 2005; Orre et al., 2006), but rather
the more traditional, statistical approach associated
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with the turbulent diffusion paradigm (e.g., Okubo,
1971). From a simplified two-dimensional advection-
diffusion equation with a pulse released in an infinite
domain, one can derive two explicit expressions for
the equivalent diffusiona—or the integrated measure of
the spreading. Here, we apply similar relations to an
OGCM that is used to simulate tracer concentration
from idealized pulse releases from the British nuclear
fuel reprocessing plants at Sellafield and Dounreay.
Advanced methods for extracting the equivalent dif-
fusion have been developed and applied to both atmo-
spheric (Haynes and Shuckburgh, 2000) and oceanic
flows (Marshall et al., 2006), however, a simpler ap-
proach is taken here that is tailored for tracers with a
point source release.

European nuclear reprocessing plants have per-
formed controlled releases of liquid radioactive waste
into the ocean since the early 1950s (Dahlgaard, 1995).
The reprocessing plants at Sellafield in the Irish Sea
are still in operation, while releases from Dounreay
on the northern coast of Scotland have now ceased
(AMAP, 2004). In a pioneering work by Prandle
(1984), mixing and time-scales of the radionuclide
137Cs on the European continental shelf was investi-
gated. More recently, it has been shown that the cur-
rent generation of OGCMs are capable of simulating
the large-scale dispersion (Nordic Seas and the Arctic
Ocean) of radionuclides from both European repro-
cessing plants and atmospheric fallout from nuclear
bomb testing in a realistic manner (e.g., Karcher et
al., 2004; Gao et al., 2004).

In a companion paper (Orre et al., 2007) disper-
sion of 99Tc has been simulated for the time period of
1975 to 2003 with the same model setup as the one
used in this study. After relatively low release rates
of 99Tc during the 1980s and the early 1990s, a rapid
increase from Sellafield started from April 1994. This
“pulse” of 99Tc was observed in the Barents Sea re-
gion several years later (e.g., Kershaw et al., 2004). In
Orre et al. (2007) it was demonstrated that the model
reproduced the observed values on the north coast of
Norway fairly accurately.

It is, however, a challenge to infer transport prop-
erties using “real” tracers like 99Tc with variable re-
lease rates. In general, tracers with different release
rates produce different estimates of transport proper-
ties, e.g., the age of tracers and dilution of the concen-
tration downstream of the source region (Waugh et
al., 2003). Therefore, in this study, an effort is made
to isolate the effect of ocean dynamics on the disper-
sion properties of the tracer by using idealized release
rates. For the initial location of the tracers, the two

nuclear fuel reprocessing plants of Sellafield in the Irish
Sea and Dounreay on the northern coast of Scotland
are chosen. We choose to focus on British nuclear re-
processing plants in this study, although releases from
La Hague on the French coast in the English Channel
have been another major source of radioactive waste.
The reprocessing plant in Dounreay is no longer in op-
eration. However, assessing the evolution of passive
tracers from this location along with tracers from Sel-
lafield will highlight the qualitative difference between
having the tracer source near the Atlantic Inflow on
the Scottish Shelf or in a semi-enclosed basin like the
Irish Sea. Whether one can quantify this difference
in terms of a simple time lag in the resulting tracer
concentration downstream of the source is examined.
Finally, we show how these idealized tracers compare
with both simulated and observed values of 99Tc.

2. Equivalent diffusion derived from a 2-D
model

Consider a two-dimensional advection-diffusion
problem over an infinite domain. Let xh = (x, y) and
t denote the position vector and time, where the hor-
izontal domain is −∞ < x < ∞, −∞ < y < ∞, and
the time 0 6 t < ∞. The Green’s function G is then
the solution to the following advection-diffusion prob-
lem with a unit release in space and time:

∂G

∂t
+∇ · (UG−K∇G) = δ(xh − 0)δ(t− 0) . (1)

Here U(xh) is a constant velocity vector of the flow
and K is a constant diffusion coefficient. The Green’s
function is such that

∫ ∞

−∞

∫ ∞

−∞
G(xh, t)dxdy = 1 , (2)

implying that the dimension of G is m−2. Equation 1
has the following analytical solution (e.g., Morse and
Feshbach, 1953):

G(xh, t) =
1

4πKt
exp

[
− (xh −U t)2

4Kt

]
, (3)

where the maximum value of G is

Gmax(t) =
1

4πKt
, (4)

and is located at xmax = U t. Localizing the maximum
value of G will then provide an explicit expression of
the horizontal diffusivity, i.e., K = 1/(4πGmaxt).

aBoth effective and equivalent diffusion can be seen in the literature, having the same physical meaning. We will use equivalent
diffusion throughout the text.
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We continue with defining the variance σ2 of the
tracer distribution,

σ2 =

∫∞
−∞

∫∞
−∞G(xh, t)|xh − xmax|2dxdy∫∞
−∞

∫∞
−∞G(xh, t)dxdy

. (5)

Setting r = |xh − xmax|2, Eq. (5) can then be trans-
formed to

σ2 =

∫∞
0

r3e−r2/(4Kt)dr∫∞
0

re−r2/(4Kt)dr
, (6)

which yields the simple relation

σ2 = 4Kt . (7)

Hence, the variance of the tracer distribution G pro-
vides a second explicit expression of the horizontal dif-
fusivity, i.e., K = σ2/(4t).

To obtain a 2-D field of the tracer concentration
from a 3-D OGCM, we define the tracer inventory as
the depth integrated tracer concentration;

Θ(xh, t) =
∫ η

−h

C(xh, z, t)dz , (8)

where −h is the sea bed and η is the sea surface, and
where z denotes the vertical coordinate. The inventory
should be normalized to satisfy Eq. (2);

θ(xh, t) =
Θ(xh, t)∫

Ω
Θ(xh, t)dxh

, (9)

where Ω is the model domain. Equation (4) then sug-
gests a first estimate of the equivalent horizontal dif-
fusivity as

Keq ' 1
4πtθmax

. (10)

For Keq to be constant in time, the maximum value of
the normalized inventory θmax should decrease as t−1.

The variance of the distribution of the normalized
inventory is defined in a similar way as the variance
for the Green’s function;

µ2 =

∫
Ω

θ(xh, t)|xh − xmax|2dxh∫
Ω

θ(xh, t)dxh
. (11)

A second estimate of the equivalent horizontal diffu-
sivity can then be expressed as

K ′
eq '

µ2

4t
. (12)

From this expression we see that the variance of the
distribution of the normalized tracer inventory µ2

should grow approximately as t for K ′
eq to be constant.

Since the restrictions made for deriving these ex-
pressions for the equivalent diffusion are rather strict,
we do not expect a precise relationship between them
when applied to a complex flow field. However, if Keq

and K ′
eq yield comparable values from an OGCM, it

would support the use of these simple relations in de-
riving a numerical value of K.

3. Illustration with an OGCM

3.1 OGCM and experimental setup

The model system applied in this study is a
nested, medium-resolution regional version of the Mi-
ami Isopycnic Coordinate Ocean Model (Bleck et al.,
1992). The horizontal grid resolution in the region of
interest is about 20 km, and the model domain cov-
ers the northern North Atlantic Ocean and the Nordic
Seas, geographically bounded between 30◦N and 80◦N.
The OGCM is driven by the NCEP/NCAR daily at-
mospheric forcing fields, and has shown good skill in
reproducing the Atlantic Inflow to the Nordic Seas for
the last few decades (e.g., Drange et al., 2005; Hatun
et al., 2005). For the parameterized tracer diffusion co-
efficients, we adopt isopycnal and diapycnal diffusion
velocities in close resemblance to the recommendations
from Gao et al. (2003) based on simulated uptake of
CFCs in the North Atlantic Ocean.

The spatial and temporal evolution of the concen-
tration for a conservative tracer are governed by the
linear Eulerian transport equation;

∂C

∂t
+∇ · (vC −K · ∇C) = q . (13)

Here C(x, t) is the tracer concentration, v(x, t) is
the velocity field, K is the diffusivity tensor, q(x, t)
is the source function, and the space coordinate is
x = (x, y, z). In addition, we add an Eulerian age
tracer following Deleersnijder et al. (2001);

∂α

∂t
+∇ · (vα−K · ∇α) = C . (14)

Here the age concentration is given by α(x, t) =
a(x, t) · C(x, t), hence the age a = α/C. The age is
prescribed to be zero at the source pointb. The tracer
equations are discretized on a C-grid, consistent with
the other prognostic equations in the applied OGCM
(see Drange et al., 2005), and are run online.

We will only consider point sources, so the release
bNote that an alternative approach is possible. In Beckers et al. (2001) the age of the tracer particles leaving the point source

was assumed to be zero–leading to a non-zero mean age at the location of the source.
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rate will be of the form

q(x, t) = Q(t)δ(x− xs) , (15)

where δ(x − xs) is the Dirac delta function at the
source xs, and Q(t) is an arbitrary release rate. As
already seen from Eq. (1), releasing a unit amount
of tracer from a point source xs at t0, that is setting
Q(t) = δ(t − t0), corresponds to the Green’s function
G(x,xs, t, t0) of the tracer transport equation if the ve-
locity field is constant in time. One advantage of con-
sidering the Green’s function is that it has the physical
interpretation of being within the possible range of dif-
ferent ages, commonly referred to as the transit time
distribution (TTD), since a tracer at x last made con-
tact with the source region xs (Holzer and Hall, 2000;
Haine and Hall, 2002; Delhez and Deleersnijder, 2002).
In addition, the TTD is consistent with the age, as de-
fined by Eq. (14), i.e., the age equals the mean of
the TTD (Haine and Hall, 2002). If one integrates the
tracer equations over a time-averaged velocity field
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Fig. 1. Schematics of the North Sea and the Nordic
Seas region carrying radionuclides from Sellafield and
Dounreay to the Barents Sea and further into the Arc-
tic Ocean. The Norwegian Atlantic Current (NwAC) and
the Norwegian Coastal Current (NCC) are depicted. Iso-
baths are drawn for every 50 m to 200 m and thereafter
for every 500 m.

(offline tracer integration), it is sufficient to calcu-
late one G. For time-dependent flows, G(x,xs, t, t0)
is only valid as a TTD for a pulse released at time
t0. However, adding numerous extra tracers in an
OGCM will significantly increase the computational
resources needed, making this approach less feasible.
For comparison with the age tracers, we will, neverthe-
less, compare the two simulated pulses from Sellafield
and Dounreay with the age tracers, keeping in mind
that the distribution could be slightly different when
released at another period of time, with another ocean
state.

As a reference period, we choose to focus on the
period from the late 1980s to the present. This is to
supplement the many studies of 99Tc in this period
(e.g., Kershaw et al., 2004; Karcher et al., 2004; Orre
et al., 2007). We consider the following idealized re-
lease rates from Sellafield and Dounreay:

(1) A pulse released on 1 January 1989 (pulse 1).
(2) A pulse released on 1 July 1989 (pulse 2).
(3) A continuous release starting from the 1 Jan-

uary 1988.
We specify the continuous release as 1012 non-

dimensional units per month. This is comparable to
the releases of 99Tc in the late 1990s (∼ 1012 Bec-
querel per month). The pulse-releases are specified as
an instantaneous dumping of 1014 units. Simulated
concentration in seawater will be presented in units of
m−3.

The geographical regions of the nuclear reprocess-
ing plants in Sellafield and Dounreay are depicted in
Fig. 1, along with schematics of the main features of
the current systems involved in transporting the trac-
ers northward.

3.2 The equivalent diffusion from Sellafield
and Dounreay

We first consider the growth of the variance µ2

as defined by Eq. (11). The variance over the first
three years from Sellafield and Dounreay derived from
the pulse (1) release is shown in Fig. 2. The growth
of µ2 from Sellafield during most of the first year is
about one order of magnitude less than the growth
from Dounreay. The growth of the variance from the
two sources after the initial year is comparable. We
also observe that the variance from Dounreay is much
“smoother” than the abrupt changes in the variance
from Sellafield. It has been shown that the oceanic
volume transport out of the Irish Sea is event-driven,
which, to a large extent, is determined by the amount
of along-channel winds (Davies and Hall, 2000). The
variance from Sellafield will reflect these oscillating
outflow events, while the variance from Dounreay will
be governed by the more steady circulation on the
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Fig. 2. The simulated variance from Sellafield and Doun-
reay derived from the pulse (1) release.

Table 1. Estimated equivalent horizontal diffusivity
(m2 s−1) from Sellafield and Dounreay based on Eq. (10)
for Keq, and Eq. (12) for K′

eq.

pulse (1) pulse (2)

Keq K′
eq Keq K′

eq

Sellafield 56 20 35 22
Dounreay 366 485 170 288

Scottish Shelf which is strongly influenced by the At-
lantic Inflow to the North Sea.

Based on the two simple relations in Eqs. (10) and
(12), averaged values of the horizontal diffusivity Keq

have been computed and are provided in Table 1. This
approach would be a crude approximation of the equiv-
alent horizontal diffusivity for the simulated period as
a whole since the tracers experience different mixing
regimes along the northward pathways. A relatively
small amount of tracers from Sellafield will escape the
North Channel within the first year after the release,
see Fig. 3a, hence reaching a quite different mixing
regime in the Scottish Coastal Current and further into
the North Sea. About one year after the release the
tracers from Dounreay will begin to accumulate in the
deeper region of Skagerak, see Fig. 3c. The decrease of
θmax will therefore be slower than t−1 in this period.
Therefore, the estimates of the equivalent horizontal
diffusivity are based on results from the first year of
simulated spreading of the pulses, and should be seen
as initial values near the source region.

The equivalent horizontal diffusivity from Sellafield
is almost an order of magnitude lower than that from
Dounreay: 20–56 m2 s−1 compared to 170–485 m2 s−1,
respectively. We observe that the values from pulse (1)
released from Dounreay are much higher than the val-
ues from pulse (2). This is most likely a direct effect

of enhanced circulation in the region during the winter
months of 1989 compared to the summer. From Sel-
lafield, the estimate based on the decrease of θmax is
slightly higher for pulse (1) than pulse (2), while the
estimate based on the variance of the tracer distribu-
tion µ2 is almost the same for the two pulses.

3.3 Spatial distribution

From Sellafield in the Irish Sea, the dominant path-
way is northward through the North Channel. Tracers
from Dounreay are eventually transported along the
same pathways into the North Sea and further north,
mainly with the Norwegian Coastal Current (NCC),
but also mixed with the outer-laying Norwegian At-
lantic Current (NwAC), see schematics in Fig. 1. Af-
ter leaving the Norwegian Sea, tracers are carried into
the Arctic Ocean through both the Barents Sea and
the Fram Strait. There is also a branch being trans-
ported southwards along the east Greenland coast. A
more thorough description of tracer transport from
Sellafield and possible forcing mechanisms are given
in Kershaw et al. (2004) and Orre et al. (2007).

The simulated surface distributions of the trac-
ers with the pulsec release rate are displayed in Fig.
3. While the Dounreay-derived pulse is transported
away from the Norwegian coast and the Barents Sea
in March 2002 (Fig. 3d) the pulse released from Sel-
lafield in January 1989 is still leaking out from the
North Channel more than thirteen years later (Fig.
3b).

The simulated surface distributions of the tracers
with continuous release rate at the end of the simu-
lated period are displayed in Figs. 4a and 4c. There
are only minor differences in the concentration away
from the source regions at this time, indicating that a
continuous release of contaminants from these sources
will result in the same long-term environmental impact
along the Norwegian coast and beyond.

The age of the Sellafield-derived tracers is in
the range 3–6 years along the Norwegian coast, and
reaches up to 10 years in the interior of the Nordic Seas
(Fig. 4b). Dounreay tracers are significantly younger,
approximately 2 years on average (Fig. 4d). A dis-
tinct, sharp boundary is seen between tracers trans-
ported northward with the NCC and the NwAC, and
the relatively old tracers that has been recirculated
in the Nordic Seas. This is particularly evident from
the Sellafield age field (Fig. 4b) along the Norwegian
coast, where relatively old (9–10 years) tracers in the
interior of the Nordic Seas borders younger tracers car-
ried with the NwAC (3–4 years), but then with slightly
older tracers close to the Norwegian coast (5–6 years).

cOnly pulse (1) is contoured on the maps in Fig. 3 and Fig. 4, and plotted as a function of time in Fig. 5. Tracers with pulse
(2) release rate experience similar behavior.
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Fig. 3. Simulated surface values (dimensionless units: m−3) from the
pulse (1) release in (upper-left panel and lower-left panel) March 1990
and (upper-right panel and lower-right panel) March 2002. Upper panel
displays tracers from Sellafield, lower panel tracers from Dounreay,
source region indicated with the black dot. The surface is defined as
the upper 200 m.

This feature does not follow from the concentration
field, where a high concentration of tracers tends to
stick to the NCC close to the Norwegian coast, in ac-
cordance to the general circulation pattern. However,
it should be noted that the age field does not neces-
sarily reflect the circulation pattern, in contrast to the
concentration field (Beckers et al., 2001).

3.4 Temporal distribution

To illustrate the temporal evolution at a station
far away from both source regions, we choose the is-
land Hillesøy located on the north coast of Norway
(69.65◦N, 17.95◦E) at the entrance to the Barents Sea,
see Fig. 1. Monthly observations of 99Tc has been con-
ducted at this location since 1997 by the Norwegian
Radiation Protection Authority (NRPA), and compar-

ison with output from OGCMs have been presented in
Karcher et al. (2004) and Orre et al. (2007).

Continuous releases from the two sources are ex-
pected to result in a quasi steady-state concentration
at a location downstream if there is no recirculation
or accumulation of tracers, which is a reasonable as-
sumption for tracers transported northward with the
NCC/NwAC system on these timescales. The varia-
tion in concentration should then be the result of vari-
able ocean dynamics. The simulated concentration
from Sellafield and Dounreay at Hillesøy from 1997
and onward shares much of the same variability (Fig.
5). However, the transient state is very different in
that tracers from Sellafield need a much longer time
to reach this steady-state concentration.

The simulated time history of the age shows a steep
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Fig. 4. Simulated surface values in March 2002 of (upper-left panel
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the continuous release, and (upper-right panel and lower-right panel)
the age (in years) of the tracers with continuous release rate. Upper
panel displays tracers from Sellafield, lower panel tracers from Doun-
reay, source region indicated with the black dot.

growth from zero when the first patch of tracers arrive
at Hillesøy. Thereafter the age grows steadily as a
result of a mix of both old and relatively young wa-
ter masses. The initial growth period before the age
reaches a steady state is at least twice as long for Sell-
afied as the growth of the age from Dounreay (although
it is difficult to precisely determine how long this pe-
riod is). If we assume the age is close to a steady-
state by the last 5 years of the simulation, the age at
Hillesøy is 5–6 years from the Sellafield-derived tracers
and about 3 years from the Dounreay-derived tracers.

The pulse from Sellafield is smeared out for more
than ten years at Hillesøy, in fact, the concentration
doesn’t vanish along the Norwegian coas within the
simulation. This is in sharp contrast to the resulting
concentration from the pulse released from Dounreay,

where a steep increase is followed by a more gradual
decrease. This effectively shows the profound differ-
ence of having the tracer source in the Irish Sea ver-
sus the more dynamic region on the northern coast of
Scotland close to the persistently poleward flowing At-
lantic waters, hence, the effect of a more unidirectional
advection. Although these pulse releases cannot be di-
rectly linked to the TTD due to the time variability,
as noted in section 3.1, it effectively shows how the ini-
tial pulse signal is stretched in time when transported
from the source, and should therefore be representa-
tive of a typical distribution of ages at this location.
From this we deduce that the typical spread of the
TTD, typically called the width of the age distribu-
tion (Delhez and Deleersnijder, 2002), is much greater
from Sellafield than from Dounreay. Furthermore, this
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Fig. 5. (top) Simulated concentration at Hillesøy (non-
dimensional units m−3) from the continuous release,
(middle) simulated age of the tracers with continuous
release rate, and (bottom) simulated concentration from
the pulse (1) release.
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at Hillesøy. The simulated tracer concentration with con-
tinuous release is divided by a factor of 2 to fit the values
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might also explain why the initial growth period of
the age, as noted above, is about twice as long from
Sellafield as from Dounreay.

We end this section with a qualitative compari-
son of the tracer with continuous release from Sell-
afield with observed and simulated concentration of
99Tc at Hillesøy. The simulated 99Tc concentration
accounts for the release rates from both Sellafield and
La Hague, which are the only nuclear fuel reprocess-
ing plants which have released 99Tc. These two re-
processing plants exceed other sources such as fallout
from nuclear bomb testing by more than two orders
of magnitude. It should be noted that 99Tc from La
Hague is negligible compared to Sellafield after 1990
(Kershaw et al., 2004). The releases of 99Tc from Sell-
afield increased drastically in 1994, before a moderate
reduction was reported from 1997 and onward (Orre
et al., 2007). Both the observed and simulated con-
centration at Hillesøy peaked in the winter 2000 and
2001, after which a decrease is seen (Fig. 6). The fig-
ure clearly illustrates that the decrease of 99Tc, from
approximately January 2001 and onwards, is not only
caused by reduced releases from Sellafield in the late
1990s, but also the underlying ocean dynamics. The
ideal tracer with continuous release from Sellafield also
shows a decrease in the same period, and the correla-
tion coefficient between these two simulated time series
is as high as 0.8 for the period of 1999 to 2003. It is
readily seen that this OGCM suggest a dominant role
of the ocean dynamics in shaping the variability of the
tracer signal rather than the release rate at a station
downstream of the tracer source, although this cer-
tainly would depend on the distance from the source
(the greater the distance from the source, the more
of the original shape of the tracer signal from the re-
lease rate would be lost due to the continuous mixing
processes occurring in the ocean).

4. Summary

A numerical experiment with idealized passive
tracers from the locations of the nuclear fuel reprocess-
ing plants at Sellafield in the Irish Sea and Dounreay
on the northern coast of Scotland has been carried out.
The objective has been to investigate some of the dis-
persion features of the tracers originating from both
a semi-enclosed basin and also from the open ocean,
and the following large-scale dispersion of the tracers.

It is found that tracers from Dounreay are rapidly
carried away from the source region, first into the
North Sea and then northward along the coast off
Norway. The transport of Sellafield-derived tracers
are, however, efficiently delayed from the release in
the Irish Sea, leading to a qualitatively different dis-
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persion pattern. The age of tracers from Dounreay is
approximately 2 years younger than the age from Sel-
lafield in the Norwegian Sea. In addition, the initial
growth period of the age from Sellafied is significantly
longer compared to the age from Dounreay.

Although a continuous release of contaminants
from both sources eventually reaches the same values
in the far field, the transient state is very different.
This is particularly evident from a pulse released from
the two source regions, where the pulse from Dounreay
shows a distinct peak value along the Norwegian coast
a few years after the release, and then almost vanish
from the entire Nordic Seas by the end of the simula-
tion. The pulse from Sellafield, on the other hand, is
effectively delayed by the fact that the release region is
in a semi-enclosed basin, and the resulting maximum
concentration along the Norwegian coast is less than
half of the maximum concentration stemming from the
Dounreay-derived pulse. We also conclude that the
differences in tracer transport from Sellafield versus
Dounreay cannot be characterized by a simple time
lag in the resulting tracer concentration downstream
of the source, due to the different transient state.

We argue that an order of magnitude higher value
of the equivalent diffusion from the Dounreay site ex-
plains these qualitative differences. Calculating the
single parameter equivalent diffusion has a potential
for extracting crucial information from the vast output
that an OGCM delivers. Therefore, information on
the strength of the initial spreading near the source of
contamination would be very useful, and even critical,
for estimating the large-scale transport of any passive
tracer release on the north-west European shelf region.
We emphasize that for the near source distribution of
tracers, the temporal evolution will critically depend
on the ocean initial state and the actual atmospheric
forcing. However, the estimated equivalent diffusion
in this paper is based on a whole year of simulated
tracer dispersion. A recent model study on radioactive
tracers from Sellafield and La Hague suggests that the
large scale dispersion properties are not very depen-
dent on the release date (Orre, 2008).

From the timeseries at Hillesøy at the entrance to
the Barents Sea, both from observed and simulated
values of 99Tc and simulated idealized tracers, it is
readily seen that the ocean dynamics plays a domi-
nant role in shaping the variability of the tracer signal
rather than the release rate at a station downstream
of the source region in the Irish Sea or the northern
coast of Scotland.

The concept of age tracers, as developed by Deleer-
snijder et al. (2001) and Delhez and Deleersnijder
(2002), is a diagnostic tool designed for numerical
models, and can, in principle, be applied to any trac-

ers with prescribed sources and sinks. For the concept
of equivalent diffusion, as developed and used here, we
emphasize that for this approach to be meaningful, the
tracer dispersion should be mainly two-dimensional (or
along surfaces of constant density), and that the de-
crease of the maximum tracer inventory should be pro-
portional to the inverse of time, and the variance of the
tracer distribution should grow proportional to time.
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