
ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 26, NO. 1, 2009, 154–160

An Adaptive Estimation of Forecast Error Covariance

Parameters for Kalman Filtering Data Assimilation

Xiaogu ZHENG∗

National Institute of Water and Atmospheric Research, Wellington, New Zealand

(Received 5 December 2007; revised 22 May 2008)

ABSTRACT

An adaptive estimation of forecast error covariance matrices is proposed for Kalman filtering data assim-
ilation. A forecast error covariance matrix is initially estimated using an ensemble of perturbation forecasts.
This initially estimated matrix is then adjusted with scale parameters that are adaptively estimated by
minimizing −2log-likelihood of observed-minus-forecast residuals. The proposed approach could be applied
to Kalman filtering data assimilation with imperfect models when the model error statistics are not known.
A simple nonlinear model (Burgers’ equation model) is used to demonstrate the efficacy of the proposed
approach.
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1. Introduction

Kalman filtering (Cohn, 1997) is a popular sequen-
tial analysis scheme for data assimilation. It is well
known that estimation of forecast error covariance
matrices plays a key role in the performance of the
Kalman filtering schemes (e.g. Miller et al., 1994).

An approach for estimating forecast error covari-
ance matrices in the Kalman filtering assimilation
schemes is to parameterize the error covariance matri-
ces, and then to estimate the parameters by minimiz-
ing the −2log-likelihood of observed-minus-forecast
residuals (e.g., Dee and da Silva, 1999; Ozaki et al.,
2000). A major obstacle for this approach is that it is
difficult to parameterize forecast error covariance ma-
trices, especially when they are not stationary in time.

A more popular approach is to generate an ensem-
ble of perturbation forecasts by perturbing an initial
state, and then the forecast error covariance matrix
is estimated as the sampling covariance matrix of the
ensemble (for example, Bengtsson et al., 2003). While
this approach does not require parameterization of the
forecast error covariance matrix, the estimation may
depend on magnitude and number of the perturba-
tions. Therefore, there is no guarantee that the sam-
pling covariance matrix is a good estimation of the

forecast error covariance matrix.
In this paper, we propose an approach for estimat-

ing forecast error covariance matrices by combining
both approaches. A real-time forecast error covariance
matrix is initially estimated using an ensemble of per-
turbation forecasts. This initially estimated matrix is
then adjusted with scale parameters that are estimated
by minimizing the −2log-likelihood of observed-minus-
forecast residuals. The proposed scheme permits im-
perfect models, but knowledge of the model error co-
variance matrices is not required.

The paper is arranged as follows. In section 2,
the details of the proposed approach are described.
Sections 3 is devoted to the tests of the proposed ap-
proach using the data sets simulated by Burgers’ equa-
tion model. Our conclusions are given in section 4.

2. Methodology

In this section, the proposed Kalman filtering data
assimilation is outlined and a method for the adaptive
estimation of the real time forecast error covariance
matrices is proposed.

2.1 Proposed Kalman filtering

Using the notation similar to that proposed by Ide
et al. (1997), a nonlinear discrete time prediction-
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observation system is of the form

xi+1,t = Mi[xi,t] + ηi , (1)

yi,o = H ixi,t + εi , (2)

where i is the time step index, the xi,t is the true
state vector with dimension n at the time step i with
t abbreviating for “true”; Mi is an prediction oper-
ator such as a numerical weather forecasting model;
yi,o is the observation vector with dimension pi; Hi;
is a pi ×n matrix indicating which linear combination
of states is observed; ηi and εi are the model error
and the observation error vectors, which are assumed
to be statistically independent of both each other and
time and have zero mean vectors and covariance ma-
trices Qi and Ri respectively. The goal of Kalman
filtering data assimilation is to find a series of anal-
ysis states {xi,a} that is sufficiently close to the true
states {xi,t} by using the information provided by the
operators {Mi} and the observations {yi,o}.

Suppose an initial analysis state x0,a is known, our
proposed Kalman filtering data assimilation comprises
the following steps. Except for Step (ii) below for the
estimation of the real time forecast error covariance
matrices, the steps are those of the standard Kalman
filter.

Step (i). Forecast the model state at time i:

xi,f = Mi−1[xi−1,a] , (3)

where xi,f is assumed to be a Gaussian random vector
with mean vector xi,t and covariance matrix P i,f.

Step (ii). Estimate the forecast error statistics:
The forecast error covariance matrix could be es-

timated as the sampling covariance matrix which is
defined by

P i≡
m∑

j=1

wj

(

jxi,f−
m∑

k=1

kxi,fwk

)
×

(

jxi,f−
m∑

k=1

kxi,fwk

)T

(4)

where { jxi,f, j = 1, . . .m} are the perturbation
forecast states from the perturbed analysis states
{ jxi−1,a, j = 1, . . .m}, and {wj , j = 1, . . .m} are
the weights. All of the existing approaches for de-
riving perturbed analysis states are able to be applied
here, including the approach by perturbing observa-
tions used in the ensemble Kalman filtering assimila-
tion (Anderson, 2001).

For the standard ensemble Kalman filtering assim-
ilation, wj is chosen as 1/m, and P i is regarded as an
estimation of P i,f (Bengtsson et al., 2003). However,

if { jxi,f, j = 1, . . .m} are not samples of population
of the forecast state xi,f, and/or m is not sufficiently
large, P i can be far from the forecast error covariance
matrix. To mitigate this shortfall, the estimated fore-
cast error covariance matrix is rescaled to

P̂ i,f = [λi]P i[λi] , (5)

where λi is a vector representing a scale change of P i

and [λi] is a diagonal matrix with diagonal vector λi.
By choosing an appropriate λi, P̂ i,f could be a better
approximation of P i,f than P i could be. The detailed
estimation procedure for λi is proposed in this paper,
and is documented in section 2.2. Intuitively, [λi] can
be viewed as a multivariate covariance inflation opera-
tor. While the common covariance inflation factor is a
scalar value and is estimated by trials (Constantinescu
et al., 2007), this study extends it to the diagonal ver-
sion, and also optimizes it.

Step (iii). Calculate the observed-minus-forecast
residuals:

di = yi,o − Hixi,f , (6)

where di is assumed to be Gaussian with a zero mean
vector and covariance matrix H i[λi]P i[λi]HT

i + Ri.
Step (iv). Calculate the analysis state:

xi,a = xi,f + P̂ i,fH
T
i (H iP̂ i,fH

T
i + Ri)−1di (7)

Step (v). If yi,0 is not the last observation, put
i = i + 1 and return to step (i). Otherwise, stop the
filtering. xi,a are the filtered states. Each xi,a is Gaus-
sian with mean xi,t and covariance matrices

P i,a = P̂ i,f−P̂ i,fH
T
i (HiP̂ i,fH

T
i +Ri)−1HiP̂ i,f . (8)

From Eq. (7), H iP̂ i,f and HiP̂ i,fH
T
i are sufficient

to determine xi,a. They can be estimated by

HiP̂ i,f =
m∑

j=1

wj

(
Hi[λi]( jxi,f −

m∑

k=1

kxi,fwk)

)
×

(
[λi](jxi,f −

m∑

k=1

kxi,fwk)

)T

(9)

and

HiP̂ i,fH
T
i =

m∑

j=1

wj

(
H i[λi]( jxi,f −

m∑

k=1

kxi,fwk)

)
×

(
H i[λi](jxi,f −

m∑

k=1

kxi,fwk)

)T

.

(10)
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Usually, the observational dimension pi is signif-
icantly less than the model dimension n. Then the
computational cost for HiP̂ i,f and HiP̂ i,fH

T
i is more

economical than that for P̂ i,f.

2.2 Estimation of scale parameter λi

We estimate λi by minimizing the −2log-likelihood
of the observed-minus-forecast residual di = yi,o −
Hixi,f. Since di is assumed to be Gaussian with a zero
mean vector and covariance matrix H i[λi]P i[λi]HT

i +
Ri [Eq. (2)], its −2log-likelihood function is

−2Li(λi) = ln[det(H i[λi]P i[λi]HT
i + Ri)]+

dT
i (H i[λi]P i[λi]HT

i + Ri)−1di , (11)

where det represents the determinant of a matrix (Dee
and da Silva, 1999; Ozaki et al., 2000).

Vector λi is comprised of the two components:
the observable component λi,o (i.e., Hi[λi] depends
on λi,o), and an unobservable component λi,u (i.e.,
Hi[λi] is independent of λi,u). From Eq. (11), the
−2log-likelihood function is the function of H i[λi].
Then it is only the function of the observable com-
ponent λi,o. Therefore, the unobservable component
λi,u cannot be estimated by minimizing function (11).
These two components should be estimated separately.

2.2.1 Estimate observable component λi,o

The observable component λi,o can be estimated
by minimizing −2Li(λi) ([see Eq. (11)]. To do this
effectively, we need to calculate its first derivative
∇λLi(λ) and its second derivative ∇2

λLi(λ). Then,
the fastest descendent direction of the likelihood func-
tion is

δλ = −∇λLi(λ)[∇2
λLi(λ)]−1 . (12)

For this purpose, we introduce the following matrix
notation. For a matrix A, the i-th column is denoted
as ai and its (i, j)-th entry is denoted as aij . Suppose
matrices A and B have a same dimension. A × B
represents the matrix with (i, j)-th entry aijbij (i.e.,
element-by-element or Shur product).

Under these notations, the first derivative of Li(λ)
at time step i is

∇λ[−Li(λ)] =

⎛

⎜⎜⎝

(∂/∂λ1)(−Li(λ))
(∂/∂λ2)(−Li(λ))

· · ·
(∂/∂λn)(−Li(λ))

⎞

⎟⎟⎠

= −

⎛

⎜⎜⎝

(pT
1 [λ]q1

(pT
2 [λ]q2

· · ·
(pT

n [λ]qn

⎞

⎟⎟⎠+c ×

⎛

⎜⎜⎝

(pT
1 [λ]c

(pT
2 [λ]c
· · ·

(pT
n [λ]c

⎞

⎟⎟⎠ ,

(13)

where P ≡ P i, Q ≡ HT(H [λ]P [λ]HT+R)−1H, and
c ≡ HT(H [λ]P [λ]HT+R)−1d with H = H i, d = di

and R = Ri. The detailed proof is documented in the
Appendix.

The second derivative of Li(λ) [the Hessian matrix
∇2

λLi(λ)] is

∂

∂λ

(
pT

1 [λ]q1 pT
2 [λ]q2 · · · pT

n [λ]qn

)

− ∂

∂λ

(
(cT × (pT

1 [λ]c pT
2 [λ]c · · · pT

n [λ]c)
)

= Q × P − (P [λ]Q) × (Q[λ]P ) − (P [λ]Q)[λ]P ) × Q

+ Q × (P [λ]ccT[λ]P ) + (Q[λ]P ) × (P [λ]ccT)−

P × (ccT) + (P [λ]Q) × (ccT[λ]P )+

(P [λ]Q[λ]P ) × (ccT) (14)

The detailed proof is also documented in the Ap-
pendix. Note that both derivatives also only depend
on λi,o.

After the fastest descendent direction is obtained,
λi is substituted by λ + µδλi, where 0 < µ � 1 is a
scalar to guarantee that −2Li(λi + µδλi) is less than
−2Li(λ).

2.2.2 Estimate unobservable component λi,u

Although the likelihood at the time step i is in-
dependent of the unobservable component λi,u, the
−2log-likelihood at time step i + 1(−2Li+1) does de-
pend on λi,u. This is because Li+1 depends on xi,a,
the analysis state at time step i. From Eq. (7),

xi,a =xi,f+[λi]P i[λi]HT
i (H i[λi]P i[λi]HT

i +Ri)−1di ,
(15)

which depends on both λi,o and λi,u.
We shall estimate λi,u and λi+1,o jointly. For a

λi+1,o, find a new λi,u to reduce −2Li+1 by direct
search. Then, apply the procedure documented in sec-
tion 2.2.1 to find a new λi+1,o that further reduces
−2Li+1. Continue this procedure iteratively until Li+1

converges.

2.2.3 Constraint on parameter λ

The dimension of λ is equivalent to the dimension
of analysis states (n), that is often too large to esti-
mate λ. In practice, constraints are often imposed on
λ. As an example, we may assume components of λ
at one vertical level are all the same in meteorological
data assimilation.

The first derivative and the second derivative
of the constrained L(λ) can be easily derived
from the first derivative and second derivative of
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the unconstrained L(λ). Suppose the analysis
space is partitioned into N(N � n) blocks, i.e.,
λN = (λ1, · · · , λ1, λ2, · · · , λ2, · · · , λN , · · · , λN ) Then
the first derivative of constrained L(λN ) is the N di-
mensional vector which element for a block is the sum
of elements of ∇λL(λN ) within that block. Similarly,
the second derivative of constrained L(λN ) is the N
by N matrix which element for a block pair is the sums
of element of ∇2

λL(λN ) within the block pairs.
Because the constraint has always to be applied for

large models, the dimension of the second derivatives
∇2

λL(λ) will not be large. Therefore, the inverse of
∇2

λL(λ) in Eq. (12) can be calculated directly.

2.3 Computing (H [λ]P [λ]HT + R)−1

(H[λ]P [λ]HT+R)−1 can be calculated as follows.
Decompose H [λ]P [λ]HT into

H [λ]P [λ]HT =
m∑

i=1

ziz
T
i , (16)

where

zj = H [λ]
√

wj

(

jxi,f −
m∑

k=1

kxi,fwk

)
. (17)

Define Ai =
i∑

k=1

zkzT
k + R. It is easy to check that

A−1
1 =R−1−(R−1z1z

T
1 R−1)/(1+zT

1 R−1z1) , (18)

and for 1 � j � m − 1

A−1
j+1 =A−1

j −(A−1
j zjz

T
j A−1

j )/(1+zT
j A−1

j zj) . (19)

Thus, (H[λ]P [λ]HT+R)−1 = A−1
m can be calculated

iteratively.
In this way, the inverse (H [λ]P [λ]HT +R)−1 can

be calculated without significantly computational cost,
providing the inverse of the observational matrix R−1

is known. However, R−1 is also required for any vari-
ational approach. Most ensemble based Kalman fil-
tering are likely to be as computationally expensive
as 4D-VAR, and perhaps significantly more expensive
when there are an overwhelmingly large number of ob-
servations, such as very high resolution satellite images
(Hamill, 2006). Our proposed approach for calculat-
ing the inverse provides a solution to overcome this
obstacle.

3. Application to Burgers’ equation model

3.1 Burgers’ equation model

Burgers (1974) proposed the following equation

∂u

∂t
+ u

∂u

∂x
= v

∂2u

∂x2
(20)

to describe the one-dimensional advection-diffusion
process over an infinite spatial domain. Recently, Zhu
and Kamachi (2000) used it as a test bed for several
data assimilation schemes. In the present study, we
also use it to test our proposed methodology. For the
readers’ convenience, we briefly introduce how to sim-
ulate the solution of a Burgers equation following Zhu
and Kamachi (2000). This solution is then used as the
series of true states in the present study. Knowing the
true states, the root mean square error (RMSE) of the
assimilated analysis states can be estimated.

The numerical model is defined as a finite-
difference leapfrog scheme with a forward step every 15
time steps. This simple scheme gives accurate results
by comparing with one analytical solution (Uboldi and
Kamachi, 2000). We will use the following abbrevia-
tions: m for meter, km for kilometer, s for second and
h for hour. The computation spatial domain is [−1000,
1000] km, but only the solution within [−100, 150] km
is considered. A large computation domain is used to
reduce the boundary effects on the interior solution.
The model parameters are: time step ∆t = 60 s; spa-
tial grid resolution ∆x = 5 km. Therefore, n (the
dimension of state vector) is 51(= 150/5+ 1 + 100/5).
The simulation time is T = 16 h. The “true” solution
is generated by running the model with the initial con-
dition

u(x, 0) =
⎧
⎨

⎩

0 x < −L; x > L
u0(1 + 2x/L)(1 − 2x/L)2 0 � x < L
u0(1 − 2x/L)(1 + 2x/L)2 −L < x < 0

(21)

where u0 = 5 m s−1, and L = 50 km and with diffu-
sion coefficient v = 1.0× 104 m2 s−1. Denote the true
solution by ut(x, t), where −100 km� x � 150 km and
0 h� t � 16 h.

In the data assimilation experiments with the im-
perfect model, the diffusion coefficient is set to be
v = 1.4×104 m2 s−1 to simulate the model error. The
model error caused by the wrong diffusion coefficient
is estimated by running the model twice with the same
above initial condition, but with different diffusion co-
efficients. The spatially averaged root mean square of
the model error is shown in Fig. 2 of Zhu and Kamachi
(2000) with an overall averaged error of about 0.13 m
s−1. The overall averaged signal is about 0.9 m s−1

in the time-space domain. The averaged model error
is about 14% of the average signal. The observations
are assumed to be available at every other model grid
point from x = −100 km to 150 km. In total there are
26 observation stations (total of 51 model grid points).
The observations are available only at hour 1, 4, 7 and
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10, and are statistically independent of each other with
standard deviation 0.15 m s−1.

3.2 Results

To construct P i in Eq. (4), the number of per-
turbations m and the weights {wj , j = 1, · · · , m}
are selected similar to that in the unscented ensem-
ble Kalman filter (Julier and Uhlmann, 2004), where
m = 2n + 1 and

wj =

{
k/(n + k) j = 0 ,

1/2(n + k) j = 2, · · · , n + 1 ,
(22)

where k is a parameter. Julier and Uhlmann (2004)
suggested that if the forecast error is Gaussian, set
n + k = 3. Otherwise set n + k < 3. Since the fore-
cast error is assumed Gaussian and n = 51, we set
k = −48. The perturbed analysis states is selected as

jxi,a =

⎧
⎨

⎩

xi,a j = 1 ,
xi,a+αδj j=2, · · · , n+1 ,
xi,a−αδj j=n+2, · · · , 2n+1 ,

(23)

where δj is j-th column of the n by n identity matrix
and α > 0 is the perturbation parameter. Here α is
set as 0.1 m s−1 to match the overall averaged initial
error of 0.13 m s−1 (Zhu and Kamachi, 2000). Scale
parameters for the 26 observational points λi,o and the
scale parameters for the other 25 unobservable points
λi,u are constraint as one parameter respectively.

The estimated scale parameters, the −2log-
likelihood, and the RMSE of the analysis state at each
time step with observation are listed in Table 1. The
RMSE of the analysis state from hour 1 to hour 16
are plotted in Fig. 1. As a comparison, the −2log-
likelihood, and the RMSE of analysis without the pa-
rameter adjustment (i.e., λ = I) are listed in Table
2, and the corresponding RMSE are also plotted in
Fig. 1.

 

 

 

 

 

Fig. 1. Root mean square errors of the analysis states
with the parameter adjustment (dashed) and without the
parameter adjustment (solid).

Table 1. Results with the parameter adjustment.

Hour 1 Hour 4 Hour 7 Hour 10

RMSR (m s−1) 0.12 0.097 0.068 0.04
−2log [Li(λi)] −389 −421 −429 −436
Observable λi,o 10 2 4 0.5

Unobservable λi,o 11 1 4 ∗

Note: Unobserved λi,o is not required at the last time step.

Table 2. Results without the parameter adjustment.

Hour 1 Hour 4 Hour 7 Hour 10

RMSR (m s−1) 0.35 0.19 0.14 0.09
−2log [Li(I)] −251 −387 −411 −421

Tables 1 and 2 show that the −2log-likelihood of
the observed-minus-forecast residual with the parame-
ter adjustment is significantly less than those without
parameter adjustment. Correspondingly, the RMSE
for the analysis states with the parameter adjustment
are less than the half of those without the parameter
adjustment. This fact is also shown in Fig. 1.

Zhu and Kamachi (2000) proposed a number of
adaptive variational assimilation schemes with imper-
fect models. They tested their schemes against the
simplified 4D-VAR assimilation scheme and the space
variable optimal nudging assimilation scheme, using
Burgers’ equation model as the test bed. The RSME
derived by these schemes are shown in Fig. 3a of Zhu
and Kamachi (2000). For these schemes, the RMSE
for the reduced order adaptive variational method
(ROAV) is the best one. Comparing the RMSE de-
rived by ROAV with the RMSE shown in Fig. 1 and
in Table 1, our RMSE is comparable to theirs at early
hours (1 and 4), but ours is 0.03 m s−1 less (at hour
7) and 0.01 m s−1 less (at hour 10) than theirs. Fur-
thermore there are only seven parameters (Table 1) to
be estimated in our proposed schemes, while there are
51 parameters in ROAV. These facts indicate that the
adaptive estimation of forecast error statistic proposed
in this paper is at least a competitive scheme.

4. Conclusions

An adaptive estimation of forecast error statistics
is proposed for Kalman filtering data assimilation for
non-linear imperfect models. It has the advantage that
the model error statistics do not need to be known
and the forecast error statistics and observational er-
ror statistics can depend on time steps. The proposed
scheme may have potential in data assimilation with
large models. It is showed, by a case study, that the
proposed inflation can improve the assimilation. In the
future, we plan to further study the possibility of ap-
pling the proposed inflation approach to improve the
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assimilation when the number of ensemble members is
small.

Acknowledgements. This study was initiated dur-

ing my visit to the Institute of Statistical Mathematics

(ISM) in Tokyo under the support of a Visiting Fellowship

offered by the Japanese Ministry of Education, Science,

Sports and Culture. The study has been continued under

the support of the Foundation for Research Science and

Technology of New Zealand under contract C01X0401. I

thank Prof. K. Tanabe for his collaboration on this paper

and Prof. T. Ozaki for his support and many stimulating

discussions. We would like to thank Prof. Zhidong Bai

and Dr. Shouzheng Tang for their comments on mathe-

matical algorithms, Prof. Masahide Kimoto and Dr. Phil

Andrews for their comments on physical sciences and the

two anonymous reviewers for improving the presentation.

APPENDIX

Proof of the Derivatives of the Log-Likelihood

1. Proof of the first derivative of the log-likeli
hood

Let subscripts r and s represent components of the
model state vector.

∂

∂λr
{ln[det(H[λ]P )[λ]HT + R)]}

=tr
[
(H [λ]P [λ]HT+R)−1 ∂

∂λr
(H[λ]P [λ]HT+R)

]

=tr
[
(H [λ]P [λ]HT+R)−1H([δr]P[λ]+[λ]P[δr])HT

]

=tr
[
(H [λ]P [λ]HT+R)−1H[δr]P[λ]HT

]

+tr
[
(H[λ]P [λ]HT+R)−1H[λ]P[δr]HT

]

=2tr
[
(P [λ][δr](HT(H[λ]P[λ]HT + R)−1H)

]

= 2pT
r [λ]qr . (A1)

∂

∂λr
[dT(H [λ]P [λ]HT + R)−1d]

= −dT(H[λ]P [λ]HT+R)−1×

∂

∂λr
(H [λ]P [λ]HT+R)(H [λ]P [λ]HT+R)−1d

= −[dT(H[λ]P [λ]HT+R)−1H)([δr]P [λ]+

+ [λ]P [δr])(HT(H[λ]P [λ]HT + R)−1d)

= −cT[δr]P [λ]c − cT[λ]P [δr]c

= −crp
T
r [λ]c − cT[λ]prcr

= −2crp
T
r [λ]c . (A2)

From Eq. (11) and Eqs. (A1)–(A2)

∂

∂λr
Li(λ) = −1

2
(2pT

r [λ]qr − 2crp
T
r [λ]c)

= −pT
r [λ]qr + crp

T
r [λ]c .

Thus, the first derivative [i.e., Eq. (13)] is derived.

2. Proof of the second derivative of the log-
likelihood

∂

∂λs
Q = HT

{
∂

∂λs
(H [λ]P [λ]HT + R)−1

}
H

= −HT{(H[λ]P [λ]HT + R)−1H([δs]P [λ]+

[λ]P [δs])HT(H([λ]P [λ]HT + R)−1}H

= −Q([δs]P [λ] + [λ]P [δs])Q .

Then

∂

∂λs
pT

r [λ]qr

= pT
r

(
∂

∂λs
[λ]
)

qr + pT
r [λ]

∂

∂λs
qr

= pT
r [δs]qr − pT

r [λ]Q[δs]P [λ]qr−

pT
r [λ]Q[λ]P [δs]qr

= prsqsr − (pT
r [λ]qs)(p

T
s [λ]qr)−

(pT
r [λ]Q[λ]ps)qsr .

Thus,

∂

∂λ

(
pT

1 [λ]q1 pT
2 [λ]q2 · · · pT

n [λ]qn

)

= Q × P − (P [λ]Q × (Q[λ]P )−
(P [λ]Q[λ]P ) × Q (A3)
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Since

∂

∂λs
c = HT

{
∂

∂λs
(H[λ]P [λ]HT + R)−1

}
d

= −HT{(H [λ]P [λ]HT + R)−1H([δs]P[λ]+

[λ]P[δs])HT(H [λ]P [λ]HT + R)−1}d
= −Q([δs]P [λ] + [λ]P [δs])c ,

it follows that
∂

∂λs
crp

T
r [λ]c

=
(

∂

∂λs
cr

)
pT

r [λ]c + crp
T
r

(
∂

∂λs
[λ]
)

c+

crp
T
r [λ]

(
∂

∂λs
c

)

= −qT
r ([δs]P [λ] + [λ]P [δs])cpT

r [λ]c + crp
T
r [δs]c

− crp
T
r [λ]Q([δs]P [λ] + [λ]P [δs])c

= −qrs(P [λ]ccT[λ]P )sr − (Q[λ]P )rs(P [λ]ccT)rs+

prs(ccT)rs − (P [λ]Q)rs(P [λ]ccT)sr−

(P [λ]Q[λ]P )rs(ccT)sr

Therefore
∂

∂λ

(
cT × (pT

1 [λ]c pT
2 [λ]c · · · pT

n [λ]c)
)

= −Q × (P [λ]ccT[λ]P )−

(Q[λ]P ) × (P [λ]ccT)+

P × (ccT) − (P [λ]Q) × (ccT[λ]P )−

(P [λ]Q[λ]P ) × (ccT) (A4)

The Hessian matrix (Eq. 14) is derived from Eqs.
(A3)–(A4).
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