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ABSTRACT

The objective of this study is to improve the statistical modeling for the ternary forecast of heavy snowfall
in the Honam area in Korea. The ternary forecast of heavy snowfall consists of one of three values, 0 for less
than 50 mm, 1 for an advisory (50-150 mm), and 2 for a warning (more than 150 mm). For our study, the
observed daily snow amounts and the numerical model outputs for 45 synoptic factors at 17 stations in the
Honam area during 5 years (2001 to 2005) are used as observations and potential predictors respectively. For
statistical modeling and validation, the data set is divided into training data and validation data by cluster
analysis. A multi-grade logistic regression model and neural networks are separately applied to generate
the probabilities of three categories based on the model output statistic (MOS) method. Two models are
estimated by the training data and tested by the validation data. Based on the estimated probabilities, three
thresholds are chosen to generate ternary forecasts. The results are summarized in 3x3 contingency tables
and the results of the three-grade logistic regression model are compared to those of the neural networks
model. According to the model training and model validation results, the estimated three-grade logistic
regression model is recommended as a ternary forecast model for heavy snowfall in the Honam area.
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1. Introduction

In South Korea, the property damage caused by
heavy snowfall occupied 7.6 percent of the total dam-
age caused by water-related disasters during the 10
years from 1993 to 2002. Heavy snowfall damages
agricultural products and establishments, and causes
traffic paralysis, etc. According to the geographical
characteristics, we have heavy snowfall during every
cold season in the Honam area which is located on
the southwest side of the Korean Peninsula. There-
fore, to reduce the damage, it is important to improve
the forecast modeling for heavy snowfall in the Honam
area.

There are various types of snowfall forecasts; bi-
nary forecasts, multi-categorical forecasts, probabili-
ties of occurrence, probabilities of classified snowfall,
and quantitative snowfall forecasts. For example, the
binary forecast of heavy snowfall has two-class fore-
cast, “we will have heavy snow tomorrow” or “we will
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not have heavy snow”. The multi-categorical forecast
is preferred over the binary forecast because the multi-
categorical forecast gives us more detailed information
than the binary forecast.

In weather forecast systems, the probabilistic fore-
cast is generally preferred because the probabilities of
categories (for instances, the probability of precipita-
tion and the probability of classified precipitation) can
easily show the uncertainty of the forecasts as Mur-
phy (1993) commented. Choi and Cho (2002) studied
the objective prediction of the probability of precipita-
tion in Korea based on the perfect prognostic method.
Sohn and Kim (2003) proposed some statistical models
for the probabilities of classified precipitation during
the warm season in the Seoul area. However the prob-
abilistic forecasts cannot be used directly if they are
estimated too smoothly. In these cases, the categori-
cal forecast is used instead of the probabilistic forecast.
Commonly, categorical forecasts can be generated by
some thresholds, which are chosen based on the dis-
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Table 1. Frequency of observations for each station.
Station
Category 140 146 156 165 168 169 170 175 243 244 245 247 248 256 260 261 262 Total
0 475 476 467 480 482 479 480 479 467 464 464 470 465 477 480 480 482 8067
(98.45%)
1 6 5 13 2 0 3 2 3 13 17 13 12 16 5 2 2 0 114
(1.39%)
2 1 1 2 0 0 0 0 0 2 1 5 0 1 0 0 0 0 13
(0.16%)
Total 482 482 482 482 482 482 482 482 482 482 482 482 482 482 482 482 482 8194

tribution of the estimated probabilities. According to
Sohn et al. (2005a) for the quantitative rainfall forecast
in the Honam area, the estimated probabilities show
a tendency to be underestimated. Sohn et al. (2005c¢)
then presented the binary forecast strategy. Similarly,
Sohn et al. (2005b) also studied statistical models for
the binary forecast of heavy snowfall.

The goal of this study is the development of ternary
forecasts of heavy snowfall in the Honam area. In this
study, the ternary data has one of the following three
values, 0 for (daily new amount of snow cover is less
than 50 mm) or 1 for (50-150 mm) or 2 for (more
than 150 mm). Two statistical models (a three-grade
logistic regression model and a three-grade neural net-
work model) are separately applied to the ternary fore-
cast of heavy snowfall based on the model output
statistic (MOS). The MOS, proposed by Glahn and
Lowry (1972), is a physical-statistical modeling tech-
nique used to find the statistical relationship between
the numerical model outputs and the observations.
Many authors have considered the MOS to predict the
temperature and precipitation (for instances, Lemcke
and Kruizinga, 1988; Ross and Studwicke, 1994; Kok
and Kruizinga, 1992; Sohn and Kim, 2003; Sohn et al.,
2005a,b,c).

In section 2, the predict and and potential pre-
dictors are introduced and the model training data
and validation data are classified by cluster analysis.
In section 3, the forecast modeling strategy for the
ternary forecast is presented. In order to estimate
the probabilities of the three categories, a multi-grade
logistic regression model (Myers et al., 2002) is ap-
plied. A neural network model used in Sohn et al.

(2005b), which consists of an input layer, one hidden
layer, and an output layer, is also considered. In sec-
tion 4, two models are estimated by the training data
and checked by the validation data, separately. Based
on the estimated probabilities of the three categories,
three thresholds are chosen in order to generate the
ternary forecasts. The results are summarized in 3x3
contingency tables and two models are compared. In
addition, some concluding remarks are presented in
section 5.

2. Data

For our study, the observed daily snow cover and
numerical model outputs for 45 synoptic factors at 17
stations in the Honam area, during the cold season
(November to March) in 2002 to 2005, are used. Cho
and Choi (1995) found that the climatic characteris-
tics of the warm season are different from those of the
cold season in Korea, so we only considered the cold
season.

In the Korean Meteorological Administration
(KMA), the special report for heavy snowfall consists
of an advisory (daily new amount of snow cover is more
than 50 mm) and a warning (more than 200 mm). We
used 150 mm instead of 200 mm because there is only
one warning case in the data period. The daily snow-
fall observations are transformed into ternary values;
0 for less than 50 mm, 1 for 50—150 mm and 2 for more
than 150 mm. The frequencies of the three categories
(0, 1, 2) are given in Table 1 for each station and Table
2 for each year.

The 45 synoptic factors in Table 3 are used as
potential predictors. Sohn et al. (2005a) used these

Table 2. Frequency of observations for each year, training data and validation data.

Year
Category 2001 2002 2003 2004 2005 Total Training Validation
0 765 1534 1989 2323 1456 8067 4745 3322
1 0 13 41 39 21 114 70 44
2 0 0 10 1 2 13 5 8
Total 765 1547 2040 2363 1479 8194 4820 3374
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Table 3. Numerical model outputs as potential predictors.

Symbols

Predictors

ES850, E700, E500

$850, SE700, S500
NW850, NW700, NW500
NE850, NE700, NE500
VV850, VV700, VV500

VORS850, VOR00, VOR500

QADS50, QADT700

Q84, QT4

TADS50, TAD700

RHS850, RH700, RH500
CCL, DWL, PCWT

CTOP, CBAS, BBX1, BBX2

SSI, KYID, KIDX
LR8&7, LR85

T850, T'700, T500
ET850, ET700
ET87

East wind speed at 850 hPa, 700 hPa and 500 hPa
South wind speed at 850 hPa, 700 hPa and 500 hPa
North-west wind speed at 850 hPa, 700 hPa and 500 hPa
North-east wind speed at 850 hPa, 700 hPa and 500 hPa
Wind speed at 850 hPa, 700 hPa and 500 hPa

Relative vorticity at 850 hPa, 700 hPa and 500 hPa

Advection of specific humidity at 850 hPa and 700 hPa

Difference of specific humidity at 850 hPa and 700 hPa, at 700 hPa and 700 hPa
Thermal advection at 850 hPa and 700 hPa

Relative humidity at 850 hPa, 700 hPa and 500 hPa

Convective condensation level, Depth of wet level, Potential precipitation

Level of cloud top, Level of cloud base, Black box index 1, Black box index 2

Showalt stability index, KY index, K index
Lapse rate between 850 hPa and 700 hPa, between 850 hPa and 500 hPa

Temperature at 850 hPa, 700hPa and 500 hPa
Equivalent potential temperature at 850 hPa and 700 hPa
Difference of equivalent potential temperature at 850 hPa and 700 hPa

synoptic factors: the wind direction and speed, rela-
tive vorticity, humidity, thermal advection, potential
precipitation, and temperatures. All of them can be
generated by the numerical model, called RDAPS (Re-
gional Data Assimilation and Prediction System), used
by the KMA.

In order to divide the data into the model training
data and the validation data, cluster analysis is ap-
plied using the new daily snow cover amounts for each
station. As a result, data of 10 stations are used for
the model training data, and those of the remaining 7
stations are used for the model validation data. Table
2 includes the frequencies of the model training data
and the validation data.

3. Forecast strategy for ternary forecasting

3.1 Forecast models

The objective of this study is to develop one
ternary forecast model to use for heavy snowfall
in the Honam area. Ternary forecasting consists of
two steps. The first step is to generate the correspond-
ing probabilities of the three categories, and the second
is to generate the ternary forecast using the thresh-
olds. In order to generate the corresponding probabil-
ities of the three categories, two statistical models, a
three-grade logistic regression model and a three-grade
neural network model, are applied and their results
are compared. The output of the three-grade models
should be a multinomial type vector, which consists
of three probabilities, (pg, p1, p2) where pqg is for Cate-

gory 0, py is for Category 1, po is for Category 2, and
po+p1+p2=1

The three-grade logistic regression model for the
ordinal and ternary responses is defined by the follow-
ing two equations:

) PY <j|X=x)
1-P(Y <j|X=x)

):bj+/8/w7 J=0,1,

where Y is the observed response (0 or 1 or 2), X
is the vector of the predictors, b; is a constant (an
intercept), and 3 is the coefficient vector of the pre-
dictors. The significant predictors are selected by the
stepwise selection method, and the parameters in the
above model are estimated using the training data.
The probabilities of the three categories are computed
by the following equations.

pO:P(Y<0)7
pr=PY <1)—P(Y <0),

The three-grade neural network model, which con-
sists of 45 inputs, one hidden layer, and one output
layer, is considered. Similar to Sohn et al. (2005a),
the linear basis function is used as a combination func-
tion and the logistic function is used as an activation
function. However, the final activation function in
the output layer is the three-grade logistic function.
Optimal weights are estimated via a back propagation
algorithm (Haykin, 1999). The number of nodes in
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Table 4. Simple forecast strategy using a three-grade logistic regression model (The value in the parenthesis indicates

row percentage).

Forecast
Observation 0 1 2 Total
0 4735 (99.79%) 10 (0.21%) 0 (0%) 4745
1 56 (80%) 14 (20%) 0 (0%) 70
2 0 (0%) 5 (100%) 0 (0%) 5
Total 4791 29 0 4820

Table 5. Model training results of the three-grade logistic regression: T1=0.02, T2=0.6, T3=0.6.

Forecast
Observation 0 1 2 Total
0 4354 (91.76%) 388 (8.18%) 3 (0.06%) 4745
1 6 (8.57%) 59 (84.29%) 5 (7.14%) 70
2 0 (0.0%) 0 (0.0%) 5 (100%) 5
Total 4360 447 13 4820

the hidden layer is determined by the Akaike informa-
tion criterion (Akaike, 1974). For this study, we used
the statistical package, SAS/E-Miner.

3.2 Thresholds for generating ternary fore-

casts

As a simple forecast strategy, it seems reasonable
that we choose the category with the maximal value
among the three probabilities. In this case of the
three-grade logistic regression model, the results of the
model training are summarized in the 3x3 contingency
table (observation forecast) given in Table 4. Though
the exact forecast rate of Category 0 is 99.79%, it has
no meaning because Category 1 and Category 2 are
much more serious than Category 0. The exact fore-
cast rate for Category 1 is only 20% and there is no
forecast rate for Category 2. Therefore we decided to
use another strategy with thresholds.

With varying numbers and values of thresholds
from 0 to 1 and the mode of inequality, the many
3x3 contingency tables are made and compared. As
heuristic results, we decided that three thresholds are
needed and the ternary forecasts can be generated by
the following algorithm.

IF (1—Py)<T1 THEN Forecast = 0;

ELSE IF (T1<(1—Py)<T2) or (P, <T3) THEN

Forecast=1;

ELSE Forecast=2;
where T1, T2 and T3 are thresholds.

4. Results

4.1

Three-grade logistic regression model

Using the model training data, the two equations of
the three-grade logistic regression model are estimated

as follows:

bo + B X =99.3411 + 0.00698 x CTOP+

and

0.00438 x DWL — 0.4744 x ET700—
0.0485 x NE700 + 0.0238 x NW500+
0.00438 x DWL — 0.4744 x ET700—
0.0485 x NE700 — 0.5065 x NW850—
0.1876 x S500 — 0.4125 x S850—
0.4583 x T650 + 0.5889 x VV850

b+ B X = 96.0712 + 0.00698 x CTOP+

Table 6. Model validation results of the three-grade logistic regression: T1=0.02, T2=0.6, and T3=0.6.

Forecast
Observation 0 1 2 Total
0 3000 (90.31%) 314 (9.45%) 8 (0.24%) 3322
1 3 (6.82%) 39 (88.64%) 2 (4.55%) 44
2 0 (0.0%) 6 (75.0%) 2 (25.0%) 8
Total 3003 359 12 3374
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0.00438 x DWL — 0.4744 x ET700—
0.0485 x NE700 + 0.0238 x NW500+
0.00438 x DWL — 0.4744 x ET700—
0.0485 x NE700 — 0.5065 x NW850—
0.1876 x S500 — 0.4125 x S850—
0.4583 x T650 + 0.5889 x VV850.

As mentioned in section 3.2, the optimal thresholds
are found by monitoring the 3x3 contingency tables
for values of the three thresholds from 0 to 1. Ac-
cording to heuristic comparisons, (T1=0.02, T2=0.6,
T3=0.6) are chosen as three thresholds for generat-
ing the ternary forecast based on the estimated three-
grade logistic regression model. That is, the forecasts
have ternary values: 0 if (1—P) is less than 0.02, 1
else if (1—Pp) is less than 0.6 or Py is greater than or
equal to 0.6, and 2 otherwise.

The model training results, using these thresholds,
are summarized in Table 5. The exact forecast rate
is 91.66% totally, 91.76% for Category 0, 84.29% for
Category 1, and 100% for Category 2. These results
are much better than the simple forecast case in Table
4. The model validation results of this case are sum-
marized in Table 6. The exact forecast rate is 90.13%
totally, 90.31% for Category 0, 88.64% for Category 1,
and 25% for Category 2. These results are similar to
those of the model training case.

4.2 Three-grade neural networks

The number of nodes in the hidden layer is deter-
mined by minimizing the model identification statistic
called the Akaike Information Criterion (AIC). Table
7 shows that the case of the 4-node hidden layer is
optimal.

Similar to the logistic regression case, (T1=0.001,
T2=0.09, T3=0.9) are chosen as three thresholds for
generating the ternary forecast based on the estimated
three-grade neural networks model.

The model training results of this case are summa-
rized in Table 8. The exact forecast rate is 93.65%
totally, 93.72% for Category 0, 90% for Category 1,
and 80% for Category 2. The model validation re-
sults of this case are summarized in Table 9. The
exact forecast rate is 91.82% totally, 92.38% for Cate-
gory 0, 63.64% for Category 1, and 12.5% for Category
2. These results are much worse than to those of the
model training case for Category 1 and Category 2.

Table 7. AIC value for each node.

Number of node 2 3 4 5 6 7

AIC 627 580 573 673 760 796
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4.3 Comparison of the two models

In order to check the predictability of the multi-
categorical forecast model, Burrows (1991) considered
the modified Heidke skill score (mHSS), which is
weighted on the distance between the observed cat-
egory and the forecasted category. See von Storch and
Zwiers (1999) or Burrows (1991) for more about the
mHSS in detail. The values of the mHSS’ are 0.25733
for the three-grade logistic regression and 0.33153 for
the neural networks in the model training cases. The
values of the mHSS’ are 0.21847 for the three-grade
logistic regression and 0.34911 for the neural networks
in the model validation cases. With the mHSS crite-
rion, the three-grade neural network model is better
than the three-grade logistic regression model.

However, as mentioned in section 3.2, Category 1
and Category 2 are much more serious than Category
0. Table 5, Table 6, Table 8, and Table 9 show that
the three-grade logistic regression model can give a
more accurate forecast of Category 1 and Category
2. Therefore, we recommend the three-grade logistic
regression model.

5. Concluding Remarks

Nowadays, people want to know more detailed in-
formation on the categorical forecast. Many binary
forecasts have changed to multi-categorical forecasts
in the KMA. The objective of this study is the de-
velopment of ternary forecast of heavy snowfall in
the Honam area. A three-grade logistic regression
model and a three-grade neural networks model are
separately applied to the ternary forecast of heavy
snowfall based on the model output statistic (MOS).
To generate ternary forecasts, thresholds are needed.
With heuristic experiments (monitoring the 3x3 con-
tingency tables and varying the values of the three
thresholds from 0 to 1), three thresholds are deter-
mined for each model. The results of the model train-
ing and the model validation cases are summarized in
3x3 contingency tables for each model.

Even though the neural networks models usually
give much better results than the regression models in
the model training cases because of their nonlinear-
ity, this situation is often broken in the model vali-
dation cases. Most forecasters like the logistic regres-
sion model even though the results of neural networks
are slightly better than that of the logistic regression
model, because the physical interpretations on the syn-
optic weights in the neural networks are much more
difficult than the logistic regression model.

With a synthetic view based on the above 3x3 con-
tingency tables, we recommend the three-grade logistic
regression model be used for ternary forecast in the



332 TERNARY FORECAST OF HEAVY SNOWFALL IN THE HONAM AREA, KOREA VOL. 26
Table 8. Model training results of the three-grade neural networks: T1=0.001, T2=0.09, and T3=0.9.
Forecast
Observation 0 1 2 Total
0 4447 (93.72%) 298 (6.28%) 0 (0.00%) 4745
1 0 (0.0%) 63 (90.0%) 7 (10.0%) 70
2 0 (0.0%) 1 (20.0%) 4 (80.0%) 5
Total 4447 362 11 4820
Table 9. Model validation results of the three-grade neural networks: T1=0.001, T2=0.09, and T'3=0.9.
Forecast
Observation 0 1 2 Total
0 3069 (92.38%) 246 (7.41%) 7 (0.21%) 3322
1 8 (18.18%) 28 (63.64%) 8 (18.18%) 44
2 1 (12.50%) 6 (75.00%) 1 (12.50%) 8
Total 3078 280 16 3374

Honam area. This forecast strategy of using thresh-
olds can be applied to any ternary forecast in weather
forecasting systems.
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