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ABSTRACT

Based on an intermediate coupled model (ICM), a probabilistic ensemble prediction system (EPS) has
been developed. The ensemble Kalman filter (EnKF) data assimilation approach is used for generating the
initial ensemble conditions, and a linear, first-order Markov-Chain SST anomaly error model is embedded
into the EPS to provide model-error perturbations. In this study, we perform ENSO retrospective forecasts
over the 120 year period 1886-2005 using the EPS with 100 ensemble members and with initial conditions
obtained by only assimilating historic SST anomaly observations.

By examining the retrospective ensemble forecasts and available observations, the verification results
show that the skill of the ensemble mean of the EPS is greater than that of a single deterministic forecast
using the same ICM, with a distinct improvement of both the correlation and root mean square (RMS) error
between the ensemble-mean hindcast and the deterministic scheme over the 12-month prediction period.
The RMS error of the ensemble mean is almost 0.2°C smaller than that of the deterministic forecast at a
lead time of 12 months. The probabilistic skill of the EPS is also high with the predicted ensemble following
the SST observations well, and the areas under the relative operating characteristic (ROC) curves for three
different ENSO states (warm events, cold events, and neutral events) are all above 0.55 out to 12 months
lead time.

However, both deterministic and probabilistic prediction skills of the EPS show an interdecadal variation.
For the deterministic skill, there is high skill in the late 19th century and in the middle-late 20th century
(which includes some artificial skill due to the model training period), and low skill during the period from
1906 to 1961. For probabilistic skill, for the three different ENSO states, there is still a similar interdecadal
variation of ENSO probabilistic predictability during the period 1886-2005. There is high skill in the late
19th century from 1886 to 1905, and a decline to a minimum of skill around 1910-50s, beyond which skill
rebounds and increases with time until the 2000s.
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1. Introduction probabilistic EPS was developed. It has been demon-
strated that this system can be improved for El Nino

Based on the intermediate coupled model (ICM)  simulations and predictions through the use of the en-
(Keenlyside and Kleeman, 2002; Zhang et al., 2005), a  semble Kalman filter (EnKF; e.g., Evensen, 2003) data
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Fig. 1. Horizontal distributions of the normalized obser-
vation error (a) and the model initial uncertainty (b) of
SST in January 1998. The model initial uncertainty is
estimated from the EnKF analysis spread. The contour
interval is 0.05°C in (a) and 0.02°C in (b).

assimilation approach for generating the initial ensem-
ble conditions, as well as a linear, first-order Markov-
Chain SST anomaly error model that was embedded
into the ensemble prediction system (EPS) to provide
model error perturbations (Zheng et al., 2006a). How-
ever, the model performance was only verified over a
relatively short period with relative small number of
events.

As pointed out by Chen et al. (2004), previous esti-
mations of El Nifo’s predictability (e.g., Goswami and
Shukla, 1991; Kirtman and Schopf, 1998; Latif et al.,
1998) were mostly based on retrospective predictions
for the last two or three decades (i.e., the hindcast pe-
riod encompassed a relatively small number of events).
With so few degrees of freedom and short hindcast pe-
riods, the statistical significance of those estimates is
questionable. From available SST observations, Chen
et al. (2004) used the Lamont ENSO prediction model
to perform a retrospective forecast experiment of 148
years from 1856 to 2003, and found that ENSO pre-
dictability clearly had interdecadal variations. This
was, to date, the first work that studied ENSO pre-
dictability by extending realistic forecasts to a pe-
riod over 100 years. Also, Tang et al. (2008) com-
pared ENSO predictabilities using three different mod-
els by performing 120-year retrospective forecasts, and
confirmed the interdecadal variations in ENSO pre-
dictability were not model dependent.
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However, the ENSO predictability in these models
was only verified in the deterministic sense. Indeed, as
considered in classic theories, ENSO should be viewed
as a chaotic or irregular interannual fluctuation in the
tropical Pacific (e.g., Tziperman et al., 1994). So we
need to discuss the ENSO predictability in not only
a deterministic sense but also in a probabilistic sense.
With a realistic ENSO EPS, and newly-developed SST
assimilation approaches (Zheng et al., 2006a), we re-
cently completed a long-term retrospective ensemble
forecast from 1886 to 2005 with 100 members, and an-
alyzed the ENSO predictability and its variations in
both a deterministic and probabilistic sense.

This paper is structured as follows: Section 2 de-
scribes the components of the EPS, and the historic
SST data in detail. Section 3 examines the determin-
istic and probabilistic prediction skills of the EPS for
the whole period from 1886 to 2005. In section 4,
the interdecadal variations of the ensemble prediction
skills in the ENSO EPS are examined in both the de-
terministic and probabilistic sense. A summary and
discussion are given in section 5.

2. Ensemble prediction system components
and dataset

2.1 Basic deterministic model

Our ensemble prediction system mainly contains
three components. The EPS is firstly based on a
deterministic model, and the basic intermediate cou-
pled model was developed by Keenlyside and Klee-
man (2002) and Zhang et al. (2003). Its dynamical
component consists of both linear and non-linear com-
ponents. The former was essentially a McCreary-type
(McCreary, 1981) modal model, but was extended to
include a horizontally-varying background stratifica-
tion. In addition, ten baroclinic modes, along with a
parameterization of the local Ekman-driven upwelling,
were included. A SST anomaly model was embedded
within this dynamical framework to simulate the evo-
lution of the mixed-layer temperature anomalies. As
demonstrated by Zhang et al. (2005), having a realistic
parameterization for the temperature of the subsurface
water entrained into the mixed-layer (T¢) is crucial to
the performance of SST simulations in the equatorial
Pacific. An empirical T, model was constructed from
historical data and was demonstrated to be effective in
improving the SST simulations. The ocean model was
coupled with a statistical atmospheric model, which
specifically relates wind stress (7) to SST anomaly
fields. The two empirical models (the T, model and
the atmospheric model) were constructed based on the
historic observations during the period 1963-96 (34
yr of data). All coupled-model components exchange
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simulated anomaly fields. Information concerning the
interactions between the atmosphere (7) and the ocean
(SST) was exchanged once a day.

2.2 Initial ensemble condition

Based on the ICM, a probabilistic EPS was de-
veloped by Zheng et al. (2006a). The initial ensem-
ble conditions of the EPS were provided by the EnKF
(e.g., Evensen, 2003, 2004) data assimilation approach
through assimilating SST anomaly data into the model
with 100 ensemble members (Zheng et al., 2006a). Fig-
ure 1 shows an example of horizontal distributions of
the normalized observation error and the model ini-
tial uncertainty of SST at the initial time of January
1998. The distribution of the model uncertainty has
the same shape as that of the normalized observation
error. Thus, each initial ensemble member after assim-
ilation represents an equally realistic initial condition.
At the same time, the initial ensemble state variables
are dynamically balanced within the model after a se-
ries of assimilation cycles. Thus, this ensemble initial-
ization approach not only can generate accurate and
dynamically consistent initial ensemble members, but
also can provide reasonable surface initial stochastic
uncertainties for the EPS by combining both back-
ground and observation errors during the assimilation
cycles (Zheng and Zhu, 2008).

2.3 Stochastic model-error perturbation

As described by Zheng et al. (2006a), due to simu-
lation deficiencies for coupled air-sea interactions and
subsurface thermal effects in the SST anomaly model,
a linear, first-order Markov stochastic model is em-
bedded within the SST anomaly model of the ICM to
represent the model uncertainties of forecasted SST
anomaly fields. This perturbation method was veri-
fied to be capable of effectively simulating the time
evolution of model uncertainties during the ensemble
forecasting procedure (Zheng et al., 2007). Here, we
make further refinements and extensions to the model
error perturbation scheme by carefully analyzing the
forecast errors (408 samples of the observation-minus-
forecast values for 12-month lead time from 1963 to
1996, covering the same analysis period as the train-
ing period of the deterministic model) for the different
lead times by an empirical orthogonal function (EOF)
method, instead of the formulation used in Zheng et al.
(2006a). After doing these, the time evolution of the
model errors at different lead times can be represented
as,

M

Q(-t) — )‘z('t) X W, i+ (®
7 ;1 iTE (1)

/\Et) = Q5 X )\l(-til) +4/1— a?’j X ’Ugt) R
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where W, ; represents the spatial pattern of the ith
EOF mode for the (SST anomaly) model error @ at
lead time of j month, and which is a constant hori-
zontal distribution for each mode. )\Et) represents the
random normalized time coefficient of the ¢th mode at
time ¢, the coefficient o ; is the time correlation of the
stochastic forcing for the ith mode at lead time of j
month, vgt) is a random number of the ¢th mode at
time ¢, with a mean equal to 0 and variance equal to
1, and the correlations between the random vector of
each mode should be zero to allow the maintenance of
the orthogonality of each mode. Therefore, this equa-
tion ensures that the variance in )\Z(-t) is equal to 1 as

long as the variance of )\gt_l) is also equal to 1. The
subscripts ¢ and j indicate the EOF mode number and
the lead time respectively, the number M is the num-
ber of the EOF modes used in the stochastic model,
and §J(-t) represents a residual random field for @ at
time ¢ that is obtained by taking out the first M EOF
modes from the observation-minus-forecast values.

There are two advantages that should be addressed
here for this simplified representation of the model er-
rors. First, there is no longer any need to calculate
the spatial correlation scales of the model errors as in
Zheng et al. (2006a) at each grid point through per-
turbing the time coefficients with only the constant
spatial patterns for each mode. Second, the temporal
correlation coefficients «, for each mode in Eq. (1) for
the stochastic model can be easily obtained by calcu-
lating the lagged correlations of the series of the time
coefficients from EOF analysis results.

This model-error analysis was performed by com-
paring the SST anomalies’ twelve-month observation-
minus-forecast values. The model errors were com-
puted from 408 samples over a 34-year period (co-
inciding with the model training period) starting in
1963 and extending until 1996, without considering
the errors inherent within the initial conditions. The
forecast initialization scheme was a nudging assimila-
tion scheme, which was used to minimize the initial
errors here (Zheng et al., 2006b). The details of the
analysis process for estimating the model errors are
as follows. Firstly, to obtain the approximate “per-
fect” initial fields, the observed SST anomaly data
were nudged into the model at every time step and at
each grid point, and this nudging process was started
each month from December 1962 to November 1996
with a reasonable nudging intensity [i.e., 0.50 follow-
ing Zheng et al. (2006b)] and 12-month nudging time
length. Then, twelve-month forecasts were initialized
from the nudging results each month during the 34-
yr period from 1963 to 1996. Thirdly, twelve-month
observation-minus-forecast values of the SST anoma-
lies during this 34-yr period (408 samples) were ob-
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Fig. 2. Spatial patterns of the first mode (left column), second mode (middle column), and their associated
normalized time coefficients (right column) for the SST anomaly model errors at 3-, 6-, 9-, and 12-month
lead times. The contour interval is 0.2°C for the first mode and 0.1°C for the second mode.

tained as model errors. Finally, the properties of the
model errors, such as spatial patterns and their asso-
ciated temporal variations, were analyzed through the
EOF method.

Figure 2 shows the spatial patterns [i.e., ¥ in Eq.
(1)] of the first and second EOF modes for the SST
anomaly model errors at lead times of 3, 6, 9, and
12 months, and the associated time series. The spatial
structure indicates the regions, which are not predicted
well by the model. For the first mode, model uncer-
tainties are mainly located over the eastern equatorial
Pacific, and extend into the central basin with longer
lead times. In contrast to the first mode, the model
uncertainties of the second mode are mainly located
over the eastern costal regions and the central equa-
torial Pacific. And the proportion of the first mode
in total covariance increases from 37.1% to 71.8% in
the 12-month model-error analysis results, while the
proportion of the second mode decreases to 8.3% at
12-month lead. These results indicate that the first
several modes can explain and describe the variations

of the model errors in the tropical Pacific, and the
contributions of the first mode dominate the model-
error simulations, especially at longer leads. The tem-
poral correlation coefficients [i.e., a in Eq. (1)] for
each mode were obtained by calculating the one-month
lagged correlations for each EOF time-series. Table 1
presents the temporal correlation coefficients that are
used in the stochastic model. The temporal correla-
tion coeflicients of each mode increase with increasing
lead time, which indicates a decreased randomness in
the expansion time coefficients, and the temporal cor-
relation coefficient « of the first mode exceeds 0.95 at
12-month lead time. Thus, the variations of the ma-
jor modes in the model-error model are allowed to be
more random at short lead times, but with more stable
and bias-correction like properties at longer lead times
(e.g., Evensen, 2003).

After carefully building up a reasonable model-
error model, we can use Egs. (1) and (2) to provide
a simple representation of a non-linear model, by em-
bedding the above model-error system within the dy-
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Table 1. Time-correlated coefficients of the stochastic model for the first ten modes from one-month to twelve-month

lead times.
Lead time EOF mode
(months) 1st 2nd 3rd 4th 5th 6th Tth 8th 9th 10th
1 0.695 0.603 0.604 0.397 0.408 0.416 0.274 0.403 0.403 0.253
2 0.799 0.840 0.703 0.721 0.689 0.747 0.630 0.714 0.621 0.651
3 0.858 0.863 0.767 0.745 0.754 0.780 0.659 0.732 0.666 0.693
4 0.879 0.875 0.796 0.746 0.787 0.784 0.670 0.696 0.753 0.698
5 0.891 0.877 0.816 0.750 0.795 0.782 0.688 0.686 0.783 0.691
6 0.902 0.888 0.804 0.768 0.792 0.779 0.697 0.699 0.784 0.704
7 0.919 0.888 0.797 0.784 0.774 0.780 0.712 0.700 0.780 0.740
8 0.928 0.879 0.809 0.802 0.756 0.776 0.718 0.694 0.785 0.740
9 0.935 0.877 0.810 0.818 0.737 0.785 0.726 0.703 0.781 0.753
10 0.941 0.875 0.817 0.835 0.714 0.795 0.728 0.704 0.783 0.768
11 0.948 0.872 0.828 0.849 0.710 0.790 0.732 0.704 0.781 0.770
12 0.954 0.868 0.836 0.859 0.720 0.791 0.728 0.714 0.775 0.779

namical model to simulate the time evolutions of the
model errors during the ensemble forecast process:

Yy = (1) + Qy (2)

where 1, represents the model state at time ¢, and f is
the non-linear model operator. In order to achieve rea-
sonable amplitudes, the first ten EOF modes were re-
tained in simulating the random model errors, and the
simulated random model errors of SST anomalies were
generated and added into the physical model daily.

2.4 Dataset

The data used in this study is the monthly ex-
tended global SST (ERSST) dataset from 1854 to 2006
reconstructed by Smith and Reynolds (2004), with 2°
horizontal resolution. Due to the relatively poor qual-
ity of the dataset prior to 1880, the observed SST
anomalies before 1880 lack annual and seasonal vari-
ations (Smith et al., 2008), so the initial conditions
can not trigger real annual oscillations and seasonal
variations of the predicted signals (Tang et al., 2008).
Thus we focus on the period from 1886 to 2005 in this
study, and the data domain is configured as the tropi-
cal Pacific Ocean. A very important task in ENSO pre-
dictions is to optimize the oceanic initial conditions,
and the assimilation of subsurface in-situ observations
and satellite altimetry can significantly improve model
skills (e.g., Tang and Hsieh, 2003; Zheng et al., 2007).
However, the oceanic satellite altimetry and subsur-
face observation records are too short for our study.
The only way solution is to only assimilate SST to ini-
tialize forecasts. Zheng et al. (2006a) used the EnKF
data assimilation system to provide an initial condition
ensemble for the ICM with 100 members. And this
SST-only assimilation approach has been verified to
be able to provide dynamically balanced initial fields
and significantly improve El Nino predictions. In this

study, only the observed monthly SST anomaly fields
from Smith and Reynolds (2004) are assimilated into
the ICM with the EnKF once a month. These ob-
servational data are also used for verifying the model
predictions.

3. Retrospective forecast experiments

The retrospective forecast (or hindcast) experi-
ments covering the period 1886-2005 are made and
compared to available observations. A 12-month hind-
cast is initialized each month during this 120-yr period.
For each initial month, an ensemble of 100 hindcasts
is run, yielding a total of 144000 retrospective fore-
casts to be verified. Figure 3 directly shows the pre-
dicted ensemble mean of the Nifio-3.4 (5°S-5°N, 120°—
170°W) SST anomalies and the prediction spread at
6-month lead time from 1886 to 2005. The variability
of the ensemble mean follows the Nino-3.4 observations
quite well. Apart from a few exceptions the ensemble
forecasts can encompass the observations. This in-
dicates that the EPS is able to predict most of the
warm and cold events that occurred in past 120 years
at 6-month lead time, especially the relatively large El
Nino and La Nina events. The skill of the hindcasts is
examined from both a deterministic and a probabilis-
tic perspective. The skill estimation in this section is
based on the full hindcast period, 1886-2005, which
corresponds to a total of 144000 members.

3.1 Deterministic prediction skill

Firstly, to check the deterministic predictability
of the EPS for the large events, Fig. 4 shows long
lead time deterministic retrospective forecast results
for four of the largest warm episodes (as measured
by the peak Nino-3.4 SST anomalies) of the past 120
years. In all cases, the EPS is able to predict the ob-
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Fig. 3. Time series of observed and forecasted Nifio-3.4 SST anomalies at 6-month
lead time. The dashed line represents the observed SST anomalies, the solid line
represents the ensemble mean, and the shaded area represents the prediction spread.
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Prediction skill for Nino3.4 SST anomaly: 1886—2005
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served strong El Nino events twelve months in ad-
vance, although some errors still exist in the forecasted
onset and development, and in the magnitude of these
events. The implication is that the signal components
present in initial fields play a critical role in deter-
mining ENSO prediction skills (e.g., Peng and Kumar,
2005; Moore et al., 2006; Zheng et al., 2009).

Figure 5 shows the anomaly correlation and root
mean square (RMS) error between observed and pre-
dicted average SST anomalies over the tropical Pa-
cific Ocean Nino-3.4 region as a function of lead time.
To compare with the original deterministic predic-
tion skill, we also perform a prediction experiment
whose initialization procedure is briefly described here,
wherein the wind stress anomalies reconstructed from
observed SST anomalies via a singular value decom-
position (SVD) based model are used to integrate the
ocean model over the whole forecast period to generate
initial conditions for the dynamical component, and
the SST anomaly model initial conditions are taken
as the observed SST anomalies (Zhang et al., 2003).
The skill scores for the ensemble mean hindcast are
better than that of the original deterministic forecast
scheme; both of hindcasts schemes have particularly
high skill at short lead times and beat persistence for
all lead times with a correlation coefficient of greater
than 0.94 for the first month. Beyond 4-month lead
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time, there is a distinct difference of RMS errors be-
tween the ensemble mean hindcast and the original
scheme. The RMS error of the ensemble mean re-
mains smaller than 0.94°C over the 12-month predic-
tion period, and is almost 0.2°C smaller than that of
the original deterministic forecast scheme at a lead
time of 12 months. Over the whole period, this im-
provement occurs because the advanced assimilation
method can provide more dynamically consistent and
accurate initial conditions than the original initializa-
tion method, and the ensemble mean can remove some
unpredictable stochastic information.

3.2 Probabilistic prediction skill

We use Talagrand diagrams (also known as rank
histograms) to evaluate whether the hindcast and
the verifying observation are sampled from the same
probability distribution (e.g., Talagrand et al., 1998;
Hamill, 2001). The Talagrand diagrams are generated
by ordering at each grid point the forecast values from
each of the ensemble members from smallest to largest.
For our full ensemble, with 100 members, this creates
101 intervals, and the value of the verifying observa-
tion then falls into one of the 101 categories. Figure
6 shows the Talagrand diagram for the SST anoma-
lies over the Nino-3.4 region, and is a diagram of the
frequencies as a function of the category index. For
the SST anomalies, the distribution is flat, although
the two extreme categories are somewhat higher than
their adjacent categories. The 12-month lead hind-
cast is better in this respect than the 3-month lead
hindcast, however. This indicates that the ensemble
spread at longer lead is more reasonable. Also, there
is a small shift of frequencies (i.e., the frequencies in
the upper intervals are decreasing from shorter lead
time to longer lead time, while the frequencies in the
lower and middle intervals are increasing at the same
time) of the verifying observation from the lower cat-
egories to the higher categories at all four lead times.
The Talagrand diagrams indicate that the probability
distribution of observations can be represented by the
ensemble approach.

As described in section 2, our ensemble members
are generated based on the hypothesis of a Gaussian
distribution, but the standard normally distributed
perturbations are processed at all model grids (not on
regions), and thus we need to check whether probabil-
ity distributions of the Nino-3.4 forecasted ensemble
members accord with the Gaussian distribution. Fig-
ure 7 shows the normalized probability curve of the
forecasted ensemble members over the Nino-3.4 region
based on the entire 120-yr period. At different lead
times, the forecasted ensemble members agree with
the normal distribution quite well, and there are no
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Analysis Rank Histogram: Talagrand Diagram
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Fig. 6. Talagrand diagram for the full ensemble Nifio-3.4 SST anomaly hindcast over the
whole 120-year period: (a) 3-month lead time, (b) 6-month lead time, (c) 9-month lead time,
and (d) 12-month lead time hindcasts. The dashed line marks the theoretical frequency for
a perfectly reliable EPS.
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time. The dashed line marks a standard normal probability curve.
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double- or multi-modal peaks for the ensemble mem-
bers. This indicates that the generation methods of
the forecast ensemble members are reasonable, and the
ensemble-mean forecast result is the most representa-
tive deterministic forecast, capable of illustrating the
deterministic performance of the EPS.

To measure the probabilistic prediction skill more
accurately, here we choose the method commonly re-
ferred to as relative operating characteristic (ROC;
e.g., Mason and Graham, 1999) to measure the en-
semble forecast performance by comparing the fraction
of events that were properly forewarned (i.e., the hit
rate) with the fraction of nonevents that occurred after
a warning was issued (i.e., the false alarm rate). The
ratios are determined from contingency tables and the
events are predefined and expressed in binary terms.
Given an ensemble of hindcasts, an ROC curve show-
ing the different combinations of hit and false alarm
rates given different forecast probabilities can be con-
structed. The ROC curve is useful for identifying op-
timum strategies for issuing warnings, by indicating
the trade-off between false alarms and misses. Details
and examples of the ROC calculation can be found in
Mason and Graham (1999).

ROC curves for the Nino-3.4 hindcasts at lead
times of 3, 6, 9, and 12 months are shown in Fig. 8.
For all lead times, there are three curves representing

three different event types: (i) warm events (upper ter-
cile), (ii) cold events (lower tercile), and (iii) normal
events (middle tercile), where both the retrospective
forecasts and the observations have been normalized
by their local standard deviation. An ideal probabilis-
tic forecast system would have relatively large hit rates
and small false alarm rates so that all the points on
the ROC curve would cluster in the upper-left corner
of the diagram (e.g., Kirtman, 2003). For a relatively
poor forecast system, all the points of the ROC curve
would lie very close to the dashed diagonal line indi-
cating that the hit rate and the false alarm rate were
nearly the same (i.e., no skill). Akin to previous stud-
ies (e.g., Kirtman, 2003; DeWitt, 2005), the EPS has
relatively higher skill for the warm events and cold
events, and it has relatively lower skill for the neutral
events. For 3- and 6-month lead times, both warm and
cold events are fairly well predicted. The false alarm
rates are low and the hit rates are relatively high when
the agreement among the ensemble members is rela-
tively large. For a normal event forecast, the 3-month
lead time also has some skill although smaller than for
the extremes, whereas for 6-, 9-, and 12-month leads,
the ROC curve lies close to the diagonal, indicating
little skill. These results indicate that the EPS can
capture and predict big SST anomaly signals or ex-
treme events over the Nino-3.4 region in different sea-
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sons quite well (Zhang et al., 2005), and the model is
able to predict extreme events. At 9- and 12-month
lead times, there is a considerable drop in skill. High
confidence forecasts for warm and cold events are only
marginally better than those for normal events, sug-
gesting that a confident forecast for a warm or cold
event at 12 months lead time is still not particularly
useful. This is also appeared to be the case with the
earlier studies (e.g., Barnston et al., 1999; Kirtman,
2003).

The ability to easily verify the hindcast skill of
warm events and cold events separately is one of the
advantages of the ROC calculation, and thus we fur-
ther used the ROC area to verify the probabilistic
skills of the EPS for the three different events. The
ROC area is the area under the ROC curve, and a
perfect forecast system would have a ROC area of 1
while a system with no ability to distinguish in ad-
vance between different events would have a score of
0.5. Figure 9 shows the ROC area of SST anomalies
for warm events, normal events, and cold events over
the Nifno-3.4 region, as a function of lead time. Similar
to the analysis results above for the 120-yr hindcast,
the ROC areas for both the warm and cold events are
clearly higher than that of the neutral events during
the 12-month forecast period. This also indicates that
a large (initial) signal can lead to a reliable prediction
and high prediction skill, and that for small predicted
signals; the evolution of predicted SST anomalies in
our EPS might present a more chaotic evolution, which
would degrade prediction skill and induce obvious de-

ROC Area for Nino3.4 SST anomaly: 1886—2005
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Fig. 9. ROC area of SST anomalies for warm events
(solid line), normal events (dot-dashed line), and cold
events (dashed line) over the Nifio-3.4 region, shown as
a function of lead time.
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creases of predictability (e.g., Zheng et al., 2009).
4. Variation of ENSO ensemble predictability

Similar to previous studies (e.g., Chen et al., 2004),
Fig. 3 shows that the characteristics of the interan-
nual variability obviously have changed with time. To
examine the possible interdecadal variation of ENSO
ensemble predictability, in this section, we calculate
both deterministic and probabilistic prediction skills
of 6 sub-periods of 20 years each.

4.1 Deterministic predictability

ENSO’s deterministic predictability depends on
the time period in which it is estimated (Balmaseda
et al., 1995; Kirtman and Schopf, 1998; Chen et al.,
2004). This is also evident in Fig. 10. For the six
sub-periods of 20-year each, both anomaly correlation
and RMS error vary over significant ranges, especially

Prediction skill for Nino3.4 SST anomaly: 1886—2005
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Fig. 10. Anomaly correlation (top) and RMS error (bot-
tom) between the observed and the ensemble-mean pre-
dicted values of the Nifio-3.4 index. These are shown as
a function of lead time, for six consecutive 20-yr periods
since 1886.
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Fig. 11. The averaged correlation (top) and RMS error
(bottom) between the observed and the predicted Nifo-
3.4 SST anomalies at 6-month lead time. The correlation
and RMS error are computed at each running window of
20-yr period from 1886 to 2005. The shaded area rep-
resents the 95% confidence interval via bootstrap proce-
dures.

at longer lead times. For example, high prediction
skills appear in the late 19th century and the middle-
late 20th century (i.e., 1886-1905, 1966-85, and 1986—
2005), these periods are dominated by strong and regu-
lar ENSO events. The high scores for the 1966-85 and
1986—-2005 periods might not be surprising because the
model is trained using data from part of this period,
and the high scores for the 18861905 period, which is
free of artificial skill, indicate that the large El Nino
and La Nina events can be highly predictable, even
initialized with only SST anomaly data. But, the pe-
riods of 190625, 1926—45, and 1946—65 have relatively
low prediction skills. The lower skill in these periods
is consistent with there being fewer and smaller events
to predict.

The consistent temporal variations of the determin-
istic prediction skills of the EPS are further displayed
in Fig. 11, which shows the averaged correlation and
RMS error at 6-month lead time measured by a run-
ning window of 20-yr from 1886 to 2005 (i.e., 1886—
1905, 1887-1906, - --, 1986-2005). For example, the
skill at 1896 was calculated using the samples from
1886-1905. The 20-yr window is shifted by one year
for each time starting from 1886 to 2005. There is a
striking interdecadal variation of ENSO deterministic
predictability (in both the correlation and RMS error)
over the past 120 years from 1886 to 2005 in the EPS.
Generally, there is high predictability in the late 19th
century and in the middle-late 20th century, and a low
predictability from 1906 to 1951 (correlation is lower
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than 0.50).

A bootstrapped resampling procedure (Efron and
Tibshirani, 1986) is also used to derive useful confi-
dence limits for the skill scores in order to allow mean-
ingful statistical conclusions to be drawn from these
comparisons. The shaded area in Fig. 11 represents
the 95% confidence interval computed using bootstrap
procedures, and indicates the uncertainty of verifica-
tion sampling. Considering the confidence interval,
both the correlation and RMS error results have shown
that verification sampling have smaller influence on
the forecast skill scores than differences between the
skills in the different decades. This might because the
ensemble members match the Gaussian distribution
quite well at different lead times (Fig. 7), and thus
that the resampling process makes little adjustments
on the distribution of the forecasted ensembles.

4.2 Probabilistic predictability

To verify the variations of the probabilistic pre-
dictability of the EPS, we examine the temporal
changes of the ROC area for the three different event
types. Figure 12 shows the ROC area in the Nino-
3.4 region for warm events, cold events, and normal
events in six consecutive 20-yr periods since 1886. Ob-
viously, the ENSO probabilistic predictability for dif-
ferent events also depends on the time period. For
warm and cold events, high probabilistic prediction
skills still appear in the late 19th century (i.e., 1886—
1905, when the skill for warm events is only a little
higher than that in the early 20th century) and the
middle-late 20th century (1966-85 and 1986-2005),
with the highest skills for warm events in the sub-
period 1966-85, and highest probabilistic prediction
skills for cold events in sub-period 1986-2005.

In order to illustrate the interdecadal features of
the probabilistic prediction skills more clearly, we fur-
ther verify the consistent temporal variations of the
probabilistic prediction skills of the EPS. Figure 13
shows the ROC area for the three different event types
at 6-month lead time measured by a running window
of 20-yr from 1886 to 2005. For the warm events,
the highest skill appears in the late 20th century, and
the lowest skill appears from 1910 to 1930. For the
cold events, the highest skill also appears in the late
20th century,and the lowest skill emerges from 1920 to
1950. For the neutral events, the 20-yr averaged skill
decreases from 1896 to 1910, and takes a linear in-
creasing feature from 1910 to 1995. The uncertainty of
verification sampling is also shown in Fig. 13 using the
95% confidence interval computed via bootstrap pro-
cedures. Considering the confidence interval, for the
three different events, the ROC analysis results also
show that verification sampling has smaller influence
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Fig. 12. ROC area in the Nino-3.4 region for (a) warm events (upper tercile), (b)
cold events (middle tercile), and (c) normal events (lower tercile). These are shown
as a function of lead time, for six consecutive 20-yr periods since 1886.

on the forecast skill scores than differences between
the skills in the different decades. Compared to
Fig. 11, the probabilistic verification uncertainties are
larger than the deterministic verification uncertainties.
However, in summary, for three different the event
types, there are still obvious interdecadal variations
of ENSO probabilistic predictability over the past 120
years from 1886 to 2005 in the EPS.

5. Discussions and conclusions

In this paper, long-term retrospective ensemble
forecasts using 100 members covering the past 120
years are performed with an EPS. With the assimi-
lation of only a historic SST dataset, the prediction
skills of the EPS are verified in both a deterministic
and probabilistic sense, and the EPS displays useful
prediction skill. An interesting finding from the retro-
spective ensemble forecasts is that the EPS showed in-
terdecadal variations in both deterministic and proba-
bilistic prediction skills. Both deterministic and prob-
abilistic prediction skills are high in the late 19th cen-
tury from 1886 to 1905, and then decline with time,
reaching a minimum around 1910-50, beyond which
skill rebounds and increases with time from the 1960s
onward. The EPS has relatively high prediction skill
(but also including some artificial skill) from the 1960s

onward, especially in the late 20th century from 1986
to 2005. These results are similar to previous studies
(e.g., Chen et al., 2004; Tang et al., 2008), although
there are still some differences in the prediction skills
among different models [which is also shown in Tang
et al. (2008)]. However, the trends of the interdecadal
variations in different models appear comparable (i.e.,
higher predictability in the late 19th century and in
the middle-late 20th century, and a lower predictabil-
ity in early 20th century). These results all indicate
that the interdecadal variability of ENSO (determin-
istic and probabilistic) predictability exists generally,
and is not model dependent.

However, it should be noted that the theoretical
framework discussed in this study is based on a rela-
tively simple EPS, and one could argue that our anal-
ysis is not complete since we only use SST data. One
serious question is whether or not this interdecadal
variation in predictability discussed in this paper is
due mainly to the differences of the quality of the data
in different periods. For example, one can guess that
the high prediction skill for the period from 1966 to
2005 is probably due to better data quality because
of improvements of observation systems and the fact
that the model was trained using the data from part
of this period.

To explore this, we can examine the simulation skill
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lated Nino-3.4 SST anomalies forced by the reconstructed
wind stress anomalies. The correlation and RMS error
are computed at each running window of 20-yr period
from 1886 to 2005.

of the model forced by the reconstructed wind stress
from the atmospheric 7 model. Thus, the quality of
initial conditions of predictions and the model perfor-
mance can be indicated by the simulation skill, with
both inherent to the data quality. And the existence
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of an impact of the data quality on the model’s sim-
ulation skill will be mostly felt through the quality of
initial conditions, such as initial SST anomalies. Fig-
ure 14 shows the averaged correlation and RMS er-
ror between the observed and the simulated Nino-3.4
SST anomalies forced by the reconstructed wind stress
anomalies at each running window of 20-yr period from
1886 to 2005, and indicates that the interdecadal dif-
ference of the simulation skill is not large in the model.
The magnitude of variation is about 0.1 from maxi-
mum to minimum during the entire period for both
correlation and RMS error (units: °C). A comparison
between Figs. 11 and 14 reveals that the interdecadal
variation in predictability does not agree with that in
the simulation skill. Thus, interdecadal variation in
predictability is not due to model performance associ-
ated with data quality. This is further suggested by
the fact that noticeably higher prediction skill also oc-
curs during the period from 1886 to 1905.

The results of the analyses in this paper moti-
vate us to further investigate the possible reasons
and sources of limited ENSO predictability in detail.
These concerns in future works need to be addressed
through more comprehensive analyses, and other pos-
sible sources (besides the ENSO signal) of controlling
ENSO predictability also need to be further discussed,
such as nonlinearity and stochastic noise. Neverthe-
less, this study is to date the first work to discuss both
ENSO deterministic and probabilistic predictabilities
using ensemble forecasts and long-term predictions.
The results and conclusions found in this EPS might
be helpful for the study of ENSO predictability.
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