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ABSTRACT

To improve the land surface simulation in the arid and semi-arid areas of northern China, the observa-
tional data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the
land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the
parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites
with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat
flux, and ground surface temperature with the simulated ones shows the simulations with the optimized
parameters have been substantially improved. Especially, the holistic simulations with the calibration of
the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy
partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole
results demonstrate that the parameter calibration of the land surface model is important when the model
is to be used to investigate the land-air interaction.
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1. Introduction

A monsoon is manifested as an atmospheric cir-
culation system of ocean-atmosphere-land interaction
between continents and oceans in the seasonal cycle
(Yasunari, 2007). The Asian summer monsoon, the
most energetic component of the Earth’s climate sys-
tem, exhibits distinct regional characteristics. Located
in a strong monsoon region, East Asia has aperiodic

and large-amplitude climate variability (e.g., Huang
et al., 2003). This variability and the influence from
the coupled atmosphere-ocean system have been the
subject of numerous studies (e.g., Zhang et al., 1996;
Lau and Weng, 2001; Chen, 2002; Huang et al., 2004).
However, much less research has been devoted to the
influences of the land-atmosphere interaction for the
East Asian region partly due to data availability.

In recent decades, a few field experiments over the
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arid and semi-arid areas in northern China have been
carried out. These include the “Heihe River Basin
Field Experiment” (HEIFE; Hu and Gao, 1994), the
“Field Experiment on Interaction between Land and
Atmosphere over Arid Region in Northwest China”
(NWC-ALIEX; Zhang et al., 2005), and the Tongyu
Field Experiment, which is also one of the reference
sites of the Coordinated Enhanced Observing Period
(CEOP; Fu and Wen, 2002). Hence, the study of
land surface processes in northern China are attracting
more and more interest for the boundary layer meteo-
rology research community as more observational data
become available (Liu et al., 2004; Zhang et al., 2005).
However, these studies need to be extended to the re-
search on the influence of the land-air interaction over
arid/semi-arid areas on the variabilities of the East
Asian climate, in particular those related with the East
Asian monsoon.

In the world, arid and semi-arid areas are very,
very large and account for about 1/3 of the terrestrial
area (International Institute for Environment and De-
velopment, and World Resources Institute). In China
there are around 4 550 000 km2 of arid and semi-arid
areas, including grassland and desert, among which
82.8% mainly distributes in Northwest China (Hu,
1985). Over these areas, the annual rainfall is usu-
ally less than 400 mm with the minimum close to 30
mm. Cholaw et al. (2002) indicated that the sensible
heat flux in the arid and semiarid areas of Northwest
China is the strongest over the Eurasian continent in
the summer, and the atmospheric thermodynamic pro-
cess over these areas is closely related to the land sur-
face characteristics. Yasunari (2007) pointed out that
the land shows strong and rapid heating (and cooling)
in the seasonal cycle, which in turn has a large impact
on the seasonal atmospheric differential heating (and
cooling) processes between land and ocean. The land
surface processes which modulate the seasonal heating,
therefore, are likely to be responsible for interannual
variability of the monsoon. So far, studies are primar-
ily relevant to the characteristics of land-atmosphere
interaction in the arid and semiarid areas of China and
the causes of a regional dry climate (e.g., Lu and Chen,
1999; Zhu et al., 2006). Therefore, researches on the
impact of land-atmosphere interaction over arid and
semi-arid areas in China on the East Asian monsoon
are anticipated with available observational datasets.

Land surface modeling is considered to be a more
important and more functional measure in climate
change simulations and predictions (Charney, 1975;
Dickinson, 1995; Houghton et al., 1996; Crossley et
al., 2000). Since the 1970s, the land surface model
(LSM), as an important research tool, has been de-
veloped to simulate the practical processes in differ-

ent land surface conditions. Compared to the earlier
simple models, recent LSMs, such as the Biosphere-
Atmosphere Transfer Scheme (BATS; Dickinson et al.,
1993), are more realistic and sophisticated. However,
the parameters used in the models to describe the land
surface have yet to be fully validated through scien-
tific testing and comparison with observations. There
is a considerable degree of uncertainty associated with
the parameters derived using current procedures (e.g.,
Kahan et al., 2006). It was pointed out that care-
ful calibration and selection of the physical parame-
ters for land surface models can improve the simula-
tion (Henderson-Sellers, 1996; Dirmeyer et al., 1999).
For example, Gupta et al. (1999) used a multicrite-
ria (MC) calibration method to estimate acceptable
optimal parameter sets for the Biosphere Atmosphere
Transfer Scheme (BATS), which has lead BATS to per-
form much better.

This paper will use data from two experiments,
NWC-ALIEX and Tongyu in the arid and semi-arid
areas of northern China, to calibrate the parameters
required in the BATS with the MC calibration method.
The objectives are to reduce the model uncertainty in-
duced by the parameter estimation errors and inves-
tigate the contribution of observational data for the
improvement of the land surface simulation in the sur-
face conditions of the Gobi desert and the semi-arid
degraded grassland areas. Then, in the accompanied
paper (Part II), we will couple the calibrated BATS
to a regional climate model to investigate the impact
of the improved simulation on the land surface forcing
on the East Asian summer monsoon.

The paper is organized as follows: a brief descrip-
tion of sites considered, the BATS model and the MC
calibration method is given in section 2. The parame-
ter sensitive analysis and the calibration of the BATS
model to the two study sites are discussed in section
3 and section 4, respectively. Section 5 discusses the
results and gives a summary.

2. Sites, model, and method

2.1 Sites

For this study, the model forcing data and surface
flux data are used as those collected at Dunhuang and
Tongyu. These sites were chosen based on the data
availability and different climate and vegetation char-
acteristics in the arid and semi-arid regions of China.
Their locations are marked in Fig. 1 together with
the annual precipitation distribution. It is clear that
nearly half of the Chinese land area is either an arid
and semi-arid region, which is mainly distributed in
the northern part of China. Dunhuang is located in
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Table 1. Description of the two sites and observed data.

Site Site Location: Observed Observed Vegetation Soil type Annual mean Input
Lat. Lon. period interval type precipitation data
Elevation (min) (mm)
(m)

Dunhuang 40◦10′N, May–Jun 30 Desert and Pebble sand 39.9 ISR, DLR,
94◦31′E 2000 Gobi T, q, V, P

1150 m
Tongyu 44◦25′N, May–Sep 30 Degraded light Chemozems 404 ISR, DLR,

122◦52′E 2003 grassland Meadow soils, T, q, V, P
184 m and Solonetzs 

               
Fig. 1. The distribution of arid and semi-arid areas in
China and the two sites of Dunhuang and Tongyu. Con-
tours indicate the annual precipitation (Units: mm).

the arid region representing the Gobi desert. Tongyu is
located in the semi-arid region representing degraded
grassland and mixed cropland. Desert and grassland
are the most common land surfaces in the arid and
semi-arid regions of China, respectively. Hence, these
two sites are typical and can be used to represent
the land surfaces in the arid and semi-arid regions of
China. At both sites, forcing data include downward
longwave radiation (DLR), air temperature (T ), rela-
tive humidity (q), wind speed (V ), precipitation (P ),
and incoming solar radiation (ISR). The energy flux
data include sensible and latent heat fluxes. Table 1
summarizes the location, observed periods, vegetation,
climate, and input data at the two sites.

2.1.1 Dunhuang gobi and desert site
The Dunhuang Gobi and desert site is located at

40◦10′N, 94◦31′E with an elevation of 1150 m above
sea level in the western edge of the Hexi corridor, in the
Gansu Province in northwestern China. The climato-
logical annual precipitation is 39.9 mm but the annual
potential evaporation can reach 3400 mm. The surface
is flat and pebbly, which is the typical Gobi surface in

the extreme arid region of northwestern China (Hu,
1985). The forcing data were collected between April
2000 and July 2005 at 30-minute intervals. Surface
energy fluxes were also collected within one intensive
observation period between May and June 2000 at 30-
minute intervals. For more details, refer to the descrip-
tion of the field experiment in Zhang et al. (2002). The
available data have some gaps and several obvious er-
rors. Since the simulation requires a continuous time
series of inputs, the short gaps within 3 hours were
filled by simple line interpolation, and for the longer
gaps the data from a nearby site (AWS) were used to
complete the series.

2.1.2 Tongyu degraded grassland site
The Tongyu degraded grassland site is located at

44◦25′N, 122◦52′E with an altitude of 184 m in the
Jilin Province of northeastern China. The annual pre-
cipitation is 404 mm at this site. 40% of the surface
is covered by degraded grass. The soil contains light
Chernozems, Meadow soils, and Solonetzs. Tongyu
has a typical semiarid surface in northern China (Liu
et al., 2004). The forcing data were collected between
January and September 2003 at 30-minute intervals.
At the same time, surface energy fluxes were also col-
lected. A more extensive description of the site can be
found in Liu et al. (2004).

2.2 Model

The BATS is a comprehensive Soil-Vegetation At-
mosphere Transfer Scheme (SVAT) designed for use in
the NCAR CCMs to describe the role of vegetation
and interactive soil moisture in modifying the surface-
atmosphere exchanges of momentum, energy, and wa-
ter vapor. The model consists of several interacting
hydrometeorological components (three layers of soil,
a canopy leaf-stem component, and so on). Together,
these components simulate the various radiative, bio-
physical, and hydrological process at the land atmo-
sphere interface, including the exchange of solar and
long-wave radiation, precipitation inputs (rain, snow,
and dew), runoff, and the surface transfer of momen-
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tum and sensible and latent heat exchanges. BATS
calculates the sensible and latent heat fluxes with the
classical equations, where the sensible and latent heat
fluxes are proportional to the temperature gradient
and the humidity gradient between the surface and the
air, respectively. The two surface fluxes are also pro-
portional to the turbulent transport coefficient. The
ground heat flux is calculated as a residual from the
surface energy balance, and soil temperature is cal-
culated using the force-restore method. BATS has a
global land surface classification consisting of 20 land
cover types. Each land cover type is characterized by
15 parameters. BATS also has 12 global soil types,
ranging from very coarse sand (= 1) to very fine clay
(= 12), and 8 soil color types (each having 4 basic albe-
dos), ranging from light (= 1) to dark (= 8). Each soil
type is characterized by 8 parameters. More details on
BATS can be found in Dickinson et al. (1993).

2.3 Multi-criteria approach

The multicriteria (MC) parameter estimation
methodology was developed by Gupta et al. (1998)
from a single-criteria method (Duan et al., 1994).
Gupta et al. (1998) have used the MC methodology
to estimate the reasonable ranges of optimal parame-
ters for the BATS land surface model. Full details of
the MC calibration methodology are given by Gupta et
al. (1998) and Yapo et al. (1997), and a brief summary
is presented below.

The aim of MC as an optimization procedure is to
search out appropriate parameter sets that could im-
prove a model’s performance. The MC approach has
been widely used to calibrate different land surface
schemes at different sites with various climate systems
and vegetation covers, which were chosen based on the
data availability (Gupta et al., 1999; Bastidas et al.,
1999; Sen et al., 2001; Xia et al., 2002; Jackson et al.,
2003; Xia et al., 2004). For example, consider a model
with parameters θ = {θ1, · · · , θn} that are to be cali-
brated by using the observed time series and the corre-
sponding simulated variables [Zj(θ, tj), j = 1, · · · ,m].
To measure the distance between the simulated re-
sponses Zj and the corresponding observations Oj at
a study site, a single criterion fj(θ) for each separate
model response is defined. The mathematical form of
these criteria is specified depending on the problem
and the goals of the user. In this work, we use two
functions to measure the deviation between Zj and
Oj . One is the root-mean-square error

DMSEj =

{
(1/n)

n∑
t=1

[Zj(θ, t)−Oj(t)]
2

}1/2

(1)

The other form is defined as

DDRMSj =

{
(1/n)

n∑
t=1

[
Oj(t)− Zj(θ, t)

(1/n)
n∑

i=1

|Oj(t)|

]2}1/2

.

(2)
The multicriteria model calibration problem as a

function of the parameters can then be stated as fol-
lows:

minF (θ) = {f1(θ), · · · , fm(θ)} , (3)

where θ ⊂ Θ, Θ is a feasible parameter space. The aim
of Eq. (3) is to find values for θ within Θ that simul-
taneously minimize all of the m criteria. Since MC is
used for a multi-objective problem, it is unlikely to find
a unique solution without stating how individual crite-
ria should be weighted. Instead, there usually exist a
range of solutions where moving from one solution to
another results in improvement of one criterion while
causing deterioration in another. This set is called the
Pareto solution set which represents a range of the best
solutions that can be found in the parameter space for
each of the separate criteria. An effective and efficient
method for solving the above problem is presented by
Yapo et al. (1997) and it can provide an approximate
representation of the Pareto set with a single optimiza-
tion run.

3. Parameter estimation for Dunhuang Gobi
and desert site

3.1 Analysis of parameter sensitivities

Before attempting any optimal parameter or un-
certainty estimation of the BATS model, it may be
helpful to use the cost function “profile” to display
which parameters are likely to be important. The cost
function profiles can also be used to objectively se-
lect parameters that most affect the uncertainty. The
cost function displayed in Eq. (2) is considered a sin-
gle criterion as the mismatch between the model and
the observations used to evaluate model performance.
A similar procedure has been used by Bastidas et al.
(1999) and Jackson et al. (2003) for reducing the pa-
rameter number in the MC optimal parameter analy-
sis.

As depicted in section 2.2, BATS contains 27 pa-
rameters. Except for three initial moisture conditions,
the other 24 parameters are assigned values automati-
cally based on the user specifications of land cover, soil
texture, and soil color. These values are called the de-
fault parameters. Because the optimal parameters are
unknown in advance, we use the default values for the
parameters that are to be calibrated. The default val-
ues are the best guess for the parameter values based
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SAI012240.5 1.25 2 SKRAT012240.5 1.25 2

XMOPOR012240.3 0.5 0.7
Z001224 0 1.25 2.5

ALBVGS012240.05 0.125 0.2
XMOSUC01224 0 100 200 XMOFC012240.3 0.55 0.8              

Fig. 2. Cost function profiles for 12 parameters within the BATS land surface model
for the Dunhuang site (solid: SH; dashed: LH；long and short dashed: Ts).

     Fig. 3. Observed and simulated sensible heat fluxes, la-
tent heat fluxes, and ground surface temperature at Dun-
huang for BATS obtained using default and MC pa-
rameters, respectively (dot=observation, short and long
dashed=default, solid=MC, and horizontal axis is repre-
sented with date).

on expert opinion and what can be inferred from the
observations. A cost function profile is a graph of the

cost function as a function of variations in a given pa-
rameter while holding the value of all other parameters
constant. These graphs provide an expectation of the
relative sensitivity of the model to each of the model
parameters. Because Dunhuang is completely bare,
the sensitivity analysis is made for 12 BATS parame-
ters, which are mainly associated with the soil. The
cost function profiles are shown in Fig. 2. For the Dun-
huang Gobi and desert site, the latent heat flux and
ground surface temperature are almost not sensitive
to all the parameters. Thus, we mainly consider the
sensitivity of the sensible heat flux. The results show
that all the important parameters in Dunhuang are re-
lated to soil, among which the most important ones are
XMOSUC and BEE. XMOPOR and SOLOUR have
some influence on the simulation errors. In addition,
Z0 and SKRAT have a negligible effect on the simula-
tion errors. We also found that some soil parameters
in BATS have little effect on the sensible heat flux sim-
ulation errors. It is obvious that the parameters have
different importance grades for different surface char-
acteristics in BATS. The range of possible values and
default settings for the above-mentioned 6 parameters
are shown in Table 2.

3.2 Multicriteria parameter estimation

Firstly, the default BATS parameters are used to
generate a control run simulation for providing a ba-
sis for comparison. Figure 3 shows the time series of
the simulated sensible heat flux (SH), latent heat flux
(LH), and ground surface temperature (Ts) together
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Table 2. The names, default values, optimal values determined through the multicriteria approach, ranges, and descrip-
tions of parameters of the BATS land surface model at Dunhuang.

Parameter Default MC Minimum Maximum Description (units)

SKRAT 1.50 1.60 0.70 1.70 Ratio of soil thermal conductivity to that of loam
(106 J m−3 K−1)

XMOPOR 0.36 0.38 0.33 0.66 Porosity
BEE 4.0 3.9 3.50 10.80 Clapp and Hornberger “b” parameter
XMOSUC 0.128 0.119 0.088 0.542 Water content at which permanent wilting point occurs
SOLOUR 0.11 0.06 0.05 0.12 Soil albedo for different colored soils
Z0 0.05 0.0024 0.0024 1.0 Aerodynamic roughness length (m)

                

 DEFAULT OPTIMAL -2000200400-200 0 200 400
-2000200400-200 0 200 400 -200100400-200 100 400-200100400-200 100 400

275310345275 310 345
275310345275 310 345LH SH TS Observed Observed Computed Computed Computed 

Fig. 4. Scatter plots for the simulated sensible heat fluxes, latent heat fluxes, and
ground surface temperature against corresponding observations at the Dunhuang site
(upper: simulation using default parameter values; lower: simulation using MC opti-
mal parameter values).

with the observations. The result indicates that there
are evident deviations of the simulated energy parti-
tioning and Ts from the observed ones, especially dur-
ing the daytime. These can also be confirmed from the
scatter plots as shown in Fig. 4. The scatter plots for
the entire data set show that many points are quite far
from the 1:1 line. In the Dunhuang Gobi and desert
site, the SH is dominant and the LH is negligible. The
control run has a clear tendency toward underestima-
tion of the SH and overestimation of the LH. With
the default parameters, the model also underestimates
the variations of Ts. Hence, the results show that the
BATS model performance with the default parameters
is poor at the Dunhuang site.

Secondly, the MC method was applied to explore
the optimal values of parameters in the BATS model.
Based on the results of parameter sensitivity analy-

sis in section 3.1, a series of multi-calibration runs
were conducted for the Dunhuang site, which gener-
ate the optimal parameters shown in Table 2. The re-
sults of the model simulations of SH, LH, and Ts with
the MC optimal parameters are also shown in Fig. 3
together with the observations and the default param-
eter simulations. The results demonstrate that SH and
Ts are much closer to the observed ones than the de-
fault parameter set. Again, the scatter plots as shown
in Fig. 4 confirm the improvement of model perfor-
mance. Even though there is poor agreement between
the model simulations and the observations of LH, the
poor match is not meaningful because LH at the Dun-
huang Gobi and desert site is so small. Generally, LH
is two magnitudes less than SH, which makes both
accurate observation and accurate simulation very dif-
ficult. The values of default parameters and optimal
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parameters are listed in Table 2. From the table,
it can be found that the values of BEE, XMOSUC,
SOLOUR, and Z0 are larger than the optimal ones
and the values of SKRAT and XMOPOR are smaller
than the optimal ones, but both values are within the
reasonable magnitude range. However, from the time
series plots and the scatter plots, the simulations with
the optimal parameter set have improved the parti-
tioning of energy, and make the ground temperature
closer to the observed one. Therefore, we can argue
that the BATS could have a significant improvement
in the land-air interaction simulation at the arid site
of Dunhuang after the calibration of parameters.

4. Parameter estimation for the Tongyu semi-
arid site

4.1 Analysis of parameter sensitivities

In Tongyu, there is grass growing during the sum-
mer season. Hence, the sensitivity analysis is made

for 20 BATS parameters. Similar to section 3, the ob-
jective is to determine the important parameters and
classify them into an order of relative importance for
the semi-arid degraded grassland of Tongyu. Figure 5
presents the cost function profiles. Since both SH and
LH are sensitive to the variations of parameters, we
consider the sensitivity of two at the Tongyu degraded
grassland site. The results show that important pa-
rameters for the Tongyu degraded grassland site in-
clude VEGC, SOLOUR, XMOHYD, XMOPOR, Z0,
XLA, SAI, RSMIN, ALBVGL, ALBVGS, BEE, and
SKRAT. The most important parameters in Tongyu
are related to vegetation. A few parameters related
to bare soil also have a significant influence on simu-
lation errors, such as SOLOUR and XMOPOR. Other
parameters in BATS have little effect on the sensible
and latent heat flux simulation errors. The ranges and
descriptions, and default values of these parameters
are shown in Table 3. VEGC01.530.4 0.675 0.95 SEASF01.530.05 0.125 0.2 Z001.530.005 0.028 0.05 RSMIN01.53120 180 240XLA01.530.5 2.75 5 LAI001.530.2 1.1 2 SAI01.530.5 2.5 4.5 SQRTDI01.53 5 7.5 10FC01.530.001 0.003 0.005 XMOPOR01.530.33 0.495 0.66 XMOSUC01.53 30 105 180XMOHYD01.53 0 0.1 0.2XMOWIL01.530.088 0.315 0.542 XMOFC01.530.405 0.6355 0.866 BEE01.533.5 7 10.5 SKRAT01.530.7 1.2 1.7ALBVGS01.530.09 0.13 0.17 ALBVGL01.530.18 0.27 0.36 SOLOUR01.530.05 0.2 0.35 ROOTF01.530.2 0.5 0.8         

Fig. 5. Cost function profiles for 20 parameters within the BATS land surface
model for the Tongyu site (solid: SH; dashed: LH；long and short dashed:
Ts).
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Table 3. The names, default values, optimal values determined through the multicriteria approach, ranges, and descrip-
tion of parameters of the BATS land surface model at Tongyu.

Parameter Default MC Minimum Maximum Description (units)

VEGC 0.80 0.50 0.0 0.9 Vegetation cover
SEASF 0.10 0.10 0.0 0.60 Difference between VEGC and fractional cover at 296 K
Z0 0.05 0.02 0.0024 1.0 Aerodynamic roughness length (m)
DISPLAY 0.0 0.0 0.0 18.0 Displacement height (m)
RSMIN 60.0 200.0 45.0 200.0 Minimum stomatal resistance (s m−1)
XLA 2.0 6.0 0.0 6.0 Maximum leaf area index
XLAI0 0.5 0.5 0.0 5.0 Minimum leaf area index
SAI 4.0 0.5 0.5 4.0 Stem area index
SQRTDI 5.0 5.0 5.0 10.0 Inverse square root of leaf dimension (mm−0.5)
FC 0.02 0.04 0.02 0.06 Light dependence of stomatal stomatal resistance (m2 w−1)
ALBVGS 0.10 0.19 0.004 0.2 Vegetation albedo for shortwave < 0.7 µm
ALBVGL 0.30 0.40 0.18 0.40 Vegetation albedo for longwave > 0.7 µm
ROOTF 0.80 0.80 0.30 0.90 Ratio of roots in upper layer to roots in root layer
XMOPOR 0.48 0.63 0.33 0.66 Porosity
XMOSUC 60.0 200.0 30.0 200.0 Minimum soil suction (mm)
XMOHYD 0.0063 0.015 0.0008 0.2 Maximum hydraulic conductivity (mm s−1)
XMOWIL 0.332 0.332 0.095 0.542 Water content at which permanent wilting point occurs
XMOFC 0.688 0.488 0.404 0.866 Ratio of field capacity to saturated water content
BEE 6.0 9.0 3.50 10.80 Clapp and Hornberger “b” parameter
SKRAT 1.0 1.0 0.70 1.70 Ratio of soil thermal conductivity to that of loam
SOLOUR 0.10 0.22 0.05 0.44 Soil albedo for different colored soils

4.2 Multicriteria parameter estimation

Similar to the Dunhuang case, the default BATS
parameters as listed in Table 3 for the degraded grass-
land site are used to generate a control run simulation
for comparison. The results are presented in Figs. 6
and 7, respectively. The time series in Fig. 6 show a
representative 10 day period from the whole data. Al-
though the model simulates SH well during the night,
the simulated SH peaks during the daytime are much
higher than the observations. The maximum differ-
ence can even reach about 300 W m−2. However, there
are only minor differences in LH and the T s simula-
tions. The scatter plots for the entire period of data
show a clear tendency toward overestimation of the SH
and a little tendency toward underestimation of both
the LH and the Ts (Fig. 7). Therefore, the results
demonstrate that the default parameters of the BATS
model need to be calibrated at the Tongyu grassland
site.

Based on the results of parameter sensitivity anal-
ysis in section 4.1, a series of multi-criteria calibration
runs were conducted for the Tongyu grassland site fol-
lowing a similar procedure as for the Dunhuang site.
Here, the whole procedure becomes more complex due
to increasing vegetation parameters. The results of
optimal parameters are shown in Table 3. The model
simulations of SH, LH, and Ts with the MC optimal
parameters are shown in Fig. 6 together with the ob-
servations and the default parameter simulations. The

simulations using the optimal parameters are closer to
the observations than the default parameter set except
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Fig. 6. Same as in Fig. 3, but for the Tongyu site.
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Fig. 7. Same as in Fig. 4, but for the Tongyu site.

for the Ts. Particularly the simulation of SH is sub-
stantially improved with more reasonable values dur-
ing the daytime. These can also be confirmed from the
scatter plots with the scatter line closer to 1:1 both for
SH and LH (Fig. 7). Of course, there is a little larger
error in Ts peaks, which indicates the complexity in
defining the optimal model parameters at the Tongyu
grassland site. Since the land surface mainly exerts its
influence on the atmosphere through the SH and the
LH, we take the above MC parameters as an optimal
set in this study.

Further comparison between the default parame-
ters and the optimal parameters indicates that both
are within the reasonable parameter range (see Table
3). However, the value of VEGC is far above the obser-
vation at this site. A previous field observation study
by Liu et al. (2004) found that the vegetation cover
is about 60% during the wet season (May–September)
and 40% during the dry season at the Tongyu grass-
land area. After the calibration the VEGC takes 50%.
Clearly the optimal value is more reasonable. In ad-
dition, the values of RSMIN, XLA, ALBVGS, ALB-
VGL, XMOPOR, XMOHYD, BEE, and SOLOUR are
smaller than the optimal ones, and the values of Z0 and
SAI are larger than the optimal ones.

5. Summary and conclusions

In this study, the ability of the MC method to
estimate optimized parameters for the BATS model
based on observed data is investigated. The aim at

doing so is to reduce the model uncertainty induced by
the errors in parameters and improve the land surface
simulation in the arid and semi-arid areas of northern
China.

Analysis of parameter sensitivities in Dunhuang
and Tongyu indicates that various parameters for the
two sites should be calibrated with different environ-
mental and climate regimes. The sensitivity experi-
ments can reduce the number of the parameters re-
quired to be calibrated. The result is consistent with
the earlier study of Jackson et al. (2003) that stated
that those important parameters affect the model un-
certainty are partly a function of the observations,
which are used to evaluate model performance. In the
Dunhuang Gobi and desert site, the sensitivity anal-
ysis suggests that the important parameters may be
ranked in a sequence from XMOSUC, BEE, XMO-
POR, SOLOUR, Z0, and SKRAT. For the Tongyu
degraded grassland site, they are VEGC, SOLOUR,
XMOHYD, XMOPOR, Z0, XLA, SAI, RSMIN, ALB-
VGL, ALBVGS, BEE, and SKRAT.

The MC method is shown to be able to estimate
the optimal parameters for both the Dunhuang Gobi
and desert site and the Tongyu degraded grassland
site, which represent typical arid and semi-arid land
surfaces, respectively. The simulations with optimal
parameters have been substantially improved by using
observations of SH, LH, and Ts as criteria. In the Dun-
huang Gobi and desert site, the simulations of SH and
Ts are much closer to the observations after the calibra-
tion of the parameter values. The poor improvement
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in the LH simulation may be due to both the errors of
observation and model. In the Tongyu degraded grass-
land site, the results show that the energy partition
can be simulated well after calibration of the parame-
ter values, especially with significant improvement in
SH simulation. However, the error in Ts suggests that
further model development should be conducted.

The differences between simulations and observa-
tions may be related to errors in the observations, in
the model parameterization, and in the parameter val-
ues specified for the model. For example, the simula-
tions with the calibrated parameters still have some
systematical discrepancies with the observations (see
Figs. 3 and 7). These discrepancies may be related to
the model parameterization. Further works are needed
to use different LSMs to identify the possible reasons.
In this paper we only addressed the problems of the
specified parameter values in the LSM of BATS. The
default parameter values may be defined wrong be-
cause they are specified roughly by vegetation cover
and soil type. The MC methodology provides a means
to remove differences resulting from the specification
of parameter values. Our results demonstrate that the
difference between model simulation and observation
can be reduced by the calibration of parameters val-
ues using observed data. Particularly for arid areas,
the model simulations can be improved significantly
by using optimal parameters. Hence, the parameter
calibration of LSM is important when the model is to
be used to investigate the land-air interaction.

Another important and practical issue is the spa-
tial transferability of the calibrated parameters for the
same vegetation covers. The results in the paper were
derived using point-based data. However, Sen et al.
(2001) have used calibrated parameters within a cli-
mate model and found improvement in the simulated
climate. Therefore, the calibrated LSM in this paper
may be used to improve the simulated East Asian cli-
mate. This is to be discussed in another paper.
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