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ABSTRACT

A new invariant called the generalized Ertel–Rossby invariant (GER) was developed in this study. The
new invariant is given by the dot product of the generalized vorticity and the generalized velocity. The
generalized vorticity is the absolute vorticity minus the cross–product of the gradient of Lagrangian–time
integrated temperature and the gradient of entropy. The generalized velocity is the absolute velocity minus
the sum of the gradient of Lagrangian–time integrated kinetic potential and the Lagrangian–time integrated
temperature multiplied by the gradient of entropy. In addition to the traditional potential vorticity, the
GER invariant may provide another useful tool to study the atmospheric dynamic processes for weather
phenomena ranging from large scales to small scales.
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1. Introduction

Potential vorticity is an important invariant and a
conserved tracer for an adiabatic and frictionless flow.
It was initially given by Rossby (1936) for a barotropic
atmosphere, and its exact form was given by Ertel
(1942) for a baroclinic atmosphere, which is

PV = ρ−1ξa · ∇θ ,

where ρ denotes the mass density per unit volume,
ξa = ξ + 2ΩΩΩΩΩΩΩΩΩ is the absolute vorticity, ξ = ∇ × V is
the relative vorticity, ΩΩΩ is the angular velocity of the
earth, V is the air velocity relative to the Earth, ∇ is
the three–dimensional gradient operator to r, and θ is
the potential temperature.

The most important property of PV is its material
conservation for an adiabatic and frictionless flow, and
this property is very useful for visualizing the atmo-

spheric motion and studying the related dynamic pro-
cesses. Thus PV has been applied for several pur-
poses: (1) to characterize the two–dimensional motion
in a layered manner; (2) to take account of phenom-
ena such as the often–temporary spin–up or spin–down
caused by adiabatic vertical motion; (3) to describe the
important aspects of the dynamics without explicit ref-
erence to the vertical motion; and (4) to visualize and
comprehend quasi–horizontal, two–dimensional advec-
tion (Uccellini et al., 1985; Hoskins and Berrisford,
1988; Hoskins, 1997; Holton, 2004).

A related property of the potential vorticity for
large–scale motions is its invertibility under a suit-
able balance condition, which assumes that gravity
and inertial–gravity waves are either absent altogether
or can be averaged out. Sometimes it is referred to a
“slow–manifold” condition (Egger, 1990; McIntyre and
Norton, 1991). Therefore, with its conservation and
invertibility, the approximated PV and related “PV–
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thinking” (Hoskins et al., 1985) have been particularly
useful for simplified understanding and interpretation
of various large–scale atmospheric processes in which
the layered two–dimensional and non–gravity wave
parts of the motion are primary. However, the phys-
ical variables (e.g., velocity, pressure) would change
rapidly for severe weather such as cyclones, vortices, or
thunderstorms. Thus the adoption of the balance ap-
proximation becomes questionable. As we know, po-
tential vorticity is the dot product of absolute vorticity
and the gradient of potential temperature, so it cannot
provide a complete description of the motion whose ve-
locity and dynamic pressure vary rapidly and locally.
Hence, it is quite necessary to find another materially
conserved invariant, which may include additional dy-
namical information than the potential vorticity for
the baroclinic atmosphere.

By using the Weber transformation and the La-
grangian continuity equation, Ertel and Rossby (1949,
ER49 hereafter) obtained an invariant different from
PV, which is called the Ertel–Rossby (ER) invariant
in the barotropic atmosphere. Zdunkowski and Bott
(2003, ER03 hereafter) also used the Weber transfor-
mation and obtained the Ertel–Rossby invariant in the
non–rotating baroclinic atmosphere, called the baro-
clinic Ertel–Rossby invariant. However, the invariant
in the rotating framework was only briefly mentioned
in ER03, with no detailed derivation. Moreover, the
Webber transformation used in the derivation of ER49
and ER03 was only a mathematical transformation,
which did not include much physical background.

The generalized vorticity equation (Mobbs, 1981;
Wu, 2002) provided another way to obtain some invari-
ants for atmospheric dynamics. By defining a tracer
function, a new invariant could be obtained. For ex-
ample, if the tracer function was the potential tem-
perature, the traditional potential vorticity could be
deduced. Hence, to find a new invariant to describe
the motion of the atmosphere, another tracer func-
tion, different from the potential temperature, needs
to be defined.

For this purpose, the Clebsch transformation was
employed to define a new tracer function to obtain a
new invariant. With the Clebsch transformation the
motion equation was transformed into a velocity field
equation. Based on the velocity field equation, we
defined a new tracer function and deduced another
invariant, which was named the generalized Ertel–
Rossby (GER) invariant. The new invariant may not
only describe dynamics on the slow manifold but may
also include dynamical information of severe weather.

This paper is arranged as follows. In Section 2, we
introduce the generalized vorticity equation. In Sec-
tion 3, the Clebsch transformation is used to find the

new invariant GER for the baroclinic atmosphere in
the rotating frame. A concluding remark is given in
Section 4.

2. Generalized vorticity equation

In this study, we considered the motion of a com-
pressible, adiabatic and non–dissipative atmosphere in
a region D. The motion equation for an air particle is
given by

dtV + 2ΩΩΩ × V + 1/ρ∇p + gk = 0 , (1)

where V is the relative velocity, ΩΩΩ is the angular ve-
locity of the rotating frame, g is the gravity, p is the
pressure, ρ is the density, k is the unit vector along
the earth radius in the local Cartesian coordinates.

The entropy of the air particle S is defined as
S = cp ln θ + C (cp is the specific heat at constant
pressure and C is a constant). So

∇S =
cp

θ
∇θ =

cp

T
∇T − R

p
∇p . (2)

Hence the pressure gradient force in Eq. (1) can be
rewritten as

−1/ρ∇p = T∇S −∇cpT = T∇S −∇H , (3)

where H = cpT = cvT + p/ρ is the enthalpy where cv

is the specific heat at constant volume.
Substituting Eq. (3) into Eq. (1) yields another

form of the motion equation

dtV + 2ΩΩΩ × V − T∇S +∇H +∇φ = 0, (4)

where ∇φ = gk and φ is the geopotential. Then the
vorticity equation is given by the curl of Eq. (4) as

dt(ξa/ρ) = (ξa/ρ) · ∇V −∇T ×∇S/ρ , (5)

For the barotropic atmosphere, Eq. (5) is

dt(ξa/ρ) = (ξa/ρ) · ∇V .

For the baroclinic atmosphere, the similar vorticity
equation can be obtained as

dt(ξg/ρ) = (ξg/ρ) · ∇V , (6)

which is called the generalized vorticity equation. ξg =
ξa − ∇η × ∇S is the generalized vorticity. η is the
Lagrangian–time integrated temperature (T ) along the
trajectory of the air particle which can be expressed
as dtη = T .

The left hand part of Eq. (6) can be rewritten as

dt

(
ξ + 2ΩΩΩ −∇η ×∇S

ρ

)

= dt

(
ξ + 2ΩΩΩ

ρ

)
− dt

(∇η ×∇S

ρ

)
.
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Expanding term dt

(∇η ×∇S

ρ

)
obtains

dt

(∇η ×∇S

ρ

)
= − 1

ρ2
∇η ×∇S

dρ

dt
+

1
ρ

d

dt
∇η

×∇S +
1
ρ
∇η × d

dt
∇S. (7)

Using equations

dρ

dt
= −ρ∇ · V ,

d∇S

dt
= ∇dS

dt
−∇S · ∇V −∇S ×∇× V ,

d∇η

dt
= ∇dη

dt
−∇η · ∇V −∇η ×∇× V ,

(8)

together with dtS = 0, dtη = T and the following
identity:

∇S × (∇η · ∇)V −∇η × (∇S · ∇)V +

∇S × [∇η × (∇× V )]−∇η × [∇S × (∇× V )]

= (∇S ×∇η)∇ · V − (∇S ×∇η) · ∇V .
(9)

Eq. (7) can be rewritten as

dt

(∇η ×∇S

ρ

)
=

(∇η ×∇S

ρ

)
· ∇V +

∇T ×∇S

ρ
.

(10)
Eq. (5) minus Eq. (10) yields Eq. (6).

From Eq. (6), we can prove that the operators dt

and (ξg/ρ) ·∇ commute for any tracer function λ, that
is, the following equation would satisfy:

dt [(ξg/ρ) · ∇λ] = (ξg/ρ) · ∇dtλ (11)

In particular, it is easy to see that

dt [(ξg/ρ) · ∇λ]

= dt [(ξg/ρ)] · ∇λ + (ξg/ρ) · dt∇λ

= [(ξg/ρ) · ∇V ] · ∇λ + (ξg/ρ) · dt∇λ

= [(ξg/ρ) · ∇V ] · ∇λ + (ξg/ρ)·
(∇dtλ−∇λ · ∇V −∇λ×∇× V )

= (ξg/ρ) · ∇dtλ + (ξg/ρ)·
(∇λ · ∇V −∇λ · ∇V −∇λ×∇× V )

= (ξg/ρ) · dt∇λ ,

(12)

where Eq. (6) is used in the second step,

dt∇λ = ∇dtλ−∇(V · ∇λ) + V · ∇(∇λ)
= ∇dtλ−∇λ · ∇V −∇λ×∇× V

is used in the third step, and the identity

∇V · ∇λ−∇λ · ∇V = ∇λ×∇× V

is used in the last step.
The original derivation and related discussion of

Eq. (11) can be found in Mobbs (1981) and Wu (2002).

3. Clebsch transformation and the general-
ized Ertel–Rossby invariant

Equation (11) provides a method of finding new
invariants. For example, let the tracer function be the
entropy of the atmospheric particle (S), from Eq. (11)
one can obtain

dt

[(
ξa −∇η ×∇S

ρ

)
· ∇S

]

= dt(ξa · ∇S/ρ) =
(

ξa −∇η ×∇S

ρ

)
· ∇dtS. (13)

For an adiabatic flow, dtS = 0, so Eq. (13) can be
written as

dt(ξa · ∇S/ρ) = 0. (14)

From Eq. (14), the well–known potential vorticity

PV = ξa · ∇S/ρ , (15)

is then obtained. To describe the dynamics of severe
weather, another tracer function, which would include
much dynamical information, should be found. In this
section, the Clebsch transformation is applied to find a
new tracer function. By this transformation, the mo-
tion Eq. (4) was transformed as a velocity field equa-
tion, which includes nearly all dynamical information
for the air flow.

The Clebsh transformation for the velocity

V = ∇Φ + α∇β

was first introduced by (Clebsch, 1859) and applied to
barotropic flow only. Here, Φ, α and β are the inte-
gral of Lagrangian function. Physically, α and β can
be the initial velocity field and Lagrangian displace-
ment field, respectively, according to Dutton (1976).
Herivel (1955) proposed a similar formula applying to
non–barotropic flow:

V = ∇Φ + η∇S ,

which is not of general validity. Seliger and Whitham
(1968) indicated that for the general flow the velocity
can be written as follows

V = ∇Φ + η∇S + α∇β, (16)

where




dtΦ = 1
2V 2 −H − φ ,

dtα = dtβ = 0 ,

dtη = T ,

(17)
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H is the enthalpy and φ is the geopotential.
For a rotating frame, we considered the Clebsch

transformation for the absolute velocity defined by
Va = V + Ve = V + ΩΩΩ × r as follows:

Va = ∇Φ + η∇S + α∇β, (18)

where Va is the absolute velocity, Ve is the velocity
due to the rotation of the earth and dtα = dtβ = 0.

Differentiating Eq. (18) with respect to the time t
yields

dtVa = dt∇Φ + T∇S + ηdt∇S + αdt∇β

= ∇dtΦ + T∇S −∇Φ · ∇V −∇Φ× (∇× V )+

η∇dtS − η∇S · ∇V − η∇S × (∇× V )+

α∇dtβ − α∇β · ∇V − α∇β × (∇× V ) .
(19)

Substituting α∇β in (18) into (19) gives

dtVa = ∇dtΦ + T∇S − Va · ∇V − Va × (∇× V )

= ∇dtΦ + T∇S − 1
2
(V 2

a − V 2
e ) + V ×ΩΩΩ .

(20)
By noting dtVa = dtV + dt(ΩΩΩ × r) = dtV + ΩΩΩ × V
and comparing Eq. (20) with Eq. (4), we obtained

dtΦ =
1
2
(V 2

a − V 2
e )−H − φ . (21)

The right–hand side of Eq. (21) is called the kinetic
potential. For barotropic atmosphere, it reduces to
the kinetic potential defined in Eq. (5) of ER49. Be-
cause the quantities α and β are time invariant, by
using Eq. (6) and performing similar steps as those in
Eq. (12), we obtain

dt

[(
ξ + 2ΩΩΩ −∇η ×∇S

ρ

)
· α∇β

]

= α

(
ξ + 2ΩΩΩ −∇η ×∇S

ρ

)
∇dtβ = 0 . (22)

This leads to a new invariant, which is given by

GER = ξg · Vg/ρ , (23)

and
dtGER/dt = 0 , (24)

where ξg = ξa −∇η ×∇S is the generalized vorticity
as defined in Eq. (6), and Vg = α∇β = Va−∇Φ−η∇S
[see Eq. (18)] is the generalized velocity.

Note that ξg is the generalized vorticity, while Vg

is the generalized velocity. Hence, ξg ·Vg has the same
physical dimension as the helicity ξ ·V , which may be
called the “generalized helicity”. The similar defini-
tion can be found in Gaffet (1985) and Mobbs (1981) in

both the barotropic and baroclinic atmosphere. How-
ever, Gaffet (1985) obtained the helicity under the re-
striction of zero potential vorticity flow, and Mobbs
(1981) gave the generalized helicity on the basis of the
Weber’s transformation and did not include the gradi-
ent of Lagrangian–time integrated kinetic potential.

The new invariant

GER =
ξ + 2ΩΩΩ −∇η ×∇s

ρ
· (Va−∇Φ− η∇s) , (25)

in non–rotating frame becomes

GER′ =
ξ −∇η ×∇s

ρ
· (V −∇Φ′ − η∇s) , (26)

where

dtΦ′ =
V 2

2
− φ−H .

GER′ is the same as the baroclinic Ertel–Rossby in-
variant obtained in ER03, which is deduced by the
Weber transformation. The relationship between the
new GER invariant and the traditional potential vor-
ticity and the generalized vorticity were not given in
this study.

From Eq. (25), we have

dt(∇Φ · ξg) = ξg · ∇dtΦ

=
[
1
2
∇(V 2

a − V 2
e )−∇φ−∇H

]
· ξg

=
1
2
∇(V 2

a − V 2
e ) · ξg−

(∇φ + 1/ρ∇p) · ξg − T∇s · ξg .

(27)

Combining Eqs. (27) and (25) obtains

dtGER = dt (Va · ξg)− 1
2
∇(V 2

a − V 2
e )·

ξg + (∇φ +
1
ρ
∇p) · ξg

= dt{ξg · (Va −∇W )}
= 0,

(28)

where

dW

dt
=

1
2
(V 2

a − V 2
e )− φ−

∫
dp

ρ
. (29)

It leads to another form of the GER as

GER′ =
ξ + 2ΩΩΩ −∇η ×∇s

ρ
· (Va −∇W ) . (30)

For barotropic atmosphere, Eq. (30) reduces to

GER′ =
ξa

ρ
· (Va −∇W ) , (31)

and this gives the traditional Ertel–Rossby invariant.
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4. Concluding remarks

In this study, the generalized Ertel–Rossby (GER)
invariant, was introduced physically and derived math-
ematically on the basis of the generalized vorticity
equation and the generalized velocity equation. The
generalized vorticity equation provided a method to
find new invariants, and the velocity equation which
was obtained by Clebsch transformation was used to
give the tracer function. The new invariant GER was
expressed by the dot product of the generalized vor-
ticity and the generalized velocity. The generalized
vorticity was the absolute vorticity minus the cross–
product of the gradient of Lagrangian–time integrated
temperature and the gradient of entropy. The gen-
eralized velocity was the absolute velocity minus the
sum of the gradient of Lagrangian–time integrated ki-
netic potential and the Lagrangian–time integrated
temperature multiplied by the gradient of entropy. Be-
cause GER contains much different dynamic informa-
tion from the traditional potential vorticity, it may
provide another useful tool to study the atmospheric
dynamic processes for phenomena ranging from large
scales to small scales.
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