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Abstract 

     In this paper we present the current capabilities for Numerical Weather prediction of 

precipitation over China using a suite of ten multimodels and our Superensemble based 

forecasts. Our suite of models includes the operational suite selected by NCARs TIGGE 

archives for the THORPEX Program. These are: ECMWF, UKMO, JMA, NCEP, CMA, 

CMC, BOM, MF, KMA and the CPTEC models.( The acronyms are explained in a table 

1 within this paper).The superensemble strategy includes a training and a forecasts phase, 

for these the periods chosen for this study include the months February through 

September for the years 2007 and 2008.  This paper addresses precipitation forecasts for 

the medium range i.e. days 1 to 3 and extending out to day 10 of forecasts using this suite 

of global models. For training and forecasts validations we have made use of an advanced 

TRMM satellite based rainfall product. We make use of standard metrics for forecast 

validations that include the RMS errors, spatial correlations and the equitable threat 

scores. The results of skill forecasts of precipitation clearly demonstrate that it is possible 

to obtain higher skills for precipitation forecasts for days 1 through 3 of forecasts from 

the use of the multimodel superensemble as compared to the best model of this suite. 

Between days 4 to 10 it is possible to have very high skills from the multimodel 

superensemble for the RMS error of precipitation. Those skills are shown for a global 

belt and especially over China. Phenomenologically this product was also found very 

useful for precipitation forecasts for the Onset of the South China Sea monsoon, the life 

cycle of the Meiyu rains and post typhoon landfall heavy rains and flood events. The 

higher skills of the multimodel superensemble make it a very useful product for such real 

time events 
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1. Introduction  

A major improvement of skill for medium range forecast is possible from the 

construction of a multimodel superensemble. This is a post processing exercise where a 

large number of forecasts from a suite of models are subjected to training where the bias 

errors of member models are expressed in terms of statistical weights. These weights are 

next used in forecasts where the collective biases are reduced to construct a multi model 

superensemble, Krishnamurti et al (1999, 2000a, 2000b). In a series of papers we have 

shown that it is possible to take a suite of operational model forecasts and to arrive at 

forecasts that are somewhat superior to those of the best model (Mishra and Krishnamurti 

2007). This paper is a first such application to a China domain where we shall address the 

skills for day to day forecasts of precipitation and specifically to the forecasts of the 

Meiyu rains, the onset of the South China Sea monsoon and the prediction of heavy rains 

arising from the post land fall periods of Typhoons over China. This study became 

possible because of a new forecasts data archival system called TIGGE at NCAR. (A list 

of acronyms and their explanations are provided in Table 1). TIGGE is a part of the 

International THORPEX program. The archives include medium range daily forecasts, 

through day 10 of forecasts, made by a number of operational global weather modeling 

groups. This archive includes several years of daily forecasts for all basic variables at all 

model levels. The TIGGE system is briefly described in Section 2 of this paper. 
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Forecasting day to day weather is difficult over a China domain compared to many 

parts of the world. This region is located to the east of major Himalayan mountain chains 

and the semiarid Gobi desert. The complex zonal motion of the subtropical high of the 

Pacific Ocean, its incursions into and out of China, impacts the rainfall over this region. 

Monsoonal moisture enters the Chinese mainland from Bay of Bengal, the South China 

Sea and even from the Pacific Ocean. Frontal systems of the North West often plunge 

southwards and contribute to heavy rains. Thus a complex set of surface, orographic, 

lateral and meridional influences impact the medium range forecasts of rains over China. 

Among these the influences from the Pacific and those of orography (the eastern slopes 

of the Himalayas) seem to be some of the major contributors to the forecast errors. This 

can be seen from the progression of errors (Figure 1) on a day by day basis (from days 1 

through 10 of forecasts). Most Errors seem to emanate and expand from the Pacific and 

the Himalayan regions. 

A number of skill score indices are applied for forecast evaluations. The Equitable 

Threat Scores (ETS) are often used for precipitation forecast skills (see Appendix 1). The 

typical operational values, for moderate rainfall intensities, of the ETS start out with 

values like 0.3 initially and fall to values around 0.1 by day 3 of forecasts. Those skills 

for heavier rains are generally much lower in operations. There is not much skill in 

numerical weather prediction of rains for medium range forecast i.e. 6 to 10 days in 

advance. If a suite of the best operational models are used to construct the multimodel 

superensemble then these score can be raised for forecasts from days 1 to 3. That is 

demonstrated in this paper for a China domain. Various important features of the 

superensemble were reviewed by Krishnamurti et al (2006). Having good models in the 
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ensemble suite is certainly very important. For numerical weather prediction 

improvements the training phase requires as many as 120 past forecasts from each of the 

member models, generally, for obtaining a stable and useful statistics for the forecast  

phase of the superensemble (Krishnamurti et. al. 2006). The number ofensemble 

members suggested for single model based perturbed forecasts are generally of the order 

of 50, (Palmer et al., 1993 and Toth and Kalnay 1993). The superensemble starts to 

provide much useful results even from the use of 5 to 10 best operational models. It is 

possible to design a number of member models by simply changing the physical 

parameterizations. The following four recent papers, Krishnamurti and Sanjay (2003), 

Chakraborty et al (2007) , Krishnamurti et al, (2007, 2008) address the use of multiple 

physical parameterization algorithms such as cumulus parameterization, planetary 

boundary layer and cloud radiative transfer in suites of multimodels and ways to find 

systematic errors generated by various such schemes. We show results for the Chinese 

summer monsoon domain here. Our statistics includes all of China where results of other 

member models, that are being used here, are included. With the superensemble it is 

possible to increase the predictability over china by about two days for 5-day forecasts 

and by more than two days for 10-day forecasts (the RMS errors) compared to the best 

model. We illustrate here examples of much improved prediction of monsoon rainfall for 

China from case studies and covering an entire season,  

 

2. TIGGE Datasets 

This current paper exploits the TIGGE data sets of THORPEX program that are 

provided by NCAR see Table 2 below. Table 2 lists the prominent operational weather 
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prediction models from the TIGGE archive for the current period. The table identifies 

number of ensemble members, model resolution and forecast length. TIGGE datasets are 

the basis for the member model suite of the Florida State University superensemble. The 

multimodels included in our study are BOM (Australia), CMA (China), ECMWF 

(Europe), NCEP (USA) and UKMO (UK). TIGGE was designed at a workshop hosted in 

2005 by the European Centre for Medium-Range Weather Forecasts (Richardson et al 

2005), with the ten centers officially joining between late 2006 and early 2008. It is an 

attempt made to link the academic and operational worlds. Such outputs are now 

available from data archive centers at ECMWF, the China Meteorological Agency, and 

NCAR. Each day some 240 GB (gigabytes) of data flow from the operational centers into 

the TIGGE system. The archive now holds more than 100 terabytes.   

3. Conventional Superensemble Methodology 

The superensemble technique (Krishnamurti et al., 1999) produces a single 

forecast derived from a multimodel set of forecasts.  Forecasts from this methodology do 

carry the highest skill compared to participating member models of the ensemble, and 

they carry skills above those of the bias-removed ensemble mean representation. The 

strategy for the multimodel superensemble partitions the forecast time line into two 

components. The first of these, called the training phase, utilizes the multimodel forecasts 

and the observed (analysis) fields to derive model performance statistics. The second 

phase, called ‘the forecast phase’, utilizes the multimodel forecasts and the 

aforementioned statistics to obtain superensemble forecasts into future. During training, 

with the use of benchmark observed (analysis) fields, past forecasts are used to derive 

statistics on the past behavior of the models.  Given a set of past multimodel forecasts, we 
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have used a multiple regression technique (for the multimodels), in which the model 

forecasts were regressed against an observed (analysis) field. This utilizes a least squares 

minimization of the difference between anomalies of the model and the analysis fields in 

order to determine a distribution of weights. These regression coefficients associated with 

each individual model conceivably can be interpreted as a measure of that model’s 

relative reliability for the given point over the training period.  For each model prognostic 

variable, the purpose of training is to evaluate model biases geographically and vertically. 

This being done for m multimodels at n grid points (along the horizontal and vertical) for 

p variables and q time intervals constituted as many as m*n*p*q statistical coefficients 

(which came to around 107 weights).  These weights are positive, negative and fractional, 

Krishnamurti et al (2006) which rules out any possibility of over-fitting. In our previous 

study (Krishnamurti et al 2003) we had cited several examples of heavy rain predictions, 

when none of the member models were raining heavily. In hurricane track forecasts 

(Krishnamurti et al 2006) using multimodel superensemble there are numerous examples 

where all member models show a left bias in track prediction whereas superensemble by 

correcting this bias shows a track far right of any of the predicted tracks. This degree of 

detail for the construction of the superensemble was found necessary.  The methodology 

for this conventional procedure consists of a definition of the superensemble forecast: 

)(
1
∑
=

−+=
N

i
iii FFaOS   …    …    (1) 

where S is superensemble, 
__
O  is the observed mean field during the training phase; ai is 

the weight for the ith member model; Fi and iF   are the forecasts and mean forecast fields 

during the training phase from the ith model. The summation is taken over the N member 
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models of the suite. The weights are computed at each of the grid points by minimizing 

the objective function G for the mean square error of the forecasts: 

∑
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where ‘t’ denotes the length of a training period. 

In this conventional superensemble methodology a collection of a sequence of 

individual forecasts from several models are subjected to a multiple regression against the 

observed (or assimilated) counterpart fields. These multi-regression coefficients are 

collected during the training phase of the superensemble.  These statistical weights are 

separately calculated for each day of forecasts. The length of this training data phase 

varies for each type of forecast addressed in this paper. These statistics, collected during 

the training phase are simply passed on to a forecast phase of the superensemble. In this 

forecast phase, we again have forecasts, from the same member models, that are 

corrected for their past collective behavior. This type of local bias removal is more 

effective compared to a conventional bias removed ensemble mean. The later assigns a 

weight of 1.0 to all models after bias removal. The superensemble includes fractional and 

even negative weights depending on past behaviors. In a probabilistic sense also, the 

superensemble probability forecasts are somewhat better than the multimodel bias-

removed ensemble at any threshold level (Stefanaova and Krishnamurti, 2002). A 

consensus of 10-day global forecasts from all models (TIGGE) is prepared following the 

superensemble strategy. The superensemble includes training and a forecast phase. 

During the training phase nearly 120 recent past forecasts are used. A simple least square 

minimization strategy utilizes these multiple forecasts and observed counterparts to 
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obtain statistical weights for each model for each forecast day. Weights for the 

Superensemble are positive, negative and fractional, which rules out any possibility of 

over-fitting.  In our previous study (Krishnamurti et al. 2006) we had cited several 

examples of heavy rain predictions, when none of the member models were raining 

heavily. In hurricane track forecasts using multimodel superensemble there are numerous 

examples where all member models show a left/right bias in track prediction whereas 

superensemble by correcting this bias shows a track far right/left of any of the predicted 

tracks.  This degree of detail for the construction of the superensemble was found 

necessary. Statistics thus obtained are passed on to the forecast phase for the construction 

of superensemble forecasts 

4. Results and Discussions: 

TIGGE forecasts and TRMM rain datasets were used to carry out FSU multimodel 

forecast from 21st April to 21st July 2008 (total 92 days). Model forecasts up to 10 days 

from the TIGGE archive (1 February to 20 April 2008) are used for training and forecasts 

are made from 21st April 2008 to 21st July 2008. In Figure 2 we display the time series of 

RMS errors of precipitation forecasts for days 1, 3, 5, 7, 9 and 10, covering one season of 

forecast, over China for the domain 90°E-140°E, 15°N-49°N. Fig. 2 shows the RMS 

errors covering the period February through April 2008. As seen here the RMS errors of 

the FSU superensemble is around 5 mm d-1 for all 10 days of forecasts. RMS errors of the 

member model forecast increases with the length of forecasts (i.e. forecast day) however 

irrespective of the forecast day superensemble forecasts RMS errors range from roughly 

1.0 to 10.0 mm d-1. RMS errors of the member models forecast reaches as high as 70 mm 

d-1 on day 10, but corresponding superensemble forecast is found less than 10 mm d-1. 
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This indicates a major improvement for the forecast especially for the forecasts for days 5 

to 10. Typical spatial plots of forecasts of precipitation for days 1 and 10 are shown in 

Fig. 3 (a) and (b) respectively. Here we show that observed rain, as seen from the TRMM 

files, the member model forecasts, the ensemble mean and the FSU superensemble. Also 

included on top of each forecast panel are the values for the average rain rate and the 

spatial correlations.  

It became possible to raise these skills well above those of the best model from the 

construction of the superensemble. If the member models carry consistent and large 

systematic errors then the superensemble is able to capitalize on these errors and reduce 

them. Fig. 3 (a) and (b) shows the average rain (in sense rainfall climatology of forecasts) 

and spatial correlation for the entire period (February–April 2008). Here, again, we see a 

similar increase of skill from the FSU superensemble. In both these figures (Fig. 3 (a) and 

(b)), top left panel depicts average observed rain rate from TRMM, rest of the panels are 

forecast from FSU multimodels where bottom left is ensemble mean and bottom right is 

superensemble forecast. Numbers mentioned in each forecast panels represents the 

average rain (AVE=) and spatial correlation (SC=) of the forecast with the observed rain 

during the period. Figure 3 (a) is prepared using day 1 forecasts of the FSU multimodel 

and Figure 3 (b) is made of day 10 forecasts. In both the figures 3 (a) and 3 (b) 

superensemble average rain for the domain is very close to that of TRMM rain. These 

spatial correlations from the FSU superensemble, for precipitation forecast, are greater 

than 0.9 for all 10 days of forecast over China. This kind of skill is now possible from the 

use of the superensemble method for the climatology of daily forecasts. Note that some 
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of the member model forecasts of correlation are as low as 0.3. These show that the 

multimodel superensemble is able to reduce errors. 

4.1. Mei-yu Rains 

The Meiyu system, also called Baiu in Japan and Changma in Korea, is a front like 

precipitation system in East Asia that is found in the summer months. Its onset in late 

May and June is of considerable interest. It carries a stronger gradient of moisture 

compared to that of temperature and is not considered a baroclinic frontal system. Heavy 

rains over eastern China, east of the Yangtze River are known to be associated with the 

Meiyu rains. Maiyu rains are also of considerable interest in Taiwan, because the south 

western portion of the Meiyu front often lies over Taiwan and produces heavy rains there. 

During the months of May through June the Meiyu front often lies over the open Ocean 

offshore from Southern China and it makes an inland movement during July with heavy 

rains. In this paper we illustrate days 1 through 3 forecasts of the precipitation forecasts 

from the FSU multimodel superensemble to show that it is possible to provide some 

useful guidance for these rainfall forecasts from the data sets of the current suite of 

operational models. The issue of resolution is still there, the TIGGE suite of models carry 

a resolution of roughly 80 Km. on the average and only show a somewhat smoother 

representation of the Meiyu front and its associated rains. However because of the 

strength of the multi model superensemble it is possible to improve the geographical 

location and even the amplitude of the predicted rains (as trained and validated with the 

blended TRMM product resolution). The systematic errors in the geographical locations 

of the rains are much improved by the superensemble. The amplitude of the predicted 

rains is corrected towards the TRMM based estimates by this procedure. Here we have 
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selected samples of Day1, Day 5 and Day 7 (fig. 4 a, b, c), to illustrate spatial plots of 

these forecasts. 

     We shall illustrate an example of the prediction of Meiyu front rains for 14th June 

2008 here. The observed rains from TRMM and the multimodel forecasts of rains are 

illustrated in Figure 4 (a), (b) and (c). These illustrations carry the member model 

forecasts and those from the ensemble mean and the multimodel superensemble for days 

1, 5 and 7 of forecasts. Our interest here is in the forecasts of the location of the Meiyu 

front and the amplitude of Meiyu rains. We have included the results for the member 

models of our FSU multimodels suite along with Ensemble mean (EM) and 

Superensemble (SE) in this illustration, however all the remaining models of TIGGE 

could not be used for this experiment because of data availability issues. The features of 

interest are the elongated line of heavy rains south of Korea and stretching south 

westwards over Taiwan and South China Sea. The heaviest rains are located immediately 

south of Korea and the Taiwan region. Most models perform reasonably well in their day 

1 forecasts. We will compare the performance of the CMA model and the superensemble 

here. On day one the RMS errors and spatial correlations for the CMA precipitation 

forecasts, for the domain shown in Fig. 4 were 14.63 and 0.62, the superensemble was 

able to improve these numbers to 11.65 for the RMS errors and 0.75 for the spatial 

correlation.  The Superensemble carried consistent higher values for these skills through 

day 10 of forecasts. The corresponding skills at day 5 for the CMA of 20.41 and 0.27 

compare with the better values of 15.63 and 0.49 for the superensemble (Fig. 4 (b)). 

Similarly for day 7 these skills for CMA were found 24.79 and 0.19 which were 

improved for superensemble as 16.34 and 0.40, these skills are much higher. The high 
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rainfall rates along the Meiyu front was reasonably predicted during days 1 and 2 by the 

superensemble, there were some major errors is providing a zonal belt of rains along 30 

north extending eastwards in most models by day 5 and day 7 of forecasts that was also 

reflected in the ensemble mean and the superensemble. All member models along with 

ensemble mean predicted widespread rains in the south west corner of the domain, which 

were not reflected in the superensemble forecast and in the TRMM observation.   

 We have calculated the Equitable Threat Scores (ETS) for the precipitation 

forecasts for all the models for each day of forecast over a China Domain (Day 1 through 

3 are shown in Figure 5). The equitable threat scores and the bias of the precipitation 

forecasts are shown in Fig. (5 a, b, c, d, e, f), Appendix 1 describes the threat score and 

the bias scores. The abscissas in these diagrams are the rainfall rate thresholds, i.e. 

number fifteen (15) denotes all rainfall in excess of 15 mm d-1. The ordinate denotes the 

equitable threshold scores in panels (a), (c) and (e) and the bias scores in panels (b), (d) 

and (f). Most operational models start with an equitable threshold score of around 0.30 

for day 1 and these scores drop to near 0.15 by day 3 of forecasts. Here we are showing 

the results for one model, the CMA, the ensemble mean and for the multimodel 

superensemble. We noted that the best results for rainfall forecasts were obtained from 

the multimodel superensemble that still carries much higher skills for day 3 of forecasts. 

Another aspect, we see here, are the skills for heavy rains, i.e. thresholds in excess of 15 

mm d-1, those are predicted with higher skills by the multimodel superensemble. This is 

due to the nature of the consistent systematic errors of the member models; those are 

easily exploited by the multimodel superensemble in its forecasts. A bias score of 1.0 is 
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considered a perfect score. It is seen from these figures that member models carry large 

bias errors, those are very much improved by the multimodel superensemble. 

4.2. Floods from Post Landfall of a Typhoon Kalmaegi 

The prediction of heavy rains and resulting floods from post typhoon landfall is 

an important research topic. Ideally a suite of high resolution models and the construction 

of a multimodel superensemble forecast of heavy rains would be expected to provide the 

most useful product for studying hydrological aspects of floods. It is of considerable 

interest to ask how far we can go with the TIGGE suite of models for predicting post 

typhoon landfall heavy rains. During the year 2008, in our data files there were several 

such typhoons. Of those we have selected one of the important typhoons that caused 

major flooding from the heavy rains over China. This was Typhoon Kalmeigi, which 

formed as a tropical depression on 13 July 2008 when it was located to the east of the 

Philippines. RSMC Tokyo named it Kalmaegi on 15 July 2008; the storm reached its 

peak winds of 75 knots (139 km/h) on 17 July. Shortly afterwards it made a direct 

landfall on Taiwan and then moved into China’s Fujan province the next day it emerged 

into the Taiwan Strait and raced towards North Korea where it became fully extra tropical, 

resulting in heavy rains and floods over the Fujian province and later over Taiwan, where 

its effects were much more severe. According to some newspaper reports the storm 

caused NT$ 300 million worth of damage, and destroyed about 5,100 hectares of 

orchards and crops. In Xiapu County of Fujian Province and in neighboring Zhejiang 

Province, 360,000 residents left coastal and low-lying homes to escape the storm. The 

large scale models of the TIGGE suite and especially the multimodel superensemble 

provided some very useful forecasts of precipitation for this storm. In Figure 6 (a, b, c) 
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we show precipitation forecasts for days 1, 2 and 3 all valid for July 19 2008, the day of 

heavy floods over the Xiapu County. 

The superensemble forecasts of precipitation carry consistently the highest skills  

(RMS errors and spatial correlations) compared to all the models and the ensemble mean 

for all three days of forecasts shown in Fig. 6 (a, b, c). Over this China domain the RMSE 

and the spatial correlations were 7.79 and 0.44 for the multimodel superensemble for day 

3 of forecasts. The corresponding pairs of numbers for the CMA model were 9.82 and 

0.34. Most models performed similar to the CMA model. We noted that if regular 

forecasts were prepared carrying three day forecast totals of rains then the superensemble 

can consistently provide a very useful product for guidance of heavy rains and floods 

compared to all the member models. This is a feasible proposition in real time. Overall 

much useful guidance for heavy rains over the Xiapu County of the Fujian province was 

possible from the superensemble forecasts. 

On June 26 2008 very heavy rains and resulting floods were experienced over the 

coastal regions of the Guangdong province of China. Those heavy rains are clearly 

reflected in the TRMM blended rainfall estimates shown in the top left panels of Fig. 7 (a, 

b, c). These were related to a strong spell of the East Asia monsoon. Moist south westerly 

flows to the south of this coastal rainfall belt were enclosed by a north westerly drier air 

to the north of this belt. The heavy rains of the order of 40 to 45 mm d-1 ( as seen by the 

TRMM product) were predicted quite well by most models in their day 1 of forecasts, 

The construction of the superensemble did provide the best product in terms of RMS 

error and spatial correlations for each of the three days of forecast for this event. By day 

three of forecasts several of the models, such as the UKMO, carried large errors. The 
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quality and spread of forecast results we see in these Figures 6 and 7 are typical of the 

large scale model performances that we find in the current day models.  

The Equitable threat scores and their bias scores for days 1, 2 and 3 of forecasts 

for this typhoon landfall event are shown in Fig. 8 (a, b, c). In this example both the 

ensemble mean and the superensemble produced the best results. Those were much 

superior to the results on ETS provided by the member models. The ensemble means 

superior performance was related to an even spread of forecast errors from the member 

models. The bias scores showed an interesting feature for all 3 days of forecasts, the 

superensemble carried the best scores closest to 1.0, here we found for moderate 

rains   the bias scores were greater than 1.0 and for heavy rains the superensemble carried 

a bias lower than 1.0. This feature was seen in all of our forecasts Heavy rains are clearly 

underestimated somewhat by this consensus forecast. We have also looked at the 

equitable threat scores for a second typhoon and noted very similar results on rainfall 

skills during the post landfall 3 day forecast periods (Figure not shown). It is clear that 

having a superensemble product adds to the value of forecasts because of its consistency 

of performance towards providing the highest skills. 

4.3. Onset of South China Sea Monsoon 

The onset of the South China Sea monsoon is a topic of great interest for East 

Asia. The Myanmar onset of monsoon usually occurs during early May. A number of 

factors are normally associated with this onset; waves of meridionally propagating 

intraseasonal waves pass through East Asia and south Asia during the summer months at 

intervals of roughly 30 to 50 days. One of these passages near 10° N over the Bay of 

Bengal, generally during early May, is associated with the onset of heavy monsoon rains 
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in Myanmar. Often this onset is triggered by the formation of an onset vortex, which is 

generally a pre-onset tropical storm over the northern Bay of Bengal. The south westerly 

broad monsoon current of the Bay of Bengal is strengthened by the southern flanks of the 

onset vortex, which makes these strong south westerlies to interact with the coastal 

mountains of Myanmar with very heavy orographic rains. These strengthened westerlies 

cross towards the South China Sea within a few days after the onset over Myanmar and 

form the southern flank of the Meiyu front. The onset of the Meiyu rains follows the 

Myanmar onset very quickly. The onset of the heavy rains along the Meiyu front is of 

considerable interest in these regions. Ten day forecast guidance, with some improved 

measurable forecast skills is possible with the current suite of operational models used in 

the context of the multimodel superensemble. We shall illustrate this aspect of the 

forecasts in following Figures 9 and 10.  

During 2008 the onset of the South China Sea monsoon rains occurred around 

May 3. In figures 9 (a), (b), (c) and (d).  We show our forecasts valid on May 3rd 2008 for 

days 1, 3, 5 and 10. During the onset the rainfall rates were as large as 30 to 40 mm d-1 

and the rain belt had entered the inland coastal region as seen in the TRMM based 

observed estimates in Fig. 9. The member model’s forecasts and those from the ensemble 

mean and the superensemble are also presented in each panel. Also included in the top of 

each panel are the RMSE and the spatial correlations for each forecast. 

The Equitable Threat scores and their bias scores for the onset of South China Sea 

precipitation forecasts for days 1, 2 and 3 are shown in Figure 10.  Noting that the onset 

of rains comes after a long dry season (i.e. prior to the onset) thus it did not perform as 

well. Training phase of the superensemble does not provide the most reliable statistical 
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weights. One season of training, based on the same years past 100 days, lowers the skill 

of the superensemble a little.  For further improvements we require many years of pre 

onset and post onset sets for the construction of superensemble. The ensemble mean 

ended up performing as well as the superensemble in predicting the monsoon onset rains 

of the South China Sea coastal areas of China. For day 10 of forecasts the ensemble mean 

worked better than all models. Over all the forecast skills through day 5 from the 

superensemble were nearly 50 to 100 percent higher than all of the models (not shown). 

This suggests that both the location and amplitude of heavy rains during the onset can be 

predicted very well for nearly a week in advance from the use of the multimodel 

superensemble. Both the ensemble mean and the superensemble performed much better 

than the member models. We discussed the skills of one model, the CMA, here in detail, 

and we see that it is possible to obtain a forecast with superior skill from our post 

processing. The bias scores also reflect the improved bias from the superior ensemble 

mean and the superensemble. 

 

5. Conclusions and Future Work 

Precipitation forecasts from a suite of mesoscale high resolution models would clearly be 

the next goal of what has been completed in this study. Here we have deployed a suite of 

large scale global models of the TIGGE/THORPEX suite to examine through day 10 of 

forecasts for precipitation over a global tropical belt and especially over China. An 

ensemble strategy, called the FSU multimodel superensemble, has been used to obtain the 

best forecasts for precipitation that exceed in skill compared to all member models of this 

suite. The TIGGE suite provides a unique opportunity for advancing the state of 
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ensemble forecasting for numerical weather prediction. This suite carries forecasts from 

as many as 10 member models, where many member models are providing a large 

number of forecasts for each time interval. The superensemble strategy follows our 

previous work; it carries a large training phase and a forecast phase. During the training 

phase we generate a statistics on the recent past performances of the member models and 

their collective bias errors are minimized by this procedure. We prepare different 

statistical weights for each day of forecast recognizing that some models are more skillful 

early on in their forecasts, whereas some models carry more skills later in their forecasts. 

We have illustrated the skills of forecasts over China. For the training and the validation 

of forecasts better observed estimates of precipitation are needed. For this purpose we 

have used the TRMM 3B42 database. That is a blended product which utilizes the 

TRMM microwave radiances as well as IR data sets from geostationary satellites (of the 

globe) for extracting rainfall estimates. Ideally we should be using a mix of rain gauge 

over land and TRMM products (Krishnamurti et al 2008); this will be followed up in our 

future work for rainfall forecasts over China. Our skill Metrics for precipitation forecasts 

includes the equitable threat scores and the bias scores for each member model and the 

Superensemble. Using these skill measures we were able to ask about the threat scores 

for different intensity of rain rates in the forecasts. We noted that it is possible to improve 

these skills, over China, for all ten days of forecasts from the multimodel forecasts 

compared to the current best model by about 20 percent. It is possible to diagnose 

possible areas of the model physics and dynamics that contribute to their systematic 

errors, Krishnamurti et al (1996). Further work in this area is possible from a suite of 

mesoscale models. A superensemble based on mesoscale models would be more suitable 



20 
 

for addressing forecast issues of local heavy rains and floods. The overestimates of 

lighter rains and the underestimates of heavy rain bias scores was a common feature in 

these forecasts over China. This feature can be used to improve future versions of the 

superensemble which is presently designed towards a minimization of the RMSE only. 
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List of Figures:  

Figure 1: Absolute error in daily precipitation (mm d-1) of ECMWF forecasts on a 

typical Day (15th June 2008). Dashed line connecting circles show error growth coming 

from Bay of Bengal, dotted line connects the rectangles showing growth of absolute 

errors in South China Sea and dark black continuous line connecting elliptical shapes 

depicts the errors growth in the Pacific Ocean. All forecasts (Day 1, Day 3, Day 7 and 

Day 8) are valid for June 15th 2008. 

 

Figure 2: Time series of RMS Errors for day 1, 3, 5, 7, 9 and 10 of FSU multimodel 

forecasts over China domain   

 

Figure 3 (a): Average rain (mm d-1) and spatial correlations of the FSU multimodel 

forecast of day 1 for the period Feb 2008 to 30th Apr 2008.  

 

Figure 3 (b): Average rain (mm d-1) and spatial correlations of the FSU multimodel 

forecast of day 10 for the period Feb 2008 to 30th Apr 2008.  

 

Figure 4 (a): FSU multimodel Total Rain (mm) forecast of Day 1 during the passage of 

Meiyu front on 14th June 2008. Numbers in every forecast panels show the Root Mean 

Square Errors (RMSE) and Spatial Correlations (SC).  
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Figure 4 (b): FSU multimodel Total Rain (mm) forecast of Day 5 during the passage of 

Meiyu front on 14th June 2008. Numbers in every forecast panels show the Root Mean 

Square Errors (RMSE) and Spatial Correlations (SC).  

 

Figure 4 (c): FSU multimodel Total Rain (mm) forecast of Day 7 during the passage of 

Meiyu front on 14th June 2008. Numbers in every forecast panels show the Root Mean 

Square Errors (RMSE) and Spatial Correlations (SC).  

 

Figure 5: Equitable Threat Score (ETS) and Bias scores for Day 1, 2 and 3 forecasts of 

FSU multimodels during the passage of Meiyu front on June 14th 2008. Left panels (a), (c) 

and (e) are ETS and right panels are Bias.  

 

Figure 6 (a): FSU multimodel Total Rain (mm) forecast of Day 1 during the passage of 

typhoon Kalmaegi front on 19th July 2008. Numbers in every forecast panels show the 

Root Mean Square Errors (RMSE) and Spatial Correlations (SC).  

 

Figure 6 (b): FSU multimodel Total Rain (mm) forecast of Day 2 during the passage of 

typhoon Kalmaegi front on 19th July 2008. Numbers in every forecast panels show the 

Root Mean Square Errors (RMSE) and Spatial Correlations (SC).  

 

Figure 6 (c): FSU multimodel Total Rain (mm) forecast of Day 3 during the passage of 

typhoon Kalmaegi front on 19th July 2008. Numbers in every forecast panels show the 

Root Mean Square Errors (RMSE) and Spatial Correlations (SC).  
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Figure 7 (a): FSU multimodel Total Rain (mm) forecast of Day 1 during the heavy rain 

event induced by the passage of Tropical system Fengshen (Frank) on the eastern side 

and influence of East Asian monsoon on the western side  on 26th June 2008. Numbers in 

every forecast panels show the Root Mean Square Errors (RMSE) and Spatial 

Correlations (SC).  

 
Figure 7 (b): FSU multimodel Total Rain (mm) forecast of Day 2 during the heavy rain 

event induced by the passage of Tropical system Fengshen (Frank) on the eastern side 

and influence of East Asian monsoon on the western side  on 26th June 2008. Numbers in 

every forecast panels show the Root Mean Square Errors (RMSE) and Spatial 

Correlations (SC).  

 
Figure 7(c): FSU multimodel Total Rain (mm) forecast of Day 3 during the heavy rain 

event induced by the passage of Tropical system Fengshen (Frank) on the eastern side 

and influence of East Asian monsoon on the western side  on 26th June 2008. Numbers in 

every forecast panels show the Root Mean Square Errors (RMSE) and Spatial 

Correlations (SC).  

 
Figure 8: Equitable Threat Score (ETS) and Bias scores for Day 1, 2 and 3 forecasts of 

FSU multimodels during the passage of Tropical System Frank on the West Pacific Coast 

and influence of East Asian Monsoon from the eastern boundary of the domain on June 

26th 2008. Left panels (a), (c) and (e) are ETS and right panels are Bias. 
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Figure 9 (a): FSU multimodel Total Rain (mm) forecast of Day 1 during Onset of the 

South China Sea Monsoon on May 3rd 2008. Numbers in every forecast panels show the 

Root Mean Square Errors (RMSE) and Spatial Correlations (SC).  

 

Figure 9 (b): FSU multimodel Total Rain (mm) forecast of Day 3 during Onset of the 

South China Sea Monsoon on May 3rd 2008. Numbers in every forecast panels show the 

Root Mean Square Errors (RMSE) and Spatial Correlations (SC).  

 

Figure 9 (c): FSU multimodel Total Rain (mm) forecast of Day 5 during Onset of the 

South China Sea Monsoon on May 3rd 2008. Numbers in every forecast panels show the 

Root Mean Square Errors (RMSE) and Spatial Correlations (SC).  

 
Figure 9 (d): FSU multimodel Total Rain (mm) forecast of Day 10 during Onset of the 

South China Sea Monsoon on May 3rd 2008. Numbers in every forecast panels show the 

Root Mean Square Errors (RMSE) and Spatial Correlations (SC).  

 
Figure 10: Equitable Threat Score (ETS) and Bias scores for Day 1, 2 and 3 forecasts of 

FSU multimodels during the onset of the South China Sea Monsoon on May 3rd 2008. 

Left panels (a), (c) and (e) are ETS and right panels are Bias. 
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Table 1: List of Acronyms  

BOM Bureau of Meteorology, Australia 

CMA China Meteorological Administration 

CMC Canadian Meteorological Centre 

CPTEC  Centro de Previsão de Tempo e Estudos Climáticos (Center for Weather 

Forecast and Climatic Studies) 

ECMWF European Centre for Medium-Range Weather Forecasts 

EM Ensemble Mean 

ETS Equitable Threat Score  

FSU Florida State University 

JMA  Japan Meteorological Agency 

KMA Korea Meteorological Administration 

MF Météo France  

NASA  National Aeronautics and Space Administration 

NCAR National Center for Atmospheric Research 

NCEP National Centers for Environmental Prediction 

NSF The National Science Foundation 

RMS Root Mean Square   

SC Spatial Correlation 

SE SuperEnsemble 

THORPEX THe Observing System Research and Predictability EXperiment 

TIGGE THORPEX Interactive Grand Global Ensemble 

TRMM Tropical Rainfall Measuring Mission 

UKMO United Kingdom Meteorological Office 
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Table 2: TIGGE Models 

 

Center Ensemble 

Members 

Model 

Resolution 

Forecast 

Length 

ECMWF 51 N200 

(Reduced Gaussian)

10 day 

ECMWF 51 N128 

(Reduced Gaussian)

10-15 day 

UKMO 24 1.25 x 0.83 Deg 15 day 

JMA 51 1.25 x 1.25 Deg 9 day 

NCEP 21 1.00 x 1.00 Deg 16 day 

CMA 15 0.56 x 0.56 Deg 10 day 

CMC 21 1.00 x 1.00 Deg 16 day 

BOM 33 1.50 x 1.50 Deg 10 day 

MF 11 1.50 x 1.50 Deg 2.5 day 

KMA 17 1.00 x 1.00 Deg 10 day 

CPTEC 15 1.00 x 1.00 Deg 15 day 

 



29 
 

 

Appendix           I 

Equitable Threat Scores and Bias Scores 

The traditional threat score (TS, e.g., Anthes 1983) measures the accuracy in 

predicting area of precipitation amounts over any given threshold. The equitable threat 

score (ETS, Schaefer 1990) measures the skill in predicting the area of precipitation 

amounts over any given threshold with respect to a random (no skill) control forecast and 

is defined as 

 
CHHOF

CHHETS
−−+

−
=        A.1 

and bias score is the ratio of the forecast area (points) to observed area (points) of 

precipitation amounts over any given threshold (Anthes 1983). It is defined as 

O
FBias =           A.2  

where F is the number of forecast points above a threshold, O is the number of observed 

points above a threshold, H is the number of hits above threshold, and CH is the expected 

number of hits in a random forecast of F points for O observed points, which is equal to  

NUM
OFCH ×

=           A.3 

                                 

A value of 1.0 for ETS indicates perfect forecast. The minimum value for ETS 

can be –1/3. For bias score, The accuracy of a forecast is directly proportional to the ETS 

value, an ETS > 0.0 denotes a skillful forecast relative to a random forecast, ETS ≤ 0.0, a 
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forecast has no skill. Bias score of 1 is considered to be the perfect match of forecast to 

observed rain. Interpretation of Bias score alone is not sufficient. While analyzing Bias 

score one should consider ETS values also.  

                      

 

 


