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ABSTRACT

Aerodynamic roughness length (z0m) is a key factor in surface flux estimations with remote sensing
algorithms and/or land surface models. This paper calculates z0m over several land surfaces, with 3 years
of experimental data from Xiaotangshan. The results show that z0m is direction-dependent, mainly due to
the heterogeneity of the size and spatial distribution of the roughness elements inside the source area along
different wind directions. Furthermore, a heuristic parameterization of the aerodynamic roughness length
for heterogeneous surfaces is proposed. Individual z0m over each surface component (patch) is calculated
firstly with the characteristic parameters of the roughness elements (vegetation height, leaf area index, etc.),
then z0m over the whole experimental field is aggregated, using the footprint weighting method.
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1. Introduction

Aerodynamic roughness length (z0m) is a key pa-
rameter to describe the aerodynamic characteristics of
land surfaces (Liu et al., 2007a). It is also an impor-
tant parameter in determining mass and energy ex-
changes between the land surface and the atmosphere.
Originally, z0m is defined as the height where the wind

speed, given by the extrapolation of the logarithmic
wind profile, becomes zero. According to numerous
observations, the variation range of z0m over different
surfaces is large, from an order of 1.0 m over urban
areas and mountainous areas, to an order of 0.1 mm
or even 0.01 mm over smooth water body surfaces,
ice and snow surfaces (Sheng et al., 2003). Brutsaert
(1982) gave a review: z0m is 0.00001 m over ice sur-
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faces, 0.4–1.65 m over forest and urban areas, and in
between those values for grassland and sparse vegeta-
tion areas.

The traditional way to calculate z0m is based on the
Monin-Obukhov Similarity Theory, using wind profile
measurements. The simple case is to extrapolate wind
profile observations at several levels under neutral con-
ditions to obtain z0m. Under non-neutral conditions,
it is necessary to solve the wind profile relationship
iteratively to obtain a fitted solution. Furthermore,
z0m can also be obtained with an eddy covariance sys-
tem observation at a single level. In practical appli-
cations, especially for remote sensing models and land
surface models, it is difficult to obtain z0m for a lo-
cal or regional scale based only on station observa-
tions. Former researchers (Brutsaert, 1982; Waters et
al., 2002) have proposed some parameterizations be-
tween the aerodynamic roughness length and the land
surface properties [e.g., vegetation height, leaf area in-
dex (LAI), etc], since wind turbulence is controlled
by the structure and spacing of roughness elements
(plants and other obstacles) on the land surface, and
z0m describes the roughness characteristics of a surface
(Garratt, 1992). These empirical relationships have
been widely used. The most commonly used relation-
ship is to assume z0m proportional to the roughness
element height (h). Large variations in the ratio of
z0m/h over different land surfaces have been found in
the literature. For example, z0m/h is 0.04 for sparse
sorghum (Azevedo and Verma, 1986); 0.14 for small
cotton (Kustas et al., 1989), and 0.8 for cotton of in-
termediate foliage density (Hatfield, 1989). Mathias et
al., 1990) and Garratt (1992) reported z0m/h = 0.1 as
a rough estimate from a review of literature although
Garratt noted that the ratio can range from 0.02 to
0.2 for natural surfaces based on an extensive review
of the literature. In many land surface models, such as
BATS (Biosphere-Atmosphere Transfer Scheme) and
SiB (Simple Biosphere model), z0m is taken as a con-
stant according to vegetation type (Dorman and Sell-
ers, 1989; Dickinson et al., 1993). In the CLM (Com-
mon Land Model) (Dai et al., 2003), z0m is taken as a
constant ratio of vegetation height, i.e., z0m = 0.07h.
In the remote sensing models used to estimate the re-
gional evapotranspiration, for instance, the SEBS (the
Surface Energy Balance System) uses the Normalized
Difference Vegetation Index (NDVI) to determine z0m
(Jia et al., 2003), while the SEBAL (Surface Energy
Balance Algorithms for Land) uses an empirical re-
lationship with NDVI and albedo. (Waters et al.,
2002). This parameterization was also used by Liu
et al. (2007b) to calculate the regional evapotranspi-
ration over heterogeneous surfaces with TM/ETM+
data.

Based on the data of the Xiaotangshan Experiment
(Changping District of Beijing, China), which was con-
ducted in 2002, 2004, and 2005 respectively, the objec-
tives of this paper are: (1) to calculate z0m over differ-
ent surfaces and analyze the directional characteristics
of z0m over heterogeneous surfaces using an analytical
footprint model; (2) to relate the estimated z0m over
heterogeneous surfaces to roughness element charac-
teristic factors, and present a heuristic parameteriza-
tion of z0m as a reference for model parameterizations.

2. Description of experimental site and data

This experiment was carried out at the Xiaotang-
shan Experimental Station for Precision Agriculture
(40◦10′41′′N, 116◦26′52′′E, 35 m above sea level) in
Beijing. The experimental field was flat and open,
1000 m long from north to south and 500 m wide
from east to west, divided into two equal smaller sub-
plots (southern and northern, denoted as XTS S and
XTS N, respectively) by an east-west oriented path.
The fetch in the prevailing wind direction is sufficient
to ensure the Monin-Obukhov similarity theory to be
held. The general situations of the experiments in
2002, 2004, and 2005 are as follows.

The observation period in 2002 was from 26 March
to 23 April and the land cover was bare soil. In 2002,
the instruments were mounted in the center of the ex-
perimental field.

In 2004, the experiment was carried out from 30
May to 7 July. In the southern sub-plot field, the land
cover was bare soil between 30 May and 11 June, while
the maize plants started emerging around 12 June.
The average vegetation height was 0.41 m at the end
of the experiment. In the northern sub-plot, the field
was covered by weeds with an average height of 0.26 m
until it was plowed into bare soil on 15 June. Two sets
of eddy covariance systems and automatic weather sta-
tions were installed in the center of the southern and
northern sub-plot fields, respectively, to measure the
surface fluxes and other meteorological variables.

In 2005, the experiment was from 1 May to 10 June
and the experimental layout was almost the same as
that in 2004. The southern sub-plot field was bare soil
with maize seeding in the soil. The northern sub-plot
field was inhabited by weeds with an average vegeta-
tion height of 0.12 m.

All the measurements were averaged every 10 min-
utes. The description of the sites and measurements
used in this study are summarized in Tables 1 and 2.

To ensure the data quality, only the data that met
the following criteria were selected for further analy-
sis: (1) wind speed u > 1.0 m s−1; (2) friction veloc-
ity u∗ > 0.01 m s−1 (for a bare soil surface) or u∗ >
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Table 1. Site description.

Site Date Latitude/Longitude Land cover/use Mean vegetation
height h (cm)

XTS 28 March–23 April 2002 40◦10′1′′N, 116◦26′1′′E Bare soil 0
XTS S 30 May–11 June 2004 40◦10′41′′N, 116◦26′52′′E Bare soil 0

12–24 June 2004 Maize (emerging) 17
25 June–7 July 2004 Maize 41

XTS N 30 May–15 June 2004 40◦10′57′′N, 116◦26′54′′E Weed habitat 26
16 June–7 July 2004 Bare soil 0

XTS S 1 May–10 June 2005 40◦10′41′′N, 116◦26′53′′E Bare soil 0
XTS N 1 May–10 June 2005 40◦10′55′′N, 116◦26′53′′E Weed habitat 12

XTS: Xiaotangshan; S: southern sub-plot; N: northern sub-plot.

Table 2. Measurements and instruments used in this study.

Variables Instruments Instrument Observation
height (m) site

Friction velocity u∗, Wind speed u, a 3D sonic anemometer (DA600, KAIJO, Japan) 2 XTS2002
Monin-Obukhov length L and a CO2/H2O analyzer (Li7500, Campbell).

a 3D sonic anemometer (CSAT3, Campbell) and 1.8 XTS2004 S
a CO2/H2O analyzer (Li7500, Campbell). 1.9 XTS2004 N

1.9 XTS2005 S
2.0 XTS2005 N

0.1 m s−1 (for other surfaces); (3) sensible heat flux
H > 10 W m−2; (4) no rainfall; (5) measurements
done between 0700 LST and 1800 LST.

3. Methods

3.1 Aerodynamic roughness length z0m

With the development of eddy covariance tech-
niques, mean wind speed and simultaneous measure-
ments of turbulent fluxes measured at a single level
by the sonic anemo-thermometer can be used to cal-
culate z0m (Chen et al., 1993; Jennifer and Brusaert,
1998; Jia and Wang, 1999; Martano, 2000). Yang et
al. (2003) suggested an algorithm to obtain z0m by
minimizing the cost function below if the number of
observations (i) was large enough:

J =
∑

i

{u∗i − κui/[ln((z − d)/z0m)−

ψm(z0m/Li, z/Li)]}2 . (1)

The Monin-Obukhov length L is obtained by using:

L = −ρcpu3
∗Ta/(κgH) , (2)

where u is the wind speed at observation level z, u∗ is
the friction velocity, and κ is the von Karman constant
(0.4). The zero-plane displacement d is taken empiri-
cally, d = 2/3h (Brutsaert, 1982). ρ is air density, cp
is the specific heat of air at constant pressure, Ta is

the air temperature, g is the gravitational acceleration
(9.81 m s−2), and H is the sensible heat flux. Under
unstable conditions, the stability correction function
for the momentum transfer ψm is expressed as (Paul-
son, 1970):

ψm =2 ln
[
(1 + x)

2

]
+ ln

[
(1 + x2)

2

]
−

2arctanx+
π

2
. (3)

Under stable conditions (Webb, 1970; Businger et
al., 1971):

ψm = −5ξ , (4)

where

ξ = (z − d)/L , (5)

x = (1 − 16ξ)1/4 . (6)

The selected data set was divided into four sub-
sets according to the wind direction (dir): East (E
in short, 45◦ < dir � 135◦), South (S in short,
135◦ < dir � 225◦), West (W in short, 225◦ < dir �
315◦), North (N in short, 315◦ < dir � 360◦ and
0◦ < dir � 45◦) and the z0m of the four wind directions
(z0m E, z0m S, z0m W, z0m N) were calculated using Eq.
(1) (Table 3). Then, the four sub-set data were joined
together to calculate another z0m that can be deemed
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Table 3. The z0m obtained from the eddy covariance system observations (units: cm) (Xiaotangshan Experiment, 2002,
2004 and 2005).

Date & site Land cover/use z0m E z0m S z0m W z0m N z0m

2002 28 March–23 April, XTS Bare soil 1.00 1.00 1.00 1.00 1.00
2004 30 May–11 June, XTS S Bare soil 0.74 0.95 0.13 0.13 0.58

12–24 June, XTS S Maize (emerging) 1.87 2.37 1.85 0.65 1.86
25 June–7 July, XTS S Maize field 3.94 4.30 1.70 1.34 2.59
30 May–15 June, XTS N Weed habitat 2.70 2.76 0.44 1.03 2.25
16 June–7 July, XTS N Bare soil 2.24 3.45 1.13 1.41 2.24

2005 1–10 May, XTS S Bare soil 0.71 0.56 0.57 0.09 0.56
11–20 May, XTS S 1.28 0.68 0.27 0.16 0.60
21–31 May, XTS S 1.64 1.15 0.39 0.24 0.80
1–10 June, XTS S 1.26 0.85 0.77 0.42 0.73
1–10 May, XTS N Weed habitat 1.62 1.66 0.84 0.20 1.25
11–20 May, XTS N 1.78 1.95 0.85 0.41 1.41
21–31 May, XTS N 1.88 1.95 0.95 0.71 1.50
1–10 June, XTS N 1.56 0.69 1.45 0.86 1.00

as a representative of the roughness characteristics of
the whole experimental field. It is listed on the last
column of Table 3.

3.2 Footprint model

A footprint is specified as the relative contribution
from each element of the upwind surface source area to
the measured concentration or vertical flux (Schuepp
et al., 1990). It describes the area of influence to a
measurement,and is also called the source weight func-
tion. Source area is the area bounded by a source
weight function isopleth and it is a region in the up-
wind direction of the location of the observation in-
strument (Schmid, 2002). The concept of the foot-
print provides a quantitative tool to establish the spa-
tial frame of reference of surface-atmosphere exchange
measurements. It may be interpreted in analogy to
the “field of view” of the instrument. In this study, an
analytical model is used to compute the flux footprint
or upwind source area contributing to the measure-
ments by the eddy covariance system. The footprint
or source weight function is expressed as (Kormann
and Meixner, 2001; Cai and Leclerc, 2007):

ft =
1

Γ(µ)
ζµ

x1+µ
1

e−ζ/x1 (7)

where ft is the crosswind integrated flux footprint, µ
is a constant, Γ is the Gamma function, and x1 is
the upwind distance from the point where the mea-
surements are taken. ζ is the flux length scale and
ζ = (Uzr

1)/(r
2K), in which U is the constant in the

assumed power-law profile of the wind velocity, z1 is
the height in the vertical direction, r is the shape fac-
tor, and K is the constant in the assumed power-law
profile of the eddy diffusivity. For more information,
please refer to Kormann and Meixner (2001).

4. Results and analysis

4.1 The aerodynamic roughness length (z0m)
at the Xiaotangshan experimental fields

Since z0m is mainly related to the underlying sur-
face, we can assume that z0m is constant over short
periods for a specific land surface condition. Table 3
shows the results of z0m for the four wind direction
classes described above and that of the whole experi-
mental field in 2002, 2004, and 2005 respectively. The
z0m in 2004 and 2005 were calculated about every 10
days. The table shows: (1) the z0m is in an order of
0.1–1 cm; (2) over a vegetation surface, z0m increases
during the crop-growing period in the summer because
the form-drag around the surface roughness elements
was enhanced; (3) at the northern sub-plot field in
2004, z0m has a small variation before and after the
weeds were cut, which means that the drag exerted
by the permeable and the rougher vegetation surface
(with average height 0.26 m) was about the same as
the impermeable and uneven plowed surface; (4) the
value of z0m obviously varied with the types of bare soil
surfaces, due to different morphology. Therefore, z0m
is mainly determined by the size, height, and layout of
the surface roughness elements.

In the same sub-period, values of z0m E, z0m S, z0m W,
and z0m N showed a large variation (except in 2002
when the experimental field was smooth and flat bare
soil). Over the heterogeneous surfaces, aerodynamic
roughness length has directional characteristics. Here,
taken the northern sub-plot in 2005 as an example,
we use the analytical footprint model introduced in
section 3.2 to explain this directional dependence.

During the first three periods of 2005, the maxi-
mum aerodynamic roughness length appeared in the
southern direction,while the minimum was in the nor-
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Fig. 1. The footprint of the eddy covariance system at northerly and southerly wind directions of
the Xiaotangshan Experiment (northern sub-plot) overlays on the land cover map. Arrows denote
wind direction. Stars denote the location of the apparatus with a coordinate of (0, 0). The longest
isopleth determines the source area of a 90% level that limits an area that contributes up to 90%
of the sensed fluxes by the instrumentation. (a, b: 1–31 May 2005; c, d: 1–10 June 2005).

thern direction (Table 3). Figure 1 shows the source
area of the eddy covariance system measurement, over-
lying on the land cover map, along the northerly and
southerly wind directions from 1–31 May (Figs. 1a,
1b) and 1–10 June (Figs. 1c, 1d). It clearly shows that
the source area, both in the southerly and northerly
wind directions, fell in the northern sub-plot field com-
pletely. The dimensions were about 150× 150 m2 (1–
31 May), 180 × 180 m2 (1–10 June) for the southerly
wind direction and 200 × 200 m2 (1–10 June) for the
northerly wind direction, respectively. The source area
for the northerly wind direction is almost in the N1
plot (morning glory field), except for a small part in
the N5 plot (seedling) and the N6 plot (barren) that
is at the edge of the source area and has little impact
on the eddy covariance system measurement. For the
southerly wind direction, most of the source areas are
in the N2 (seedling) and N3 (barren) plots. The veg-
etation height of each plot is listed in Table 4. The

vegetation height in plots N2 and N3 was much higher
than that in N1, so aerodynamic roughness length in
the southerly wind direction (z0m S) is larger than that
in the northerly wind direction (z0m N). But a sharp
decrease of z0m S was found during 1–10 June and it
became the minimum among the four directions. This
is because during 1–10 June most of the source area of
the southerly wind direction fell in the N3 plot (Fig.
1d) because the vegetation was harvested on 25 May
and the land surface became bare soil (Table 4). Con-
sequently, the z0m in this period decreases significantly
(Table 3). Thus, the essence of directional dependence
is that the aerodynamic roughness length varies with
the variation of terrain relief and roughness elements
in the source areas of the measurements. Over hetero-
geneous surfaces, the size and spatial distribution of
roughness elements within the source areas are differ-
ent in different wind directions; the values of aerody-
namic roughness length vary accordingly.
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4.2 The relationship between aerodynamic
roughness length over heterogeneous sur-
faces and roughness elements in the
source area

The concept of the aerodynamic roughness length
is straightforward in the case of homogeneous surface
conditions. However, if one deals with the phenomena
over heterogeneous surfaces with various types of veg-
etation, buildings, and possibly topography changes,
the meaning of aerodynamic roughness length becomes
less obvious. In such cases, the z0m can be probably
best defined as the parameter that should yield the
correct surface stress over the area (Marshall, 1971;
Mason, 1988; Menenti and Ritchie, 1994; Hiyama
et al., 1996). Some researchers defined this as the
“effective roughness length” (Fiedler and Panofsky,
1972; Wieringa, 1986; Mason, 1988). This means that
the z0m over heterogeneous surfaces (effective z0m)
is not necessarily equal to the average of the rough-
ness length values of all individual surface components.
The form drag caused by isolated houses, trees, or
sharp edges of forest/grassland, are not accounted for
in an individual local roughness parameter, while they
are major contributors to the areal surface stresses.

In practical use, especially for remote sensing and
land surface models with pixel or grid resolution, it is
difficult to obtain z0m over heterogeneous surfaces via
observation. Alternatively, indirect approaches have
also been considered in previous studies as mentioned
above.

In the following study, we try to find the relation-
ship between the aerodynamic roughness length over
heterogeneous surfaces and roughness elements in the
source area based on the Xiaotangshan observations,
and propose a heuristic parameterization of the aero-
dynamic roughness length over heterogeneous surfaces
as a reference for model parameterizations.

During the three observation periods, the exper-
imental surfaces were variable because of vegetation
growth or field plowing. According to the study ob-
jectives, the surface conditions, and data availability,

we chose two typical surfaces consisting of different
patches: (1) 25 June–7 July 2004, the southern sub-
plot field (Area A hereafter); (2) 21–31 May 2005, the
northern sub-plot field (Area B hereafter). Figure 2 is
the corresponding land cover map. The two heteroge-
neous surfaces were all consisting of bare soil patches
and vegetation patches, and the latter one was the
main type. All of the vegetation patches have two
characteristics: (1) sparse vegetation (0 � LAI� 1);
(2) the vegetation height was obviously different for
different patches because of different crop growing pe-
riods and/or vegetation types (Tables 4, 5). There-
fore, we tried to analyze the relationship between the
aerodynamic roughness length over heterogeneous sur-
faces and three key vegetation parameters which can
describe the geometry and distribution of the surface
roughnesses (vegetation height, fractional vegetation
cover (fv), and LAI). In this study, the last two pa-
rameters were derived from TM image data by assum-
ing fv and LAI as constant during the corresponding
sub-periods [the satellite pass time: 6 July 2004 (Area
A); 22 May 2005 (Area B)]. The vegetation height was
measured and listed in Tables 4 and 5.

Among the available models in estimating the aero-
dynamic roughness length based on surface features,
there was one proposed by Choudhury and Monteith
(1988) who fitted simple functions to the curves ob-
tained by Shaw and Pereira (1982) from second-order
closure theory. For sparse vegetation (0 � LAI� 1)
like our experimental field:

z0m = z′0 + 0.3h(Cd × LAI)1/2 , (8)

where h is the vegetation height, Cd is the mean
drag coefficient for individual leaves assumed to be
uniform within the canopy, and z′0 is the roughness
length of the substrate and assigned to be 1 cm in our
cases, according to Table 3. The main interest of this
formulation, compared with the parameterization of a
function of height, is to take into account an additional
parameter (LAI) and thus be more suited to sparse
vegetation when vegetation height remains constant

Table 4. Vegetation height measurement at the northern sub-plot field of the Xiaotangshan Experiment in 2005 (units:
cm).

Plot 12 May 24 May 25 May 28 May

N1 (morning glory field) 11 13 13 13
N1A (bare soil) 0 0 0 0
N2 (seedling) 10 23 23 23
N3 (barren) 21 39 0 0
N4 (barren) 55 86 0 0
N5 (seedling) 0 12 12 12
N6 (barren) 51 83 83 85
X (bare soil) 0 0 0 0
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Table 5. Vegetation height measurement at the south-
ern sub-plot field of the Xiaotangshan Experiment in 2004
(units: cm).

Plot h (25 June–7 July)

A (bare soil) 0
B, D (corn, medium height) 66.5
C (corn, low height) 37.2
E (corn, high height) 127.9
F (bare soil) 0
G (corn, high height) 104.2
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Fig. 2. The scheme of land cover over the Xiaotangshan
experiment field. (P is the apparatus location; (a) north-
ern sub-plot, N1: Morning glory field; N1A: bare soil;
N2: seedling; N3: barren; N4: barren; N5: seedling; N6:
barren; X: bare soil; (b) southern sub-plot, A, F: bare
soil; B, D: corn, medium height; E, G: corn, high height;
C: corn, low height)

and vegetation density varies. A standard value of 0.2
is generally recommended for Cd (Shaw and Pereira,
1982; Choudhury and Monteith, 1988).

The individual z0m[z0m(i) for each surface compo-
nent (patch)] of a heterogeneous surface can be esti-
mated with Eq. (8). In former works, such as that by
Taylor (1987), the aerodynamic roughness length for
the whole area was aggregated from individual z0m(i),
with respective area as the weight:

ln〈z0m〉 =
∑

i

si ln[z0m(i)] , (9)

where si represents the area ratio of patch i having
roughness length z0m(i) to the sum of all the patches.
Angular brackets mean a spatial average. Since a foot-
print represents different contributions of individual
patches in the source area and the effective roughness
length should be the one that can produce a momen-
tum to represent the spatial average of the surface
stress occurring in the heterogeneous terrain, only the
patches in the source area are considered. Further-
more, the respective footprint value of each patch is
taken as the weight in the aggregation. Equation (9)
can be corrected accordingly:

ln〈z0m〉 =
∑

i

pi ln[z0m(i)] , (10)

where pi =
∑
fpatch/

∑
fsource area, with

∑
fpatch,∑

fsource area representing the sum of the footprint
weight value in patch i and the whole source area re-
spectively.

With Eqs. (8) and (9) or (8) and (10), the aerody-
namic roughness length over heterogeneous surfaces,
〈z0m〉, can be calculated. Here, 〈z0m〉 is calculated for
four wind directions mentioned above and the results
are listed in Table 6. The corresponding z0m mea-
sured by the eddy covariance system is also listed and
treated as a reference value.

Compared with Eq. (9), 〈z0m〉 calculated by
Eq. (10) is more agreeable with the reference value.
The RMSD (root mean square difference) and MAPD
(mean absolute percent difference) of the estimated
〈z0m〉 by Eqs. (9) and (10) compared with the ref-
erence value are 1.97 cm, 1.69 cm, and 64.2%, 57.4%
respectively (Table 7). Apparently, footprint weight-
ing is better than the area weighting in the aggrega-
tion process. This is expectable since the contribution
of each patch in the source area to the sensor obser-
vation is different. Furthermore, since the footprint
varies with aerodynamic factors (wind speed, wind di-
rection, stability, etc.), the footprint weighting method
can reflect the impact of those factors on 〈z0m〉.

Wang and Wang (1999) investigated the effective
z0m at a grid scale of a land surface scheme and sup-
posed it was determined by the feature of each patch
and its cover fraction, and considered the two respec-
tively by means of assigning different weighting fac-
tors and adding them together. Following this idea,
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Table 6. Overview of z0m calculated by Eqs. (9), (10), and (11) over heterogeneous surfaces. (units: cm)

Area Wind Measured z0m z0m z0m [Eq. (11)] z0m [Eq. (11)] z0m [Eq. (11)]
direction z0m [Eq. (9)] [Eq. (10)] a = b = 1 a = 2, b = 1 a = 4, b = 1/4

A (25 June– E 3.94 8.72 7.47 2.39 3.08 3.92
7 July 2004)

S 4.30 4.62 6.63 2.32 2.90 3.48
W 1.71 3.20 1.38 1.61 1.71 1.45
N 1.34 3.43 3.31 1.91 2.21 2.31

B (21–31 E 1.88 2.51 1.90 1.60 1.76 1.75
May 2005)

S 1.95 2.09 1.98 1.60 1.78 1.81
W 0.95 1.28 1.47 1.46 1.56 1.48
N 0.71 1.71 1.62 1.48 1.62 1.63

Table 7. The comparison between z0m calculated by Eqs. (9), (10), and (11) and the one estimated by measurements
over heterogeneous surfaces.

Statistical parameters z0m [Eq. (9)] z0m [Eq. (10)] z0m [Eq. (11)] z0m [Eq. (11)] z0m [Eq. (11)]
a = b = 1 a = 2, b = 1 a = 4, b = 1/4

RMSD (cm) 1.97 1.69 0.98 0.77 0.60
MAPD (%) 64.2 57.4 36.4 29.4 22.5

Figs. 3a and 3b are the scatter plots between the
reference z0m and

∑
i

pi × (1/100)h(i) (where 1/100

is for matching to the order of measured z0m), and
z0m and

∑
i

pi × LAI(i)0.5 respectively. They all have

obvious linear relations and the determination of the
coefficient R2 is 0.769 and 0.80, respectively. Fur-
ther, the scatter plots between reference z0m and∑
i

[pi × (1/100)h(i) + pi × LAI(i)0.5] and z0m and
∑
i

pi × (1/100)h(i)× LAI(i)0.5, respectively are given

in Figs. 3c, 3d. The linear relation is apparent and
R2 equals 0.793 and 0.745, respectively. This may im-
ply that, vegetation height and LAI represent size and
density of the vegetation canopy respectively, they all
have a drag effect on air flow but it is independent
and accumulative. Referring to Eqs. (8) and (10), a
parameterization is constructed below:

ln〈z0m〉 =
∑

i

pi × ln[z′0+

a× 1
100

h(i) + b× LAI(i)0.5] , (11)

where a, b are constants and taken as weighting fac-
tors. Here three cases are discussed: (1) a = b = 1; (2)
a = 2, b = 1; (3) a = 4, b = 1/4. As before, 〈z0m〉 can
be calculated with the data of Group A and B using
Eq. (11) and compared with the reference value (Ta-
bles 6, 7). Apparently, the results of Eq. (11) have a
significant improvement compared with Eq. (10). Fur-
thermore, the contribution of h and LAI on 〈z0m〉 is

different, the former is much more important than the
latter, with the smallest RMSD and MAPD (0.60 cm
and 22.5% respectively, Table 7) when the difference
between a and b is the largest (a = 4, b = 1/4). This
is expectable since the vegetation height has a pre-
dominant impact on z0m. Sozzi et al. (1998) pointed
out that “Even though z0m is not exactly equal to the
height of roughness found on the earth’s surface and
encountered in the air masses’ flow, a bi-univocal re-
lation does exist between the two.”

In addition, the linear relation between the refer-
ence z0m and

∑
i

pi×fv(i)0.5 (Fig. 3e) are also obvious,

when R2=0.817, which is a little higher than that of
LAI (0.8). The same trend is found between the refer-
ence z0m and

∑
i

[pi × (1/100)h(i) + pi × fv(i)0.5] (Fig.

3f) with R2 of 0.791, close to the one of LAI (0.793).
Based on the above analysis, a heuristic parameter-

ization to calculate the aerodynamic roughness length,
z0m, over a heterogeneous surface is proposed:

ln〈z0m〉=
∑

i

pi×ln
[
z′0+a× 1

100
h(i)+b×Ve(i)0.5

]
,

(12)

where Ve is the characteristic factor of the rough-
ness elements (leaf area index, or fractional vegeta-
tion cover). a and b are constants and can be seen as
weighting factors and a > b. In this parameterization,
the individual z0m of each homogeneous patch is calcu-
lated with the characteristic factors of the roughness
elements, then aggregated to 〈z0m〉 over a heteroge-
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Fig. 3. The scatter plots between z0m calculated with the sonic anemometer obser-
vational data and characteristic factors of the roughness elements.

neous surface by the footprint weighting method.

5. Summary and conclusions

This paper calculates z0m over three different sur-
faces with data from the Xiaotangshan Experiment
in 2002, 2004, and 2005. The order of z0m is 0.1–
1 cm. The value of z0m varies with the variation
of the roughness element height. According to the
calculated z0m at different wind directions, z0m is
direction-dependent. Over heterogeneous surfaces, the
size and distribution of the roughness elements inside
the source area are heterogeneous at different wind di-
rections. Consequently, the z0m value varies with the
wind direction.

In surface flux estimations with remote sensing al-
gorithms and/or land surface models, z0m over het-
erogeneous surfaces at regional scales is needed. The
proposed parameterization of this study Eq. (12) con-

siders the height and density distribution of the rough-
ness elements in the source area and the contribution
of aerodynamic factors. The individual z0m for each
patch area is calculated with the characteristic factors
of the roughness elements first and then, aggregated
to 〈z0m〉 over heterogeneous surfaces by the footprint
weighting method. This parameterization considers
both the effect of the roughness elements and other
meteorological conditions and is much simpler than
the analogous parameterization by Massman (1997).
The new parameterization is suitable for remote sens-
ing model parameterizations at a regional scale. The
constants a and b in Eq. (12) specify the different im-
portance of the vegetation height and other factors to
〈z0m〉. More data is needed for further discussions.
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