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ABSTRACT

The ensemble Kalman filter (EnKF), as a unified approach to both data assimilation and ensemble
forecasting problems, is used to investigate the performance of dust storm ensemble forecasting targeting
a dust episode in the East Asia during 23–30 May 2007. The errors in the input wind field, dust emission
intensity, and dry deposition velocity are among important model uncertainties and are considered in the
model error perturbations. These model errors are not assumed to have zero-means. The model error
means representing the model bias are estimated as part of the data assimilation process. Observations
from a LIDAR network are assimilated to generate the initial ensembles and correct the model biases. The
ensemble forecast skills are evaluated against the observations and a benchmark/control forecast, which
is a simple model run without assimilation of any observations. Another ensemble forecast experiment is
also performed without the model bias correction in order to examine the impact of the bias correction.
Results show that the ensemble-mean, as deterministic forecasts have substantial improvement over the
control forecasts and correctly captures the major dust arrival and cessation timing at each observation site.
However, the forecast skill decreases as the forecast lead time increases. Bias correction further improved
the forecasts in down wind areas. The forecasts within 24 hours are most improved and better than those
without the bias correction. The examination of the ensemble forecast skills using the Brier scores and the
relative operating characteristic curves and areas indicates that the ensemble forecasting system has useful
forecast skills.
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1. Introduction

Since the late 1990s, dust emission and transport
models have been developed and have played an im-
portant role in understanding the characteristics of
dust phenomena (e.g., Marticorena and Bergametti,
1995; Marticorena et al., 1997; Wang et al., 2000; Nick-
ovic et al., 2001; Uno et al., 2001, 2003; Park and
In, 2003; Gong et al., 2003; Liu et al., 2003; Shao et
al., 2003; Pérez et al., 2006). Recently, encouraged
by reasonable simulation results of several models in
the Asia-Pacific region (e.g., Gong et al., 2003; Liu et
al., 2003; Chin et al., 2003; Uno et al., 2004), numer-
ical dust storm forecasts have been put into opera-
tion. One example is the CUACE/Dust (Chinese Uni-
fied Atmospheric Chemistry Environment for Dust)
developed by coupling dust aerosol microphysics onto

a mesoscale meteorological model at the Chinese Me-
teorological Administration. CUACE/Dust has been
issuing three-day SDS real time deterministic forecasts
and early warning information in the springtime from
March to May since 2005 (Zhou et al., 2008).

However, deterministic forecasts could suffer from
large uncertainties in the dust models. In an inter-
comparison effort made by developers of eight models
from different countries, quite different performances
for Asian dust episodes in March and April of 2002
were displayed in terms of flux, transport, and hor-
izontal and vertical distribution outputs (Uno et al.,
2006). One of the primary differences is the dust emis-
sion intensity. The eight models produced largely dif-
ferent dust emission intensities. For example, the to-
tal dust emission ranged from 27 to 336 Tg during the
period from 15 to 25 March 2002 (ten days). Though
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different dust emission schemes with various complex-
ities contributed greatly to the differences in the mod-
eled emission intensities, the lack of reliable surface
land-use conditions and soil/surface information also
brought large biases in the modeled dust emission in-
tensities. Another factor is the uncertainty in the me-
teorological fields, such as wind speed and precipita-
tion. This kind of uncertainty also contains bias (non-
zero errors averaged over a certain period of time and
spatial domain) and random errors. The initial condi-
tions for dust storm forecasts can be obtained by as-
similating in situ observations, such as surface PM10

concentrations (Lin et al., 2008a,b), LIDAR (Light De-
tection and Ranging) observations (Yumimoto et al.,
2007a,b), or satellite-based observations (Niu et al.,
2008). However, the initial conditions can only be es-
timated within a certain accuracy. During a forecast
period, the errors in the modeled dust emission inten-
sity, meteorological fields, and the initial condition can
accumulate and result in significant forecast errors.

Ensemble forecasting is a useful approach to deal
with the limitations imposed by these uncertainties.
Numerical weather prediction has over a decade of ex-
perience in ensemble forecasting, aiming at predict-
ing quantitatively the probability density of the future
atmospheric states. The Monte-Carlo technique that
samples the probability density function (p.d.f.) at
an initial time and evolves the sampled initial states
with the forecast model is the only feasible approach
nowadays. A comprehensive and in-depth review of
ensemble weather forecasting can be found in Leut-
becher and Palmer (2008).

To develop high quality ensemble forecast systems
of dust storms, problems such as identifying major
sources of uncertainties and examination of their im-
pacts on ensemble forecasting should be investigated.
Due to the sparseness of dust observations, Lin et al.
(2006) first compared the performance of an ensem-
ble Kalman filter (EnKF), a Monte-Carlo technique
with the classic Kalman equation to update the p.d.f.
of the initial condition, with optimal interpolation for
different observation networks, and showed the good
performance of EnKF for sparse observations. Then,
Lin et al. (2008a,b) applied EnKF to the assimilation
of surface PM10 concentration observations in China.
They found that there exists large bias in modeled
dust emission intensity, and applied the EnKF to cor-
rect the bias while assimilating the surface PM10 ob-
servations to improve the initial conditions. It showed
that the model bias correction during the assimilation
process played an important role in improving the de-
terministic forecast using the ensemble mean. Though
not examining the forecast results in the context of
ensemble forecasting, Lin et al. (2008a,b) in fact per-

formed ensemble forecasts of dust storms, in which the
random model errors and model biases were assumed
to be in the forecasted wind fields and the emission
intensity. In this study, we further perform ensemble
forecast experiments for the East Asia region during
23–30 May 2007 when a strong dust episode occurred
and was observed by a LIDAR network in China, Ko-
rea, and Japan. The three-dimensional structure of
the transport for this case has been analyzed by Hara
et al. (2008) and showed that the dust moved to Japan
late on the 25 to 26 May 2007.

The setup of the ensemble forecast is as follows.
The initial p.d.f. is produced by the EnKF that as-
similates the LIDAR dust extinction coefficient ob-
servations. The random model errors come from the
modeled dust emission intensity, dry deposition veloc-
ity, and wind fields. These errors are assumed to be
Gaussian but not to have zero means. Their means
are treated as model biases and are corrected during
the data assimilation process performed as parame-
ter estimation. Unlike the previous studies of Lin et
al. (2008a,b), we consider the error and bias in the
dry deposition process and high level wind speeds (ex-
cluding surface winds), which have strong influences
on the long-distance transport of dust. In Lin et al.
(2008a,b), the studied area is limited to North China,
which is closer to the dust source regions in West China
and Mongolia. In this study, the area is extended to
include Korea and Japan. The aim of this study is
to examine the feasibility of this setup for dust storm
ensemble forecasting over East Asia and to identify
problems for further studies in the field of dust storm
ensemble forecasting.

The paper is arranged as follows. Section 2 gives
a brief description of the dust transport model and
the data used in this study. Section 3 lists uncertainty
sources, and their quantifications in this study. Section
4 describes the EnKF data assimilation scheme used
to provide the ensemble initial conditions and correct
model biases. Experiment setups are given in section
5 and their results are shown in section 6. Section 7 is
the conclusions and discussions.

2. Model and data

2.1 Model

The regional dust transport model included defla-
tion, transport, diffusion, and removal processes dur-
ing the life cycle of the yellow sand particles. This
model has been successfully used to study atmospheric
trace gases and particles, such as SOx, dust, O3, and
acid rain over East Asia (Wang et al., 2000, 2002; Ue-
matsu et al., 2003). In this study, 9 dust particle size
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Fig. 1. Modeling domain, the shaded areas are the major
dust source regions (i.e., desert and bare ground) defined
in the model. The winds and the eight NIES LIDAR
sites (black dots). The vectors are the three-day aver-
aged winds at 1000-m height over the period of 24–26
May.

bins (0.5, 0.96, 1.83, 3.5, 6.7, 12.8, 24.5, 46.7, 90.0 µm
in radius) are modeled.

The dust emission intensity Qi.j,l in the l-th size
bin at location (i, j) depends on the conditions at the
lowest model level and is given by

Qi,j,l = C1C2u
∗2
i,j,l(1− u∗0,i,j,l/u∗i,j,l)Wi,j,lRi,j,l (1)

where Qi.j,l is given as kg m−2 s−1, C1 is the weighting
factor for different land types (C1 for desert and bare
ground are shown in Fig. 1), and C2 is the empirical
constant set as 2.9×10−2. u∗i,j,l is the friction velocity,
and u∗0,i,j,l is the threshold value of the friction veloc-
ity (0.4 m s−1). Ri,j,l is the fraction of the l-th bin of
the deflating yellow sand, Wi,j,l is the humidity factor,
which is assumed to be linearly dependent on the rela-
tive humidity if the surface relative humidity is larger
than its critical value (40%) or to be zero otherwise.

The mechanism of dry removal due to sedimenta-
tion and turbulent diffusion to the surface constructed
by Zhang et al. (1998) is used to estimate the dry
removal in which the dry deposition velocities are cal-
culated by

Vd = Vg + u∗2/[kû(Sc0.6 + 10−3/St)] , (2)

for the surface level and

Vd = Vg (3)

for other model levels. u∗ is the friction velocity, û is
the surface wind speed, k is the von Karman constant
(equal to 0.4), Sc is the particle Schmidt number, and

St is the particle Stokes number. St is the ratio of the
particle stopping distance to a turbulent length scale.
The gravitational settling velocity Vg is determined by
the Stokes law for a particle with radius r:

Vg =
2(ρp − ρ)r2g

9γ
(4)

where ρp is the particle density, ρ is the air density, g
is the gravitational constant, and γ is the air viscosity.
For desert dust particles, we have the mean value of
the clay density ρp = 2.5 g cm−3.

The dust extinction coefficient at a wavelength of
0.55 µm is calculated at each time step in this model
with the formula

Ei,j,k =
L=9∑

l=1

Qext(l)∗Cdust(i, j, k, l)
ρReff(l)

(5)

where Qext(l) is the extinction efficiency factor, which
is determined by the Mie theory, for dust size bin l.
Cdust(i, j, k, l) is the dust concentration for dust size
bin l at location i, j and level k. Reff(l) is the effective
radius of the dust particle given above.

The simulation domain ranges from (16◦N, 75◦E)
to (60◦N, 146◦E) consisting of 72 by 45 grid cells hor-
izontally (see Fig. 1) and 18 vertical layers in terrain-
following coordinates. Details about the model can be
found in Wang et al. (2000).

2.2 Data

The dust observations used in this paper are the
extinction coefficients obtained from the National In-
stitute of Environemental Science (NIES) LIDAR net-
work (Sugimoto et al., 2006), which measures the ver-
tical profiles of dust with high spatial and temporal
resolutions. Their vertical resolution is 30 m and the
temporal resolution is 15 minutes. The extinction co-
efficient was derived based on the backward Fernald’s
method (Fernald, 1984) by setting a boundary condi-
tion at 6 km and a LIDAR ratio S1 = 50 sr (Liu et al.,
2002). Contribution of soil dust in the total extinction
coefficient is discriminated with the method using the
particle depolarization ratio (Shimizu et al., 2004).

In this study we select eight LIDAR sites (Beijing,
Seoul, Nagasaki, Matsue, Toyama, Niigata, Tsukuba,
and Sendai; see Fig. 1) from the network for assim-
ilation. Since the spatial resolution of the model is
low, it cannot resolve information with very high spa-
tial resolution. Due to very high spatial and tempo-
ral resolution of the observations, the computational
cost of assimilating them would be expensive. These
observations are thinned to reduce the computational
cost. The observations are locally averaged to a lower
temporal-spatial resolution with 150 m vertical resolu-
tion and a 3-hour temporal resolution. The average
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is operated on each 3-hour/120 m temporal/spatial
bin. Another motivation of thinning the observations
is that a high data density may violate the assumption
of independent measurement errors, which is made in
most practical assimilation schemes. Liu and Rabier
(2002) showed that there is a connection between the
observation density and the resolution of the model
grid. They showed theoretically that the analysis qual-
ity decreases, if the density of the observational data
set is too large and the error correlations are neglected.
Before thinning, some poor data would be discarded
through quality control mainly considering the spatial
and temporal continuity.

The meteorological fields (including the winds,
temperature, humidity, pressure, etc.) used to drive
the dust transport model in this study are the NCEP
reanalysis data.

3. Model errors

Preliminary sensitivity analysis of model uncer-
tainty (Lin et al., 2009), including their biases, of the
dust transport model (Wang et al., 2000) over North
China, suggests that dust emission, surface wind fields,
and dry deposition velocity have strong impacts on
surface dust prediction and have large biases. Among
these, the impact of dry deposition velocity is rela-
tively smaller than the other two kinds of error within
short ranges of transport. In this study, we extend
our study area to East Asia including Japan and Ko-
rea. Therefore, we add the dry deposition velocity as
an error source. For errors in wind field, we do not
consider the surface wind field. The surface wind has
little impact on the long range dust transport but has
a strong impact on the dust emission intensity. Since
we explicitly consider the error in the net dust emis-
sion intensity, the impact of the surface wind field is
included indirectly.

Ideally, the wind perturbations should come from
a set of ensemble numerical weather forecasts. How-
ever in this study, we are not able to obtain large
size ensemble wind forecast products but only a sin-
gle wind analysis (from the NCEP 6-hourly reanalysis
product). We have to make a set of ensembles from
this single realization. The error in the wind field
includes an overall error in the wind direction and
spatially varying error of the wind speed. The overall
error (the same at all levels and all grid-points) in
the wind direction is defined as a Gaussian random
number with a zero mean and the standard deviation
of 20◦. The error in the wind speed, also a Gaussian
distribution, is defined with a non-zero mean (pro-
portional to the input wind speed) and the standard
deviation of 30% of the input wind speed at each

model grid-point. The perturbation magnitudes are
based on the reanalysis error statistics. In the NCEP
reanalysis page, the stationary background error (6-
hour forecast error) variances for the component wind
at the middle latitudes range from 2 m s−1 to 4 m s−1

(http://wwwt.emc.ncep.noaa.gov/gmb/bkistler/oberr/
fcsterr.html). The actual analysis error variances will
change from time to time, but statistically are slightly
less than the background error variances, depend-
ing on observation availability and observational er-
rors. In this study most component wind ranges from
−9 m s−1 to 9 m s−1 with extreme values of about
±20 m s−1, the 30% of wind speed perturbation mag-
nitudes and 20◦ of wind direction perturbation magni-
tudes roughly agree with the analysis error statistics.
The ratio of the non-zero mean and the input wind
speed at each grid-point is assumed to be spatially
homogenous and denoted by αw. The dimensionless
coefficient αw determines the error bias in the wind
speed field. This wind perturbation scheme is very
simple and is not based on the original wind analy-
sis error statistics. However, this scheme represents
two most important uncertainty factors that impact
the dust transport: speed and direction. This kind
of simple wind perturbation scheme has been used in
uncertainty analysis and EnKF of air quality models
(e.g., Hanna et al., 2001; Wu et al., 2008).

The error in the net dust emission intensity is de-
fined at every grid-point in the dust source regions in
the model. The error is assumed to be Gaussian with
a standard deviation of 50% of the calculated net dust
emission intensity Qi,j,l by the original model. Similar
to the wind speed field, the non-zero mean of the dust
emission error at each grid-point in the source regions
is assumed to be proportional to Qi,j,l. The ratio of
the non-zero mean and Qi,j,l at each grid-point is as-
sumed to be spatially homogenous and denoted by αQ.
The dimensionless coefficient αQ determines the bias
in the net dust emission intensity.

The error in the dry deposition velocity is defined
in a similar manner as that in the wind speed and
dust emission. The standard deviation is 50% of the
original model calculated dry deposition velocity Vg.
The dimensionless overall coefficient that defines the
bias in the dry deposition velocity at each grid-point
is denoted by αd.

Note that the three parameters αw, αQ, and αd

are not constant in time and will be estimated in the
data assimilation process. But, for a given ensemble
member, they have the same values over the model do-
main at a given time. Before convergence to a single
value, the values of the parameter are different over
ensemble members. More description is given in the
next section.
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4. EnKF data assimilation with parameter es-
timation

EnKF is used to provide the initial dust concen-
tration field and to correct the model bias. The basic
idea behind the EnKF (Evensen, 1994) is to construct
a Monte Carlo ensemble such that the mean of the
ensemble is the best estimate, and the ensemble er-
ror covariance is a good estimate of the forecast error
covariance. In the EnKF, the background error covari-
ance estimated directly from an ensemble of forecasts
propagated forward from an ensemble of analyses us-
ing the fully nonlinear forecast model. The algorithm
used here is basically the one described by Evensen
(2003, 2004). The detailed description of EnKF is
omitted here.

Several studies (Anderson, 1997; Hamill et al.,
2000; Bowler, 2006; Descamps and Talagrand, 2007)
showed the advantages of EnKF for providing the
initial conditions of ensemble forecasts. The EnKF
also can readily include parameter estimation by state
space augmentation in the same framework (Annan
and Hargreaves, 2004; Annan et al., 2005a,b; Evensen,
2006). The principle is to consider the parameters as
part of the model state alongside the conventional vari-
ables, and then using the covariance estimated from
the ensemble to update parameters directly in the
same manner as for the state variables.

In this study, we apply the EnKF to estimate the
above defined three dimensionless parameters αw, αQ,
and αd. We need to give a set of initial ensembles for
each of them. That is done by sampling from three
Gaussian distributions with the mean value of their
first guesses, which are zero in this study (meaning
that there are no biases). Ideally, the initial stan-
dard deviation of the prior distribution of a parameter
should represent the error in the first guess. However,
the initial error is usually unknown in reality. In this
study, the ensemble spread of each parameter is ini-
tialized to be 0.3, 0.5, and 0.5 for αw, αQ, and αd,
respectively.

The choice of the first guesses of a set of parame-
ters will not affect the finally estimated values if the
set of parameters are identifiable. However, the first
guess values will affect the convergence rate during
the data assimilation process. If the first guess val-
ues are selected close to the finally estimated values,
the convergence will be fast. As discussed by Tong
and Xue (2008a,b), whether the uncertain parameters
are identifiable is ultimately determined by whether
the inverse problem has a unique solution. The qual-
ity of observational data is another factor that decides
the identifiability of the parameters. The estimation
could be sensitive to small errors in the observations.

In this paper, we do not focus on the detailed issues
of identifiability of the three parameters αw, αQ, and
αd. However, their identifiability can be discussed
from perspective of the independence of their impacts
on observable variables. The model bias in the dust
emission intensity has a strong impact on dust con-
centrations near the source regions, while the model
bias in the dry velocity has a relatively small impact
on dust concentrations near the source regions and has
a large impact on the dust concentrations after long-
distance transport. The high level wind speed bias has
an impact on the arrival times of dust storm peaks at
the observation stations. The observation network in
this study has one observation site (Beijing) near the
source regions and several sites in Japan where the
long-distance transported dust concentrations can be
measured.

5. Experiment setups

A series of dust storms occurred in the Gobi Desert
and Mongolia and swept across a wide area includ-
ing China, Korea, and Japan during the end of May
2007, which was an unusual phenomenon in late spring
over the past years and was also observed as the latest
spring record in Japan within the Japan Meteorolog-
ical Agency observation history (Hara et al., 2008).
A low-pressure system deeply developed on 23 May in
northeastern Mongolia with very strong surface winds,
which triggered the dust mobilization over the Gobi
desert. The observations (dust records) from the Chi-
nese Meteorological Administration and LIDAR dust
observations showed that a dust storm moved into
eastern China on 24 May and then arrived in Korea on
25 May and late in Japan around 25 to 26 May. The
three-day averaged winds at the 1000 m height during
24–26 May 2007 (see Fig. 1) show that the northwest
winds prevailed over East Mongolia and swept across
North China, Korea, and Japan, which drove the dust
transport. In this study, we target this case to investi-
gate the performance of dust ensemble forecasting over
eastern Asia.

We designed three experiments (shown in Table 1).
A control experiment (Ctrl), a deterministic forecast,
is performed without any assimilation of data. In two
ensemble forecast experiments (Exp1 and Exp2), the
EnKF is used to assimilate LIDAR observations. The
difference is that in Exp1, only the initial conditions
are analyzed while in Exp2 both the initial conditions
and the model biases are analyzed or estimated. The
model integration starts from 22 May and ends on 30
May in all three experiments. The assimilation cycles
are performed during 23 May to 30 May with a 3-hour
interval and the vertical profiles of the dust extinction
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Table 1. Experimental configuration.

Experiment Configuration

Ctrl Control run, no assimilation
Exp1 Analyze only the initial conditions
Exp2 Analyze both the initial conditions and the

model biases

coefficients at the above eight observational sites are
assimilated.

We used the formulation of the EnKF with ob-
servations perturbed as in Houtekamer and Mitchell
(1998). We used the same observation error covari-
ance in a 4DVAR dust storm data assimilation study
by Yumimoto et al. (2007a) that assimilated the same
set of Lidar observations as this study. The obser-
vation errors were assumed to be temporally and spa-
tially independent and set as 0.125 km−1 at the Beijing
site and 0.0625 km−1 at the other sites (about 10%–
40% of the maximum of 3-h averaged values during
the dust period). Both Exp1 and Exp2 use 50 ensem-
ble members. Many studies have suggested that the
so-called localization technique is a feasible solution
to reduce the effect of the sampling error for appli-
cations of an EnKF (e.g., Hamill et al., 2001), espe-
cially when the ensemble size is small. Localization
aims to delete those long distance correlations in the
gain matrix and thus to limit the influence of a sin-
gle observation by the Kalman update equation within
a fixed region around the observation location. Lo-
calization also can increase the rank of the forecast
error covariance and improve the performance (Oke
et al., 2002; Hunt et al., 2007). The localization can
be implemented either by canceling the covariance be-
tween the long-distance elements (Hamill et al., 2001;
Houtekamer and Mitchell, 2001) or by applying filters
locally in the physical space (Ott et al., 2004). We
adopt the covariance localization approach specified
in Gaspari and Cohn (1999) for horizontal and verti-
cal localization. The horizontal and vertical localiza-
tions are used in Exp1 and Exp2 in this study with
vanishing radii of 1200 km (horizontally) and 1.5 km
(vertically), respectively.

6. Results

6.1 Ensemble mean as deterministic forecast-
ing

The ensemble mean, as the best estimate, should
have better forecast skill than any of the other en-
semble members because it averages over the many
possible forecasts and essentially smoothes the chaotic
nature of the atmosphere or ocean. First, we made

a comparison between the ensemble means from two
ensemble forecast experiments and the control exper-
iment to examine the basic performance of Exp1 and
Exp2, respectively.

Figure 2 shows the evolution of the means and stan-
dard deviations of the model biases in wind speed,
dust emission intensity, and the dry deposition veloc-
ity during the assimilation process of Exp2. They are
normalized by the original model calculated or input
values, that the negative (positive) values indicate that
the original ones are reduced (increased). The adjust-
ments of the model biases will be justified below by
comparing the forecast skills of Exp1 (without any bias
adjustment) and Exp2.

Figure 3 shows the time-height cross section of the
dust extinction coefficient validated at the same time

 
 
 

Fig. 2. The evolution of the means and standard devi-
ations of the model errors in (a) wind speed; (b) dust
emission intensity; (c) dry deposition velocity. They are
normalized by the original model calculated or input val-
ues.
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at Beijing, Seoul, Nagasaki, and Toyama, respectively:
(a) observed by LIDAR; (b) predicted by the experi-
ment Ctrl and (c) 3-hour forecast from Exp2 (i.e., LI-
DAR observations were assimilated 3 hours before the
validation time). The 3-hour forecasts from Exp1 are
very similar to that from Exp2 and not shown. Con-
trasting to the observations, results from the control
experiment have a false dust peak around the 1000 m
height at Beijing on 27 May [similar result also ap-
peared in Hara et al. (2008)], while the 3-hour fore-
casts from Exp2 successfully removed the false peak.
To explain this improvement, we plot a snapshot of the
dust concentration fields on the end of 26 May from the
control experiment and Exp2, respectively (Fig. 4). It
indicates that the assimilation of LIDAR observations
at Beijing reduced the false high dust concentration
around Beijing.

Though there are some missing data at Seoul, there

are two dust centers around the middle of 25 May and
early 26 May as indicated by the observations. How-
ever, the control experiment predicted only one big
peak on 25 May. The assimilation experiment, Exp2
forecasted correctly, the two-peak pattern but with
smaller amplitudes. This underestimate may be due
to the underestimate in the upstream area (for exam-
ple, Beijing) on 24 May between the 1 km and 1.5 km
height after assimilation (see Fig. 3a for Beijing). At
Nagasaki, the control experiment predicted a peak at
the end of 25 May that is too weak and about 6 hours
earlier than the observed. The assimilation experi-
ment, Exp2 improved the forecast, by increasing the
peak amplitude and delaying the arrival time. Over-
all, the assimilation of the observations improves the
timing of the arrival, the extinction coefficient level,
and the dust layer height in all observation sites for
3-hour forecasts.

 
 

Fig. 3. The time-height cross section of (a) the dust extinction coefficient (km−1) observed by LIDAR,
(b) the simulated dust extinction coefficient (km−1) by the control run and of (c) the 3 h ensemble mean
forecast after assimilation at eight observational sites.
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Fig. 3. Continued.

 

 
  Fig. 4. A snapshot of dust concentration fields at the end of 24 May from the control experiment

(the left panel) and Exp2 (the right panel), respectively.
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   Fig. 5. The daily-averaged vertical profiles of the dust extinction coefficient observed

by LIDAR and predicted by the model without and with assimilation in Beijing.

Figure 5 gives the daily-averaged vertical profiles
of the dust extinction coefficient observed by LIDAR
and predicts by the control experiment and the en-
semble means of the ensemble forecast experiments in
Beijing. The daily-averaged profiles in the three ex-
periments match the observed well on 24 May though
some fine structural differences exist. On 25 May, the
forecasts within a 6 h forecast lead time are improved
and closer to the observations than the control run,
and there is no obvious difference between Exp1 and
Exp2 within the 6 h lead time. On 26 and 27 May, the
12-h forecasts by Exp1 and Exp2 are improved over
that of the control experiment. In addition, the fore-
cast within a 12 h lead time with the bias correction
(Exp2) are better than those without the bias correc-
tion (Exp1) on 26 May, while it is opposite on 27 May.
The fact that the 24-h forecasts made by Exp1 and
Exp2 did not improve that by the control experiment
is mainly caused by the lack of observations at the up-
stream areas of Beijing. As shown by Fig. 4, the dust
concentration field is only changed near Beijing by as-
similating the observations at Beijing. We also noticed
that the 24-h forecasts made by Exp2 are worse than
that made by Exp1. The overall correction of biases
of the high level wind speed and dry deposition ve-

locity (the same for each model grid-point), which is
mainly determined by observations in down-stream ar-
eas, would contribute to this.

The forecast profiles in Seoul, Nagasaki, and
Toyama on 26 and 27 May are shown in Fig. 6. In
down wind areas, the forecasts after assimilation are
mostly improved up to a 24-h lead time and the im-
provement decreases with the forecast lead time. The
forecasts after correcting the model biases are closer
to the observations than those without the bias cor-
rection. This indicates that the biases of the high level
wind speed and dry deposition velocity are important
for forecasts in down wind areas and the EnKF system
can correct them reasonably.

The forecast skill is related to the level of dust
concentrations. The lower level of dust concentration
in the downstream sites often yields a better forecast
skill such as RMSE. The straightforward comparison
of skills at downstream sites and near the dust source
site (Beijing) may not be fair. In the future, some skills
defined at different levels of concentrations should be
introduced to evaluate dust storm forecasting. How-
ever, the forecast at the downstream sites benefit from
the assimilation of the upstream observations at the
site near the source, while the forecasts at the site
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  Fig. 6. As in Fig. 5 but for observation sites at Seoul, Nagasaki, and Toyama on 26 and 27 May.

near the source cannot get the same benefit from the
downstream sites.

6.2 Ensemble forecast skills

The ensemble forecasts have a natural advantage
over deterministic forecasts because it can provide
many possible forecasts of the future scenario and
can be used to estimate the probability distribution
of the future scenario. An ensemble forecast system
is thereby also a probabilistic forecast system (PFS),
which can provide the likelihood of the occurrence
of an event from a given set of ensemble forecasts

rather than a categorical statement. Therefore, it nat-
urally contains more information. The probability of
an event occurrence can be calculated as the frequency
of the ensemble members to predict the event over the
total ensemble. For signal detection, the event could
be the frequency of occurrence in the top or the bot-
tom tercile of the climatological frequency. For a con-
tinuous predictant such as dust storm PFS, the event
could be dust concentration (or dust extinction coef-
ficient) above a certain threshold. In this study, dust
extinction coefficients are used to sort the observations
into separate groups.
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0.1 0.2 0.3 0.4 0.50.000.050.100.150.200.250.300.350.40   Brier score Dust Ext. Coeff. threshold (km-1)
 Exp1 (3h) Exp2 (3h) Exp1 (6h) Exp2 (6h) Exp1 (12h) Exp2 (12h) Exp1 (24h) Exp2 (24h)a) Beijing

0.05 0.1 0.15 0.2 0.30.000.050.100.150.200.250.300.350.40   Brier score Dust ext. coeff. threshold (km-1)
 Exp1 (3h) Exp2 (3h) Exp1 (6h) Exp2 (6h) Exp1 (12h) Exp2 (12h) Exp1 (24h) Exp2 (24h)b) Seoul

 
0.05 0.1 0.15 0.2 0.30.000.050.100.150.200.250.300.350.40   Brier score Dust Ext. Coeff. threshold (km-1)

 Exp1 (3h) Exp2 (3h) Exp1 (6h) Exp2 (6h) Exp1 (12h) Exp2 (12h) Exp1 (24h) Exp2 (24h)c) Nagasaki
0.05 0.1 0.15 0.2 0.30.000.050.100.150.200.250.300.350.40   Brier score Dust ext. coeff. threshold (km-1)

 Exp1 (3h) Exp2 (3h) Exp1 (6h) Exp2 (6h) Exp1 (12h) Exp2 (12h) Exp1 (24h) Exp2 (24h)d) Toyama
  

Fig. 7. Brier scores for 5 different dust extinction coefficient thresholds with different
forecast lead times (3 h, 6 h, 12 h, and 24 h) in (a) Beijing, (b) Seoul, (c) Nagasaki,
and (d) Toyama.

Ensemble forecast skill can be evaluated by deter-
mining the predictive accuracy of a forecast distribu-
tion. Two important forecast attributes can be com-
puted to evaluate the accuracy and the usefulness of
ensemble forecasting: a Brier score (Brier, 1950) and
the relative operating characteristic (Swets, 1973; Ma-
son, 1982; Harvery et al., 1992; Mason and Graham,
1999).

6.2.1 Brier score
A Brier score proposed by Brier (1950) measures

the accuracy of a set of probability assessments for a
binary event. It is the average deviation between pre-
dicted probabilities for a set of events and their out-
comes, so a lower score represents a higher accuracy.
Suppose there is a forecasted probability fi that the
event will occur and let oi = 1 if the event did occur
and oi = 0 if it didn’t, for each (i) of the total number
of forecasts. Then, the Brier score (BS) is given by

BS =
1
N

N∑

i=1

(fi − oi)2 (6)

Brier scores range from 0 to 1, taking the value of 0 for
perfect forecasting and the value of 1.0 for the worst
possible forecasting.

Figure 7 shows Brier scores for five thresholds in
Beijing, Seoul, Nagasaki and Toyama for the forecasts

during 23–30 May 2007 in two ensemble forecasting
experiments with different forecast lead times (3 h, 6
h, 12 h, and 24 h). The Brier scores become worse
as the forecast lead time at each station with the best
forecast (smallest Brier score) for 3-h forecasts. It is
interesting to notice that the Brier score values are not
monotone functions of the threshold values. The Brier
score in Beijing for the threshold value of 0.2 km−1 is
the largest, and indicates that the probabilistic fore-
casts are the worst among the five thresholds. The
difference of the Brier scores between the two experi-
ments and different forecast lead times decreases as the
threshold values increase, which may imply that the
difference of the impact of the corrected initial condi-
tions and bias correction on ensemble forecasts become
slight for larger threshold values. In down wind areas
(Seoul, Nagasaki, and Toyama), scores in Exp2 with
the bias correction are mostly smaller than those in
Exp1, which indicates the positive impact of the bias
correction on improved forecasts.

6.2.2 Relative operating characteristic
The relative operating characteristic (ROC) curve

(Swets, 1973; Mason, 1982; Harvery et al., 1992; Mason
and Graham, 1999) is a useful method of representing
forecast skill based on a contingency table, which can
be used to estimate the quality of probabilistic forecast
systems that express output in continuous, categorical,
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0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0  Hit rate False alarm rate  Exp1 (3h) Exp2 (3h) Exp1 (6h) Exp2 (6h) Exp1 (12h) Exp2 (12h) Exp1 (24h) Exp2 (24h) Diagonal Linea) Beijing  0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0  Hit rate False alarm rate  Exp1 (3h) Exp2 (3h) Exp1 (6h) Exp2 (6h) Exp1 (12h) Exp2 (12h) Exp1 (24h) Exp2 (24h) Diagonal Lineb) Seoul  
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Fig. 8. Hit rates vs false-alarm rates (relative operating characteristic, ROC, curve) for the observed
dust extinction coefficients above (a) 0.3 km−1 in Beijing, 0.1 km−1 in (b) Seoul, (c) Nagasaki, and
(d) Toyama for the forecasts during the period of 23–30 May 2007 in two data assimilation exper-
iments with different forecast lead times (3 h, 6 h, 12 h, and 24 h). The better the probabilistic
forecast, the closer the ROC curve is to the upper left corner. The dashed line is the ROC curve
for a chance forecast. The ROC curves are generated for each frequency threshold which assumes
values from 0/50 to 50/50, with increments of 1/50.

or binary mode (events). A two-by-two contingency
table for a binary system is illustrated in Table 2. A
hit, if an event occurred and a warning was provided
(h is the number of hits) with the likelihood greater
than or equal to the given probability threshold; a false
alarm, if an event did not occur but a warning was
provided (f is the number of false alarms) with the
likelihood greater than or equal to the given proba-
bility threshold; a miss, occurred but not forecast (m
is the number of misses); a correct rejection, neither
occurred nor forecast (c is the number of correct rejec-
tions).

The hit rate and the false rate are computed from
the contingency table (Table 2):

Hit rate = h/(h + m) = h/e ; (7)
False alarm rate = f/(f + c) = f/e′ . (8)

Then, the hit rates are plotted on the ordinate against
the corresponding false alarm rates on the abscissa to
generate the ROC curve (see Fig. 8). The better the

probabilistic forecast, the closer the ROC curve is to
the upper left corner. The curve approaches the lower
right corner when there is negative skill. The diago-
nal line represents the ROC curve for a chance forecast
from climatology, which indicates that the forecast sys-
tem has no skill.

Figure 8 shows the ROC curves for observed dust
extinction coefficients above 0.3 km−1 in Beijing, 0.1
km−1 in Seoul, Nagasaki, and Toyama for the forecasts
during 23–30 May 2007 in two ensemble forecasting ex-
periments with different forecast lead times (3 h, 6 h,
12 h, and 24 h). The ROC curves are generated assum-

Table 2. Two by two contingency table.

Observations Forecast

Warning No warning Total

Event h m e
No event f c e′
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b) Seoul
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c) Nagasaki
0.05 0.1 0.15 0.2 0.30.500.550.600.650.700.750.800.850.900.951.00   ROC area Dust ext. coeff. threshold (km-1) Exp1 (3h) Exp2 (3h) Exp1 (6h) Exp2 (6h) Exp1 (12h) Exp2 (12h) Exp1 (24h) Exp2 (24h)

d) Toyama
 

Fig. 9. ROC areas for 5 different dust extinction coefficient thresholds with different forecast lead times
(3 h, 6 h, 12 h, and 24 h) in (a) Beijing, (b) Seoul, (c) Nagasaki, and (d) Toyama.

ing probability threshold values from 0/50 to 50/50,
with increments of 1/50. Most of the ROC curves are
located in the upper left corner, which indicates the
ensemble forecasting has some skill. A more clear com-
parison with different thresholds for two experiments
and different forecast lead times can be obtained from
Fig. 9.

The ROC area is the area under the ROC curve
representing the usefulness of an ensemble to discrimi-
nate between events. The area is larger than 0.5 when
there is skill and equal to 0.5 with no skill. The closer
the area approaches one, the more useful the fore-
cast. The ROC areas under the corresponding ROC
curves and their variations with five different dust ex-
tinction coefficient thresholds (five events) with differ-
ent forecast lead times (3 h, 6 h, 12 h, and 24 h) are
shown in Fig. 9. No values in Seoul with a thresh-
old of 0.3 km−1 are shown because there are no ob-
servation events above 0.3 km−1 during this period.
The ROC areas mostly decrease with the forecast lead
time. Most of the 3-h forecasts have larger ROC area
values (black lines with symbols) than those for longer
forecast lead times. In Beijing, the variation of ROC

areas with thresholds is opposite to those of the Brier
scores, which indicates that the implication of ROC
areas agrees well with that of the Brier scores in Fig.
7. It shows the worst probabilistic forecasts for the
threshold value of 0.2 km−1 in Beijing as indicated
by the Brier scores. The probabilistic forecasts (in
Beijing) for larger threshold values (> 0.3 km−1) are
better (the larger relative operating characteristic ar-
eas) in Exp1 than those in Exp2. In down wind areas
(Seoul, Nagasaki, and Toyama), the probabilistic fore-
casts in Exp2 are mostly better (larger areas) than
those in Exp1. The areas generally increase in Seoul
and decrease in Nagasaki and Toyama with the thresh-
old values. The above results also indicate that the
bias correction of the high level wind and dry depo-
sition velocity have positive impacts on the ensemble
forecasts in downwind areas, especially at Japanese
stations. In general, the implication of ROC areas
agrees with that of the Brier scores.

6.3 Ensemble width vs. observations

A “good” ensemble forecasting system should have
the truth as a plausible member of the ensembles.
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   Fig. 10. Time series of dust extinguish coefficients at 180 m height of 24-h ensemble fore-

casting (ensemble mean and width) in Exp2, along with observations and the forecasts from
the control experiment at four sites.

Figure 10 shows the time evolution of the mean and
width of the 24-h ensemble forecast in Exp2 in terms
of the dust extinction coefficient at the 180 m height,
along with the observations and the forecasts from the
control experiment at Beijing, Seoul, Nagasaki, and
Toyama, respectively. The ensembles are generally
wide enough to cover the observations as the approx-
imate truth. However, ensembles at Beijing are over
dispersive (confirmed by a U-shaped Talagrand dia-
gram, not shown) while at Nagasaki and Toyama, the
bias problems exist. This indicates the insufficient rep-
resentations of model error and initial condition error
in the present study.

7. Conclusions and discussions

An ensemble forecast is a collection of various pos-
sible forecasts verifying at the same time. Each of the
forecasts is regarded as one of the possible scenarios
given the uncertainty associated with the forecasting.
The key to good ensemble forecasting is the correct
presentation of the errors in the forecast models and

the initial conditions. The EnKF method, as an uni-
fied approach to both the data assimilation and en-
semble forecasting problems (Kalnay et al., 2006), is
used in this study that focuses on the performance
of dust storm ensemble forecasting targeting a dust
episode from China to Korea and Japan during 23–30
May 2007. Based on our previous studies (Lin et al.,
2008a,b), the errors in the input wind field, dust emis-
sion intensity, and dry deposition velocity are among
important model uncertainties. Other studies (e.g.,
Uno et al., 2006) also indicated that some of these er-
rors could have large biases. Therefore, the model bias
correction is also considered in this study as part of the
data assimilation process. The NIES LIDAR obser-
vations are assimilated to generate the initial ensem-
bles and correct the model biases. The ensemble fore-
cast skills are evaluated against the observations and
a benchmark/control forecast that is a simple model
run without assimilation of any observations. Results
from this study are not verified over a large number of
cases and must be considered preliminary.

Results show that the ensemble mean forecasts
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have substantial improvement over the control fore-
casts after correcting the initial conditions by assim-
ilating the LIDAR dust extinction coefficients. The
forecasts after assimilation correctly capture the major
dust arrival and cessation timing at each observation
site and improve the distribution and the coefficient
levels especially for short time forecasts (e.g. 3-h fore-
casts). The improvement decreases with the forecast
lead times. The improved forecast lead time is shorter
in Beijing, which is closer to the dust source regions,
where the forecasts with more than a 6-hour lead time
have little improvement. While the improved forecast
lead time is longer in down wind areas (e.g. in Ko-
rea and Japan), the 12-h forecasts still need much im-
provement. It indicates that the closer to the dust
source regions, the smaller impact of the corrected
initial conditions on improved dust forecasts and the
shorter lead time of improved forecasts. This may be
due to the lack of observations in the dust source re-
gions in this study.

Bias correction of wind speed and dry deposition
velocity further improved the forecasts in down wind
areas. The forecasts within 24 hours are mostly im-
proved and better than those without the bias correc-
tion. This indicates that the EnKF system can correct
the bias accurately and the biases of wind speed and
dry deposition velocity have strong impacts on fore-
casts in down wind areas. In addition, due to the oppo-
site modeled results in areas closer to the dust source
regions (e.g. Beijing, overestimated) and in down wind
areas (underestimated), the overall correction of the
biases of the high level wind speed and dry deposition
velocity (the same for each model grid-point), which
are mainly determined by observations in down wind
areas, may contribute oppositely and worsen the re-
sults in upstream areas.

The verification of the ensemble forecasts by Brier
scores and ROC curves (or ROC areas) indicates that
the ensemble forecasting system has useful forecast
skills The skill and usefulness weaken with the forecast
lead time. It also shows that there is better forecast
skill and more useful ensemble forecasts with the bias
correction in down wind areas than those without the
bias correction. However, there still exists bias in the
forecasts after correcting the major model biases, es-
pecially for a sudden increase of dust, which may be
due to model deficiencies or other model biases not
considered in this study.

The study suggests that better initial conditions
in upstream areas are important for improving dust
ensemble forecasts in downstream areas. One of the
important weak points in this study is that the LI-
DAR network has only one LIDAR (at Beijing) rel-
atively close to the dust source region. Some other

LIDARs did exist in China, but were not functional
during the period. Assimilation of observations of this
LIDAR is limited in providing unbiased initial ensem-
bles in the upwind areas that are crucial for 24 h or
longer forecasts of down-wind areas. In future stud-
ies, assimilation of observations with comprehensive
coverage near dust source regions is a priority. The
surface PM10 concentrations are operationally moni-
tored around the dust source regions in China. The
satellite remote sensing retrievals made by the China
Meteorological Administration are also an important
source of data (Niu et al., 2008).

The result shows that the benefit from ensembling
decreases with the forecast time. Usually, the oppo-
site is true in ensemble weather prediction. This result
may not be generally true for other cases. It may also
reflect that the model errors in the ensemble forecast
still miss some important uncertainties or/and draw-
backs in the current model error perturbations. This
should be further investigated.

The model errors considered in this study certainly
are not sufficient. The way of presenting them is much
simplified. The use of ensemble wind forecasts from
operational ensemble weather forecasting should be
tested in future studies. Considerations of multiple
dust emission parameterization schemes and the use of
several sources of land use and soil information in the
emission will enhance the presentation of the model
error in the dust emission. The multi-model approach
(i.e., super-ensemble method) could be potential ways
to better represent the model errors.

Though the bias correction implemented in this
study shows a positive impact, there is much free space
to improve the implementation. The biases in the high
level wind errors and dry deposition velocity errors
have stronger impacts on dust concentrations in down
wind areas (e.g., Korea and Japan) than in the area
near the dust source regions, while the bias in the dust
emission intensity error has a larger impact on areas
relatively closer to the dust source regions. This fact
may lead to a better implementation of correcting er-
ror biases by putting different weights on observations
based on their locations.

The fact that the observations contain some er-
ror should be considered when comparing them to the
ensemble members. A quantitative evaluation of the
ensemble spread and bias should be performed, as de-
scribed by Candille et al. (2007). Unfortunately the
sample size (i.e. number of observations and dates) is
too small in this study to enable a useful result from
such an approach. In future studies, more cases should
be used in such an approach.

One deficiency of not performing a full coupled
analysis of dust with wind and other meteorological
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fields, as in the present study, is that the wind pertur-
bations could be unrealistically larger/smaller than the
wind analysis error characteristics, then one may get
an undesirably large spread. On the other hand, this
larger/smaller spread may be compensating for model
errors. To carry out a full coupled analysis of dust
with wind and other meteorological fields is one of the
directions of future research.

An important issue that is not addressed in this
study is the adaptive identifying model errors and
quantifying their statistical characteristics. This is
a tough problem. However, the innovation informa-
tion (i.e., forecast minus observation) can provide some
hints. For example, if the forecast has a large differ-
ence with the observations near the dust source re-
gions, it is quite certain that the dust emission inten-
sity contains large errors or the wind field between the
source regions and the observation sites has large er-
rors.
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