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ABSTRACT

The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti-
mization problem, and the traditional solutions to this problem are the filtering method and the conditional
nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help
of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However,
with the increasing improvement of actual prediction models, more and more physical processes are taken
into consideration in models in the form of parameterization, thus giving rise to the on–off switch problem,
which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad-
joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named
GA-CNOP, to solve the predictability problems involving on–off switches. As the precision of the filtering
method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and
a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz
equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum
predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on–off switches,
often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using
GAs to solve predictability problems is more effective than using the conventional optimization algorithm
based on gradients, as long as genetic operators in GAs are properly configured.
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1. Introduction

According to Lorenz (1975), the issue of pre-
dictability of climate falls into two categories. One
is bound up with the initial error that the model is
supposedly perfect (or very close to perfect), while the
other is concerned with the model error in which the
initial field is supposedly perfect (Lorenz, 1975; Mu
et al., 2010). The first category involves the primary
problem of numerical weather and climate prediction.
Mu et al. (2002), approached this problem based on

actual demands by dividing it into three subproblems:
(1) the problem of the lower bound of maximum pre-
dictable time; (2) the problem of the upper bound of
maximum prediction error, and (3) the problem of the
lower bound of maximum allowable initial error and
parameter error. These three problems, when utilizing
a numerical model to make the prediction, can be for-
mulated into three constrained nonlinear optimization
problems. Therefore, it is of theoretical and practi-
cal significance for checking how well an optimization
algorithm can perform in solving a predictability prob-
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lem.
To solve the problem of the lower bound of max-

imum predictable time, the current methods most
frequently used are the filtering method and the
conditional nonlinear optimal perturbation (CNOP)
method. The filtering method refers to the division of
a constraint region of the initial perturbation super-
posed upon initial basic state, after which the max-
imum predictable time corresponding to every grid
point is calculated, and then the minimum value of
these maximum predictable times is considered as
the lower bound of maximum predictable time. This
method is simple and easy to implement. However, it
applies only to the theoretical research, partly because
its solution to the problem rests upon the step length
of the division, and partly because it is negatively af-
fected by high time consumption and low practicabil-
ity. Based on a simple ENSO Model WF96, Duan
and Luo (2010) recently put forward a new solution
to the problem of the lower bound of maximum pre-
dictable time using the CNOP with a gradient descent
algorithm based on the adjoint method, known as the
ADJ-CNOP method. This method can first formu-
late the problem of the lower bound of maximum pre-
dictable time into a constrained nonlinear optimiza-
tion perturbation problem, and then utilize a modi-
fied sequence quadratic programming (SQP; Powell,
1982; Mu and Zhang, 2006) optimization algorithm to
solve the problem, in which the gradient information
required by SQP is provided by integrating backward
the relevant adjoint model. The numerical test results
in Duan and Luo (2010) verify the feasibility and the
effectiveness of this method to determine how much
time the calculation takes and how precise the solu-
tion is. However, with the increasing improvement
of actual prediction models, more and more physical
processes are taken into consideration in models in
the form of parameterization, thus giving rise to the
discontinuousness or non-differentiability in prediction
models. This phenomenon is commonly called the on–
off switch problem, which tremendously affects the ef-
ficiency of the conventional adjoint method (Xu, 1996;
Mu and Zheng, 2005; Zheng and Mu, 2006; Zheng and
Dai, 2009). In the study of variation data assimilation
with on–off switches, it is demonstrated, from the the-
oretical and numerical experimentation perspective,
that the conventional discretization of on–off processes
in the governing equation will generate zigzag oscilla-
tions in both the numerical solution of the forward
model and the associated cost function (CF). Further-
more, the model errors generated by the conventional
discretization of on–off processes could, on one hand,
make the solution of the corresponding tangent linear
model obtained using the conventional approach not a

good first-order linear approximation of the nonlinear
perturbation solution of the governing equation. On
the other hand, it could cause the discrete CF gradi-
ent (even one-sided gradient for the CF) at some initial
conditions not to exist. At this time, the gradient in-
formation supplied by the adjoint model is unable to
provide a correct descent direction for the optimiza-
tion algorithm, which consequently leads to the im-
perfectness of optimized results. Therefore, it is of vi-
tal importance to search for a new global optimization
algorithm capable of handling with the constrained op-
timization problems in non-smooth situations to solve
ultimately the problem of the lower bound of maxi-
mum predictable time.

Zheng et al. (2011), based on a simple single-
grid-line model with discontinuous on–off switches,
recently proposed a new genetic algorithm (GA) in
which adaptive selection and mutation operators, a
blend crossover operator, and the elitist strategy are
integrally used. The numerical experiments performed
using these elements showed that the new GA is effec-
tive to solve the problem of variation data assimilation
involving discontinuous on–off switch processes. When
a GA is applied to the solution of the constrained op-
timization problem, dealing with the constraint in a
proper way can contribute to the improvement in the
performance of the GA. The widely used approach to
handling the constraint is the penalty method, the
core of which lies in using a penalty term to formu-
late the constrained optimization problem into an un-
constrained one. Fang and Zheng (2009) applied the
penalty method to the simple single-grid-line model
involving the on–off switch process, with the purpose
of studying how effectively a GA can solve the problem
of CNOPs. Despite the fact that the penalty method
is simple and easy to perform, the optimization results
depend largely upon the selection of the penalty pa-
rameters. To avoid difficulties of this kind, Deb (2000)
devised a constraint handling method based on the
tournament selection mechanism and niche strategy
for GAs. By putting into use both the GA adopted
by Zheng et al. (2011) and the constraint handling
method put forward by Deb (2000), this study at-
tempted to solve the problem of the lower bound of
maximum predictable time in the model involving dis-
continuous on–off switch processes and to determine
how effectively and feasibly the GA-CNOP works, for
the sake of offering a new approach to solving the pre-
dictability problems in actual predication models.

This paper is structured as follows: In section 2 the
problem of the lower bound of maximum predictable
time, the notion of the CNOP, and the approach to
utilizing a CNOP to solve the problem of the lower
bound of maximum predictable time are briefly in-
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troduced. In addition, this section presents the de-
scription of the modified Lorenz equation. Section 3
mainly describes the GA-CNOP method. In section 4
the filtering method, the ADJ-CNOP method and GA-
CNOP method, respectively, are applied to solve the
problem of the lower bound of maximum predictable
time in the modified Lorenz model. Then the preci-
sion of these three results are compared and analyzed.
Finally, section 5 provides a discussion and summary
of the study results.

2. Lower bound of maximum predictable
time, CNOP, and nonlinear model

2.1 Lower bound of maximum predictable
time

The lower bound of maximum predictable time is

briefly described as follows [see Mu et al. (2002) for de-
tails]. Let utr,0 and utr,t be the true value of the state
at the initial time and t time respectively, µtr the pa-
rameter true value, and Mt the nonlinear propagator
from the initial time to t time. Under the assumption
of the perfect model, we have

utr,t = Mt(utr,0, µtr) . (1)

Suppose that the maximum allowable prediction er-
ror of a weather or climate event is predetermined to
be less than or equal to ε>0 (the allowable predic-
tion precision). Then the maximum predictable time
T corresponding to the initial observation uobs,0 and
the first guess of the model parameter µg are defined
as follows:

T = max{t|‖(Mτ (uobs,0, µg)− utr,τ‖ 6 ε , 0 6 τ 6 t} , (2)

where || · || is the norm measuring the prediction error,
which is taken as the L2 norm in this study. However,
in realistic problems, it is impossible to obtain the true
value of the state utr; instead, the information about
the errors in the initial observations and the initial
assumed values of the parameters can be known with
the following levels of tolerance:

‖utr,0 − uobs,0‖A 6 σ1 , ‖µtr − µg‖B 6 σ2 , (3)

where ‖·‖A and ‖·‖B are norms measuring the errors
in the initial conditions and parameters of the model.
Therefore, Mu et al. (2002) presented a lower bound
estimation for the maximum predictable time T :

Tl = min
u0∈Bσ1 ,µ∈Bσ2

{Tu0,µ|Tu0,µ = max t : ‖Mτ (u0, µ)−Mτ (uobs,0, µg)‖ 6 ε, 0 6 τ 6 t} , (4)

where Bσ1 and Bσ2 are constraint balls with centers
at uobs,0, µg, and radii σ1 > 0, σ2 > 0, respectively.
Because utr,0 ∈ Bσ1 , µtr ∈ Bσ2 , the maximum pre-
dictable time T corresponding to the initial observa-
tion uobs,0 and first guess of the model parameter µg

satisfies Tl6T .

2.2 Conditional nonlinear optimal perturba-
tion (CNOP)

Nonlinearity effect must be taken into considera-
tion when studying the predictability and stability of
the atmospheric and oceanic motion. Thus, Mu et
al. proposed the notion and theory of CNOP (Mu et
al., 2003). A CNOP refers to the initial perturbation,
among all the initial perturbations that satisfy certain
constraint conditions, which has the largest nonlinear
evolution at the end of the time period of concern and
is an extension of the linear singular vector to the non-
linear case.

Assume the model simulating atmosphere or ocean

motion as follows:



∂w

∂t
+ F (w) = 0,

w|t=0 = w0,
in Ω× [0, T ] , (5)

where w(x, t) = (w1(x, t), w2(x, t), · · · , wm(x, t))T

is a m-dimension vector; the superscript T repre-
sents transpose; F is the nonlinear operator; w0(x)
is the initial state; Ω is a domain of Rn; (x, t) ∈
Ω×[0, T ]. x = (x1, x2, · · · , xn) and t are respectively
the spatial and temporal variables; t = 0 is the ini-
tial time and t = T with T<+∞ is a future time.
If Mt denotes the propagator of model (5) from 0 to
t(06t6T ), then the solution of model (5) at time t can
be given by

w(x, t) = Mt(w0) . (6)

When superposing an initial perturbation δw0(x)
upon w0(x) and denoting δw(x, t) the nonlinear evo-
lution of the initial perturbation with time t, we have

δw(x, t) = Mt(w0 + δw0)−Mt(w0) . (7)
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Fig. 1. Flow chart for solving the lower bound of maxi-
mum predictable time.

With a specified norm ‖·‖ measuring the nonlin-
ear evolution of the initial perturbation δw(x, t), the
objective function is defined as follows:

J(δw0) = ‖MT (w0 + δw0)−MT(w0)‖ . (8)

The perturbation δw∗
0 satisfying

J(δw∗
0) = max

‖δw0‖6σ
J(δw0) , (9)

is called a CNOP at prediction time T , where σ>0
is the radius of the ball constraining initial perturba-
tions.

2.3 Attaining the lower bound of maximum
predictable time by means of CNOPs

Recently, Duan and Luo (2010) devised a numerical
scheme (Fig. 1) to solve the lower bound of maximum
predictable time in their predictability study.

For a given first guess T0 of T1, a constrained non-
linear optimal algorithm, such as the spectral pro-
jected gradient method (version 2, SPG2; Birgin et
al., 2000) or the SQP, was used to calculate the max-
imum prediction error at T0 in the constraint region
Bσ of the initial error, noted as ET0 . If ET0>ε (ε rep-
resents the allowable prediction precision), we tried
a smaller T0 = T0 − ∆T (∆T>0 is a specified con-
stant), and calculated the maximum prediction error

at the update time T0. If ET0<ε, then we tried a larger
T0 = T0 +∆T and calculated the maximum prediction
error at the update time T0. The procedure lasted un-
til T0 satisfied both ET0+∆T >ε and ET0−∆T 6ε. The
corresponding T0 was considered to be the lower bound
of maximum predictable time satisfying the allowable
prediction precision ε under the constraint of the given
initial error.

According to the definition of a CNOP, the initial
error that causes the maximum prediction error ET0

at an update time T0 is just a CNOP in the constraint
ball Bδ. Thus, the problem of solving the maximum
prediction error can be reduced to the optimization
problem of searching for the CNOP.

Duan and Luo (2010) used the modified SQP solver
based on the adjoint method to capture the CNOP
and ultimately obtained the lower bound of maximum
predictable time, and this method is called the ADJ-
CNOP.

2.4 Modified Lorenz model

The following modified Lorenz model was adopted
by Xu and Gao (1999) to study the influence of on–off
switches on the conventional adjoint minimization:




dx

dt
= −ax + ay

dy

dt
= −xz + rx− y

dz

dt
= xy − bz

, (10)

where r = r0 + H(c)r1 is the modified Rayleigh num-
ber that contains a jump controlled by the threshold
condition c = y−yc>0, and H(·) is the Heaviside unit-
step function, which simulates on–off switches in the
parameterized processes and is defined as following:

H(x) =

{
1, x > 0

0, x 6 0
, (11)

where a and b are related to the Prandtl number and
the aspect ratio geometry (in the original model), re-
spectively. In this study, we utilize this model with
parameters a = 10, b = 8/3, r0 = 28, and r1 = −18
to study the feasibility and effectiveness of the GA-
CNOP method to determine the lower bound of max-
imum predictable time.

If we let the three equations in model (10) equal
zero, we get the following three stationary points:





o : (x, y, z) = (0, 0, 0)

c1 : (x, y, z) = (−
√

b(r − 1),−
√

b(r − 1), r − 1)

c2 : (x, y, z) = (
√

b(r − 1),
√

b(r − 1), r − 1) .

(12)
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When the forward difference scheme with the tra-
ditional numerical treatment of on–off switches is used
to discretize model (10), we get the following numeri-
cal model:





xk+1 = xk + ∆t(−axk + ayk)

yk+1 = yk + ∆t(−xkzk + rxk − yk)

xk+1 = zk + ∆t(−xkyk − bzk)
(13)

where k = 0, 1, · · · , N , and N is the number of inte-
gral steps with time step ∆t = 0.005. In the original
Lorenz equation, the behavior of the solution changes
with the model parameters. When 1<r<24.74, sta-
tionary points c1 and c2 are stable; when r > 24.74,
the stationary points become unstable (Kalnay, 2003).
Figures 2 and 3 demonstrate that stationary point c1

changes its regime from unstable to stable when r de-
creases from 28 to 10.

3. The genetic strategy in the GA-CNOP
method

A GA is a global optimization algorithm inspired
by the biological heredity mechanism and the natural
selection principle, in which the group search strategy
and optimization procedure are independent of gra-
dient information. This guarantees its superiority to
the conventional optimization algorithms in universal-
ity and effectiveness when used to handle constrained
optimization problems. When applied to an optimiza-
tion problem, a standard GA performs the following
operations: encoding, initializing the population, eval-
uating the fitness of populations, and evolving popu-
lations. During the evolution processes, three kinds
of genetic operators (i.e., selection, crossover, and mu-
tation) are at work. The different configurations of
genetic operators in a GA exert a great influence on
the performance of the GA. [For a detailed description
of a standard GA manipulation, refer to Barth (1992)
and Zheng et al. (2011).]

GAs exhibit three superior properties when they
are used to solve the CNOP problem. First, GAs
do not depend on any gradient information relevant
to objective functions, thus they are still applicable
when the non-differentiability or even discontinuity of
the objective functions occur due to the physical pa-
rameterization in actual models. Second, capturing a
CNOP belongs to a constrained nonlinear optimiza-
tion problem in which GAs continue to work very
well no matter how constrained the conditions are.
And third, GAs have an inherent parallel computa-
tion characteristic in processing information. Thus,
the computational efficiency of a GA will be effectively
improved by devising a parallel execution strategy and

constructing the corresponding parallel algorithm.
GAs deal with constraint conditions using many

approaches: the space constraint method, the rejec-
tion method, the restoration method, the modified
operator method, the penalty method, to name but
a few. Each method has its own limitations, how-
ever. In other words, until now there has not been a
universal method that can deal with all kinds of con-
straint conditions in an effective manner. Deb (2000)
proposed a constraint-handling method based on the
penalty function approach, in which the tournament
selection mechanism and niche strategy are adopted
in the selection operation of a GA. Its benefits are ob-
vious, partly because it is unnecessary to adjust the
penalty parameters by trail and error, and partly be-
cause it is easy to handle and implement. Deb’s com-
parison criteria in the tournament selection operator
are as follows (Deb, 2000):

(1) Any feasible solution is preferred to any infea-
sible solution.

(2) Among two feasible solutions, the one having
better objective function value is preferred.

(3) Among two infeasible solutions, the one having
smaller constraint violation is preferred.

To maintain diversity among feasible solutions,
Deb (2000) used a simple niche strategy in the tour-
nament selection operator, which can be described in
the following way: Let d̄ and nf respectively be a
specific critical distance and the number of feasible
solutions to be checked. When comparing two fea-
sible solutions Xi = (xi,1, xi,2, · · · , xi,m) and Xj =
(xj,1, xj,2, · · · , xj,m), where m is the gene number of
the individual, the normalized Euclidean distance

dij =

√√√√ 1
m

m∑

l=1

(
xi,l − xj,l

x̄l − xl

)2

is measured between them, where x̄l and xl(16l6m)
are specified constants and stand respectively for the
upper and lower bounds of the lth variable, i.e., xl 6
xi,l, xj,l 6 x̄l(1 6 l 6 m). If dij < d̄, the solutions
Xi and Xj are compared with their objective func-
tion values. Otherwise, they are not compared, and
another solution Xj is checked. If nf feasible solu-
tions are checked and none is found to qualify within
the critical distance, the solution Xi is declared the
winner.

This kind of selection mechanism does not need
to take both the objective function and the extent of
constraint violation into consideration, and it does not
need to calculate the objective function value for infea-
sible solutions, which will be used in the GA-CNOP.

The fitness function in the GA-CNOP is specified
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Fig. 2. Evolution of the model solution with time, where r = 28 and the initial condition is
(−8.48,−8.48, 27), which corresponds to c1 superposed an initial perturbation.
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Fig. 3. Same as Fig. 2, except with r = 10 and the initial condition (−4.49,−4.89, 9).
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as
f = J(δX(0)) = ‖(δX(T ))‖22 , (14)

i.e., the fitness function is taken as the objective func-
tion, where δX(0) = (δx(0), δy(0), δz(0)) is the ini-
tial perturbation, δX(T ) = (δx(T ), δy(T ), δz(T )) =
MT (X0 + δX(0)) − MT (X0) denotes the nonlinear
evolution of δX(0), X0 is a given initial basic state,
and MT is the nonlinear propagator of model (13),
‖δX(T )‖22 = δx2(T ) + δy2(T ) + δz2(T ).

The iteration procedure that uses the GA with the
particular genetic operators to locate the CNOP of the
model (13) can be illustrated as follows.

Step0. Encoding and population initialization
Real encoding is adopted in this study, i.e., all op-

timization variables (initial perturbations) are coded
in decimal numbers, which is the direct description of
optimization problems.

Set generation k = 0 and initialize population
Γ (0), which is a set of possible solutions (i.e., initial
perturbation guesses),

Γ(0) =
[
δX1(0), δX2(0), . . . , δXn(0)

]
, (15)

δXi(0) = (δxi(0)(0), δyi(0)(0), δzi(0)(0)) , (16)

where δXi(0) denotes the ith individual of the initial
generation and n is the size of population. There
are two ways to initialize population (i.e., absolute
stochastic initialization and stochastic initialization
combined with prior knowledge), and the first was used
in our numerical experiments, i.e., δxi(0)(0), δyi(0)(0),
and δzi(0)(0) were randomly generated in their con-
straint range. Notably, however, the key of initial-
ization is the diversity of population, that is to say,
the initial population should cover the whole solution
space.

Step 1. Evaluating the population fitness
Calculate the objective function values J

(
δXi(k)

)
,

i = 1, · · · , n according to Eq. (14) by integrating the
model (13) with the initial condition X0 +δXi(k), and
select the best individual δX∗

(k) of current population:

δX∗
(k) = arg max

16i6n
J

(
δXi(k)

)
, (17)

Step 2. Determine whether δX∗
(k) satisfies the

stop criterion of

k−1∑

j=k−ν

∣∣∣J(δX∗
(j+1))− J(δX∗

(j))
∣∣∣ < γ or k > km ,

(18)
where ν is a given positive integer, γ>0 is a real num-
ber, km is the specified maximum generation, and
km = 500 in our numerical experiments. If Eq. (18)
is satisfied, then output δX∗

(k), which is the CNOP of

the model (13) corresponding to the initial basic state
X0, and stop the procedure. If not, go to step 3.

Step 3. Evolving populations
The population evolution is carried out by the fol-

lowing genetic operators.
(1) Selection operator
A selection operator determines whether an indi-

vidual is selected for the next operation. Deb’s tour-
nament selection mechanism and niche strategy were
used in selection operators. In detail, two individuals
are picked at random from the current population and
are compared based on Deb’s comparison criteria and
niche strategy. The better solution (or the winner) is
chosen and kept in the intermediate population. This
process is continued until all n population slots are
filled.

(2) Crossover operator
A GA implements the crossover operation accord-

ing to crossover probability. In this study, the fol-
lowing self-adaptive crossover probability proposed by
Srinivas and Patnaik (1994) was adopted:

Pc =





Pc1 − (Pc1 − Pc2)(f ′ − favg)
fmax − favg

, f ′ > favg

Pc1, f ′ < favg

,

(19)
where fmax and favg are the maximum fitness value
and average fitness value of the present generation, f ′

is the bigger fitness value of the two individuals to be
crossed over, Pc1 = 0.95, Pc2 = 0.8 in this study.

The crossover operator imitates the gene recom-
bination process of natural sexual breeding, and it
is a main search operator in a GA because it ex-
ploits the available information in the previous pop-
ulation to influence the future search. As a re-
sult, many different types of crossover operators, such
as two-point crossover, uniform crossover, arithmeti-
cal crossover, geometrical crossover, simulated binary
crossover (SBX), BLX-α, and so on, have been pro-
posed in different contexts. Considering the high qual-
ity of search ability which it has for multimodal func-
tions, the BLX-α operator proposed by Eshelman and
Schaffer (1992) was adopted in the GA-CNOP.

The BLX-α operates on two parent individ-
uals. For the two selected parent individuals,
δX

(k)
i = (δx(k)

i (0), δy
(k)
i (0), δz

(k)
i (0)) and δX

(k)
j =

(δx(k)
j (0), δy(k)

j (0), δz(k)
j (0)), denoting respectively u

(k)
i,l

and u
(k)
j,l their lth genes, where k is the generation

number. To determine whether or not the crossover
between u

(k)
i,l and u

(k)
j,l is to be performed, a uniform

random real number R in [0, 1] is chosen. If R<Pc

(the crossover probability corresponding to δX
(k)
i and

δX
(k)
j ), the crossover between u

(k)
i,l and u

(k)
j,l is operated

as follows.
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Two uniform random numbers R1 and R2

are generated in interval
[
u

(k)
j,l − α

(
u

(k)
i,l − u

(k)
j,l

)
,

u
(k)
j,l + α

(
u

(k)
i,l − u

(k)
j,l

)]
for u

(k)
j,l <u

(k)
i,l or in[

u
(k)
i,l − α

(
u

(k)
j,l − u

(k)
i,l

)
, u

(k)
i,l + α(u(k)

j,l − u
(k)
i,l )

]
for

u
(k)
i,l <u

(k)
j,l , and they are respectively used as the lth

genes u
(k+1)
i,l and u

(k+1)
j,l of the offspring individuals,

i.e., u
(k+1)
i,l = R1, u

(k+1)
j,l = R2, where α > 0 is a

constant and α = 0.5 normally.
If R>Pc, u

(k)
i,l and u

(k)
j,l are directly copied to u

(k+1)
i,l

and u
(k+1)
j,l , respectively.

After three operations, offspring individuals
δX

(k+1)
i and δX

(k+1)
j can be obtained.

(3) Mutation operator
A GA implements mutation operation according to

mutation probability also. In this study, we adopted
the following self-adaptive mutation probability (Srini-
vas and Patnaik, 1994):

Pm =





Pm1 − (Pm1 − Pm2)(f − favg)
fmax − favg

, f > favg

Pm1, f < favg

,

(20)
where fmax and favg are the same as in crossover prob-
ability, f is the fitness of the individual going to mu-
tate, Pm1 = 0.1, Pm2 = 0.01 in this study.

The mutation operator simulates the mutation of
some gene in a given chromosome during biologi-
cal evolution, which introduces new information and
maintains diversity in the population, thus preventing
the search process from plunging into a local mini-
mum. The non-uniform operator, which is considered
one of the most suitable mutation operators for real
encoding of GAs (Herrera et al., 1998) and is used in
the GA-CNOP, is described as follows.

For a given parent individual δX
(k)
i = (δx(k)

i (0),
δy

(k)
i (0), δz(k)

i (0)), based on the circulation of gene bits
to determine whether its each gene has mutated or not

according to mutation probability, a uniform random
real number R in [0, 1] is first chosen. If R > Pm, then
the lth gene u

(k)
i,l does not mutate, and it is directly

copied to the next generation; otherwise the operation
(i.e., R<Pm) creates a mutation according to one of
following formulas:

u
(k)
i,l + ∆

(
k, x̄l − u

(k)
i,l

)
or u

(k)
i,l −∆

(
k, u

(k)
i,l − xl

)
,

(21)
where x̄l and xl are the upper bound and lower bound
of u

(k)
i,l (i = 1, 2, · · · , n), which can be determined by

the range of the corresponding physical quantity, also
by the problem itself. ∆ (k, y) is given by

∆ (k, y) = yυ (1− k/ω)ϑ
, (22)

where υ is a random number on the interval [0, 1], ω
is the maximum genetic generation number, and ϑ is
the parameter to determine the non-uniform degree,
which is 2 in this study.

4. Numerical experiments and their results
analyses

To demonstrate the effectiveness of the GA-CNOP
method for solving the problem of the lower bound
of maximum predictable time in discontinuous cases,
the numerical experiments using the filtering method,
the ADJ-CNOP and the GA-CNOP, respectively, were
conducted. Because the precision of the filtering
method depends uniquely on the division of the con-
straint region, its results were taken as benchmarks,
and the results yielded by the ADJ-CNOP and the
GA-CNOP were compared with them.

Because this study focused on the impacts of initial
errors on the maximum predictable time, the model
parameter errors were neglected, and the lower bound
estimation for the maximum predictable time T [de-
fined in Eq. (4) for Lorenz model (13)] became

Tl = min
‖δX(0)‖A6σ

{
TδX(0)|TδX(0) = max t : ‖Mτ (X0 + δX(0))−Mτ (X0)‖2 6 ε, 0 6 τ 6 t

}
. (23)

When the norm measuring the initial perturbation
is taken as the two norm, the constraint

‖δX(0)‖2 =
√

δx2(0) + δy2(0) + δz2(0) 6 σ

is called a ball constraint. When the norm is taken
as the infinite norm, the constraint ‖δX(0)‖∞ =
max{|δx(0)| , |δy(0)| , |δz(0)|} 6 σ is called a box con-
straint.

When the filtering method was used, cubic meshes
of certain sizes were used to discretize the constraint
domain of initial perturbations δX(0). In the context

of a ball constraint, the constraint domain is a ball,
and the circumscribed cube of this ball is considered.
Each mesh point outside the ball is connected with
the center of the ball (the origin), and then the in-
tersection point of this line with the boundary of the
ball replaces the mesh point outside the ball. From
every initial perturbation δX(0) corresponding to a
mesh point inside the constraint ball or an intersec-
tion point, a maximum predictable time TδX(0) was
obtained by integrating discretized Lorenz model (13)
and using the following formula:
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Fig. 4. Time evolutions of three components of the numerical solution of model (13),
with initial basic state A(6.0, 16.0, −8.0), in which the horizontal dotted line de-
notes the threshold. From the second patch corresponding to y, it can be clearly seen
that on–off switches are triggered from 40th time step.

{TδX(0) = max t : ‖Mτ (X0 + δX(0))−Mτ (X0)‖2 6 ε, 0 6 τ 6 t} .

For all of these maximum predictable times, the
smallest one was considered the lower bound of max-
imum predictable time Tl. Obviously, the precision
of the filtering method depends upon the cubic-mesh
size (cube-mesh length), which was set as 0.001 in the
numerical experiments.

The relevant parameters used in the numerical ex-
periments were as follows: the allowable prediction
precision ε was taken as 0.6, 1.0, 1.4, 1.8, 2.2 respec-
tively; the radius σ of the constraint ball of initial per-
turbations was taken as 0.005, 0.01, 0.02, 0.04, 0.08,
and 0.16 respectively; and the population size was 60.

When the initial basic state was stationary point
X0 = O and threshold was yc = −1.5, to every value
of ε and σ, with either the ball constraint or the box
constraint, the ADJ-CNOP and GA-CNOP both gave
the same lower bound of maximum predictable time,
which is consistent with the result of the filtering
method with sufficiently fine division. We took the
CNOP, corresponding to the lower bound of maximum
predictable time in the numerical experiment, as an
initial perturbation, and superposed it upon the initial
basic state and integrated the model (13). In this case,
because the model solution did not trigger “switches”,
the ADJ-CNOP and GA-CNOP could solve both pre-
diction problems effectively.

To study the influence of switches on the ADJ-
CNOP and GA-CNOP, the initial basic state was

taken at X0 = A = (6.0, 16.0,−8.0), and threshold
was still yc = −1.5. We plotted the time evolution
of x, y, z components of the model solution (Fig. 4),
from which we can see that the on–off switches were
triggered from the 40th time step.

For the initial state A = (6.0, 16.0,−8.0) and dif-
ferent values of ε and σ, we tested the performance of
the ADJ-CNOP and GA-CNOP in yielding the lower
bound of maximum predictable time under the ball
constraint, and we compared the results with those
of the filtering method. The following three tables
demonstrate the results of the three methods.

The numbers in bold italic in tables show distinct
lower bounds of maximum predictable time compared
with those of the filtering method. The results show
that when the model contained discontinuous on–off
switches, the results of the GA-CNOP were almost
consistent with those of the filtering method, except
for a one-step difference in the lower bound of max-
imum predictable time at some points, which stems
from the one-step precision of the filtering method.
However, in the results listed Table 3, the ADJ-CNOP
only shares 50% of the same lower bounds of maximum
predictable time with those of the filtering method,
while the remaining 50% of results are all bigger, even
reaching the biggest 31 division steps corresponding to
σ = 0.04, ε = 2.2. To further test the correctness of
the lower bound of maximum predictable time via the
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Table 1. The lower bounder of maximal prediction time yielded by the filtering approach under the ball constraint.

ε δ = 0.005 δ = 0.01 δ = 0.02 δ = 0.04 δ = 0.08 δ = 0.16

0.6 192 192 192 40 40 40
1.0 203 203 203 40 40 40
1.4 211 211 211 198 198 190
1.8 221 221 220 203 202 195
2.2 239 239 239 208 207 199

Table 2. Same as Table 1 except the lower bounder of maximum predictability time is yielded by the GA-CNOP, in
which the numbers in bold italic show distinct lower bounds of maximum predictable time compared with those by the
filtering method.

ε δ = 0.005 δ = 0.01 δ = 0.02 δ = 0.04 δ = 0.08 δ = 0.16

0.6 192 192 191191191 40 40 40
1.0 203 203 202202202 40 40 40
1.4 211 211 211 197197197 197197197 190
1.8 220 220 219219219 203 202 195
2.2 239 239 239 208 206206206 199

Table 3. Same as Table 2 except the lower bounder of maximum predictability time is yielded by the ADJ-CNOP.

ε δ = 0.005 δ = 0.01 δ = 0.02 δ = 0.04 δ = 0.08 δ = 0.16

0.6 192 196196196 195195195 40 40 40
1.0 203 209209209 205205205 40 40 40
1.4 211 215215215 216216216 215215215 200200200 197197197
1.8 221 226226226 221221221 211211211 203203203 196196196
2.2 239 239 239 239239239 209209209 208208208

GA-CNOP method, we used the CNOPs, obtained at
every time n∆t, n = 0, 1, · · · , N of the three meth-
ods, as initial perturbations, and superposed them on
the initial basic state X0 = A to integrate the model
(13). Thus we obtained the prediction errors at ev-
ery time increment and their time evolutions (Fig. 5).
It is obvious that the prediction error reached the
limit ε = 1.4 at 179∆t for the CNOP gained from
the GA-CNOP, while for the CNOP gained from the
ADJ-CNOP, the prediction error continued to search
forward without reaching the limit and eventually out-
put the incorrect lower bound of maximum predictable
time, T = 215∆t.

These results were calculated under the ball con-
straint. To reveal the effectiveness of the GA-CNOP
in attaining the lower bound of maximum predictable
time in discontinuous cases and its independence of the
form of a constraint condition, we further implemented
numerical experiments with the box constraints using
the filtering method, the ADJ-CNOP method, and the
GA-CNOP method with the same parameters used for
the ball constraint. Tables 4, 5, and 6 show the related
results, respectively.

Test results listed in Tables 4, 5, and 6 reveal that,
under the box constraint, the GA-CNOP method was
also able to obtain the precise lower bound of maxi-

mum predictable time, while the ADJ-CNOP method
yielded the biggest deviation of 155 time steps of the
lower bound of maximum predictable time with re-
spect to that of the filtering method, which is true for
σ = 0.04, ε = 1.0. In addition, similar to the analy-
sis shown in Fig. 5, Fig. 6 shows the time evolutions
of prediction errors based on the filtering method, the
ADJ-CNOP method, and the GA-CNOP method un-
der the box constraint. It can be seen clearly that pre-
diction error reached the limit ε = 1.0 at 40∆t time for
the CNOP gained from the GA-CNOP, while for the
CNOP gained from the ADJ-CNOP, the prediction er-
ror continued to search forward without reaching the
limit and eventually output the incorrect lower bound
of maximum predictable time, T = 195∆t.

5. Discussion and conclusion

Using the modified Lorenz equation as the pre-
diction model and taking the results gained by using
the filtering method as benchmarks, this study investi-
gated how effectively the ADJ-CNOP method and the
GA-CNOP method can solve the problem of the lower
bound of maximum predictable time in non-smooth
cases. Numerical experiment results show that, due to
the effects of discontinuous on–off switches, the ADJ-
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Fig. 5. Time evolutions of the prediction errors based on the
CNOPs gained with the three methods under the ball constraint,
in which σ = 0.04, ε = 1.4, yc = −1.50.

Fig. 6. Same as Fig. 5 except σ = 0.04，ε = 1.0，yc = −1.50 and under the box constraint.

CNOP method, which uses the gradient information
provided by the conventional adjoint method, is often
unable to work out the accurate lower bound of max-
imum predictable time. On the contrary, thanks to
the proper configuration of genetic operators and the
effective handling of constraint conditions, the GA-
CNOP method reveals its superiority in solving the
problem of the lower bound of maximum predictable
time. This method is capable of providing the accurate
solution to the problem whether the effect of on–off
switches is present or absent. The GA-CNOP method,
compared to the other two methods, is more effective
and feasible in its capacity to solve the problem of
the lower bound of maximum predictable time; it is
worth disseminating among our fellow researchers and
applying to predictability problems that involve on–off
switch processes. However, this method still requires
further testing in terms of whether it can solve the

problem of the lower bound of maximum predictable
time effectively in a real high-dimensional atmospheric
model in spite of the fact that in the modified Lorenz
equation, the GA-CNOP method can solve the prob-
lem. In addition, the computational time consumed by
the GA-CNOP is much greater than that of the ADJ-
CNOP; a GA starting from a set of candidate solutions
must integrate the prediction model many more times
compared with the conventional adjoint method, thus
consuming much more time when using single central
processing unit (CPU). Nevertheless, this deficiency
can be overcome by executing the parallel computa-
tion for GAs, because many genetic operations of dif-
ferent individuals in one generation are independent.
This can be done among different CPUs, taking full
advantage of fast computational parallel technology.
Because the dimension of the Lorenz equation used as
the prediction model is just three, the parallel com-
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Table 4. The lower bounder of maximal prediction time yielded by the filtering approach under the box constraint.

ε δ = 0.005 δ = 0.01 δ = 0.02 δ = 0.04 δ = 0.08 δ = 0.16

0.6 198 197 40 40 40 40
1.0 209 209 40 40 40 40
1.4 215 214 214 206 204 194
1.8 239 239 220 209 208 201
2.2 239 239 239 212 211 208

Table 5. Same as Table 4 except the lower bounder of maximum predictability time is yielded by the GA-CNOP, in
which the numbers in bold italic show distinct lower bounds of maximum predictable time compared with those by the
filtering method.

ε δ = 0.005 δ = 0.01 δ = 0.02 δ = 0.04 δ = 0.08 δ = 0.16

0.6 198 197 40 40 40 40
1.0 209 209 40 40 40 40
1.4 214214214 214 214 206 203203203 194
1.8 239 239 222222222 209 208 201
2.2 239 239 239 212 211 208

Table 6. Same as Table 5 except the lower bounder of maximum predictability time is yielded by the ADJ-CNOP.

ε δ = 0.005 δ = 0.01 δ = 0.02 δ = 0.04 δ = 0.08 δ = 0.16

0.6 198 197 40 40 40 40
1.0 211211211 209 40 195195195 414141 40
1.4 216216216 219219219 214 207207207 207207207 195195195
1.8 239 239 239239239 215215215 211211211 207207207
2.2 239 239 239 214214214 213213213 212212212

putation in the GA-CNOP was not performed in this
study. Therefore, better GAs and the parallel of GAs
in solving the problems of this kind need to be further
explored.
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