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ABSTRACT

In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in
Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall
data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial
neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009,
were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and
Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian
Bureau of Meteorology’s Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circula-
tion model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared.
The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is
considered preliminary, with potential for significant improvement such as inclusion of output from GCMs
and experimentation with other input attributes.
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1. Introduction

1.1 Limitation of traditional models for rain-
fall forecast

Understanding the complex physical processes that
create rainfall remains a major challenge, and accurate
rainfall forecasting remains an important ideal, with
significant implications for food production, securing
water supplies for major population centers, and min-
imizing flood risks. Three-quarters of the state of
Queensland, Australia, was declared a disaster zone
following torrential rains during the summer of 2010–
2011 (Hurst, 2011). Official weather and climate fore-
casts failed to predict the magnitude of the event, cre-
ating particular issues for dam management, which re-
sulted in abrupt water releases that contributed to the
flooding of the capital city, Brisbane (Seqwater, 2011;
Queensland Flood Commission of Inquiry, 2011).

The Australian Bureau of Meteorology (BOM) pro-
duces seasonal rainfall outlooks and regular updates

on ENSO, and it is working to improve seasonal and
intraseasonal rainfall forecasts using the Predictive
Ocean Atmosphere Model for Australia (POAMA), a
GCM under development for 10 years (Zhao and Hen-
don, 2009; Hudson et al., 2011). The Queensland De-
partment of Environment and Resource Management
also produces a seasonal rainfall forecast known as
SPOTA-1 (Seasonal Pacific Ocean Temperature Anal-
ysis), based on statistical analyses of climate indices
(Day et al., 2010).

1.2 Introducing artificial neural networks

Artificial neural networks are not currently used in
Australia for official rainfall forecasts, and there has
been limited consideration of their possible application
beyond short-term forecasting of rainfall in the Parra-
matta catchment (Luk et al., 2000; Luk et al., 2001;
Nasseri et al., 2008). In other parts of the world, par-
ticularly Asia, the use of artificial neural networks for
short-, medium-, and long-term forecasting is an active
area of research within the meteorology and mathe-
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matics and computing communities (e.g., French et
al., 1992; Tangang et al., 1998; Chattopadhyay and
Chattopadhyay, 2008).

Extensive literature is available on the theoretical
principles behind neural networks and their applica-
tions in a wide range of disciplines including science,
engineering, and economics. The mathematical fun-
damentals of neural networks and specific applications
in hydrology, including rainfall, have been reviewed in
a two-part series (ASCE Task Committee on Applica-
tion of Artificial Neural Networks in Hydrology, 2000a,
b). Artificial neural networks are massive, parallel-
distributed, information-processing systems with char-
acteristics resembling the biological neural networks of
the human brain. Typically, an artificial neural net-
work is configured with the following characteristics:
(1) information processing occurs at many single ele-
ments called nodes, or neurons; (2) signals are passed
between nodes through connection links; (3) each con-
nection link has an associated weight that represents
its connection strength; and (4) each node typically
applies a nonlinear transformation called an activa-
tion function to its net input to determine its output
signal.

Most applications in rainfall forecasting utilize
a feed-forward neural network that incorporates the
standard static multilayer perceptron (MLP) trained
with the back-propagation algorithm (e.g., Karamouz
et al., 2008). This configuration provides a static net-
work, lacking a memory capability. The MLP model
does not incorporate temporal processing, and the in-
put vector space does not consider temporal relation-
ships among inputs (Giles et al., 1997) often leading
to suboptimal solutions. There are various ways that
a “memory” capability can be introduced into static
neural networks, making them dynamic. In increasing
order of complexity and capability, dynamic models
include the following:

(1) Tapped delay line models: The network has
past inputs explicitly available through a tapped delay
line (Mozer and Smolensky, 1989). The use of these in-
ternal time-delay operators enables the network to be-
have dynamically and leads to the conventional time-
delay neural network (TDNN).

(2) Context or partial recurrent models: The net-
work retains the past output of nodes instead of re-
taining the past raw inputs; for example, the output
of the hidden layer neurons of a feed-forward network
can be used as inputs to the network along with the
true inputs (Elman, 1990).

(3) Fully recurrent models: The network employs
full feedback and interconnections between all nodes.
Algorithms to train fully recurrent models are signifi-
cantly more complex in terms of time and storage re-

quirements (Pineda, 1989).
Once feedback connections are included as in items

(2) and (3), a neural network becomes a recurrent neu-
ral network (RNN). The features of RNN and TDNN
can be combined leading to an extended dynamic neu-
ral network known as a time-delay RNN (TDRNN).

The model that we developed to forecast rainfall in
Queensland is a dynamic stand-alone recurrent, time-
delay neural network—a TDRNN.

1.3 Types of neural network rainfall models

There are at least three approaches to modeling
that can be used in combination with artificial neural
networks.

1.3.1 Function models
Most forecasting of rainfall with artificial neural

networks has been done with what are known as static
function models. These models use sets of attribute
values as input with the goal of predicting a corre-
sponding forecast rainfall value. Each input set of at-
tribute values may comprise lagged rainfall values, or
other lagged climate-related values, for example, the
Southern Oscillation Index (SOI) or a combination of
both.

Wu et al. (2001) generated forecasts for monsoon
rainfall in China up to 10 years in advance using only
historical rainfall data as input. Philip and Joseph
(2003) forecast monthly rainfall for Kerala State in the
southern part of the Indian Peninsula with only his-
torical monthly rainfall data. Chakraverty and Gupta
(2008) input only rainfall data to predict Indian mon-
soon rainfall 6 years in advance. Chattopadhyay and
Chattopadhyay (2008) relied on 129 years of histor-
ical rainfall data (1871 to 1999) to forecast annual
summer-monsoon rainfall over India with a 1-year lead
time. Other examples include Bilgili and Sahin (2010)
forecasting monthly rainfall for stations in Turkey,
Gholizadeh and Darand (2009) forecasting 1 year in
advance for Tehran in Iran, and Freiwan and Cigizoglu
(2005) forecasting 1 month in advance for Amman air-
port in Jordan.

Other investigators have used sets of climatic val-
ues as input with a function modeling approach, with-
out rainfall itself as input (e.g., Navone and Cecca-
tto, 1994). Silverman and Dracup (2000) used a static
function neural network to forecast the total annual
precipitation for California’s seven climatic zones us-
ing input data from climatic indices including the SOI.
Hartman et al. (2008) used a set of climatic indices
again including SOI and also SSTs to forecast summer
rainfall in the Yangtze River Basin in China. Venkate-
san et al. (1997) used a set of 10 input parameters,
including sea level pressures and SSTs to forecast an-
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nual Indian monsoon rainfall. Iseri et al. (2005) used a
combination of various lagged climate indices, includ-
ing the SOI and Pacific Decadal Oscillation (PDO) as
well as SSTs, to forecast monthly rainfall three months
in advance for the city of Fukuoka in Japan. Forecasts
of Indian monsoon rainfall have been made 10 months
in advance using a static function model with 10 in-
put parameters, including temperatures and pressures
(Guhathakurta et al., 1999).

There have been relatively few investigations where
static function models have used a combination of his-
torical rainfall data and other climatic attributes. Kul-
shretha and George (2007) forecast annual rainfall in
India with rainfall and monthly temperatures as input.
Long et al. (1997) forecast seasonal rainfall from his-
toric rainfall data in combination with other attributes
in China.

1.3.2 Classification models
Classification models have been used in Australia

to forecast rainfall independently of artificial neural
networks. Firth et al. (2005) used a nonlinear classifi-
cation system to predict the onset of Australian winter
rainfall. Day et al. (2010) used a classification model
that incorporates SOI as the basis of their official fore-
cast for Queensland’s grazing region. Micevski et al.
(2006) used a classification model based on the Inter-
decadal Pacific Oscillation (IPO) to describe long-term
variability in eastern Australian flood data.

Classification trees attempt to assign attributes to
predetermined classes through a process of hierarchi-
cal data partitioning. The objective is to produce a
tree-based classifier that will enable assignment of any
newly observed individual to its correct class with high
probability.

Although artificial neural networks are commonly
applied to the general problem of classification, there
has been limited application of neural networks in
combination with classification models to forecast
rainfall (Castellani et al., 1996)). Michaelides et al.
(2001) use a neural network to group similar patterns
belonging to the same classes to describe the tempo-
ral distribution of rainfall in Cyprus over the period
1917–1995, but they do not actually forecast rainfall.
To achieve a detailed analysis and the trained neural
network models capable of differentiating between the
various classes, an optimum of 16 classes of rainfall
were used.

1.3.3 Time series models
Time series neural network models output rainfall

values over series of discrete intervals of time.
Htike and Khalifa (2010) used a TDNN to forecast

rainfall for Subang in Malaysia between 1980 and 2009
with historical rainfall values as the sole input. Kar-

mamouz et al. (2008) use both TDNNs and TDRNNs
with a combination of large-scale climate signals, such
as sea-surface pressure and rainfall, to forecast sea-
sonal rainfall in Iran with a 6-month lead time.

Of the published studies we reviewed, our model is
most similar in terms of neural network configuration
to the model used by Karmamouz et al. (2008).

It is difficult to compare and contrast the differ-
ent types of models to evaluate their skill at rainfall
forecasting because researchers generally provide only
a comparison of their output with observed values for
the different regions and time periods.

2. Data

Dynamic artificial neural networks depend on a set
of input predictor data. The datasets need to describe
relevant attributes, to be of high quality, and to span
comparable periods of time, with longer data series
generally preferable to shorter series. In the devel-
opment of our neural network for Queensland rain-
fall, we divided the attributes into four classes: (a)
monthly rainfall, (b) climatic indices, (c) atmospheric
temperatures, and (d) solar data. However, we rec-
ognize other potential attributes that could be input,
for example, changes in atmospheric carbon dioxide,
cosmic ray galactic flux (Erlykin et al., 2009; Laken et
al., 2010; Kirkby et al., 2011), and lunar tides (e.g.,
Vines, 2008).

Neural networks are applied by first using a portion
of each data set to “train” the network. Another, usu-
ally smaller, subset of the data is set aside to validate
the reliability of the trained network. In the develop-
ment of our model we divided the rainfall data for each
site so that 85% was used for training corresponding
to the period from January 1900 to June 1993 (1122
samples or 93.5 years), and 15% for validation corre-
sponding to the period from July 1993 to December
2009 (198 samples or 16.5 years).

2.1 Monthly rainfall

Monthly rainfall data from the Australian Bureau
of Meteorology’s High Quality Climate Database was
input for 20 sites in Queensland (Fig. 1). The sites
were chosen on the basis of quality of data, that is,
long series with few missing values. All sites selected
have between zero and four missing values over the en-
tire range, with the exception of Cheriton. The mean
of the values on either side was substituted for each
missing value, with the exception of Cheriton which
had a longer period of missing values with the corre-
sponding values taken from the nearest high-quality
site at Surat.

Many of the sites were within a region defined by
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Fig. 1. Map of Queensland with high-quality rainfall sites.

the Queensland government as “the major grazing re-
gion” (Day et al., 2010). The Queensland government
provides a specific seasonal forecast for this region
(Fig. 1).

The total input dataset for each location comprised
the complete monthly rainfall record from January
1900 to December 2009, with 1320 samples for each
site. In addition we used a set of monthly rainfall
data, lagged up to 12 months.

2.2 Climate indices

Intraseasonal, interannual, and decadal variabil-
ity in Queensland rainfall has been linked to complex
physical phenomena remote to the Australian land
mass (Risbey et al., 2009; Kirono et al., 2010). The
phenomena are apparent as recurring patterns in SST
and air pressure described numerically by climate in-
dices. The dominant phenomenon is the ENSO that
spans the Pacific Ocean. ENSO has two phases, La
Niña and El Niño, with El Niño events associated with
below-average rainfall often resulting in extended pe-
riods of drought over much of northern and eastern
Australia (McBride and Nicholls, 1983; Power et al.,

1999; Power et al., 2006).
The SOI is a quantitative estimate of ENSO used

extensively in long-range forecasting of rainfall in
Australia (e.g., Nicholls et al., 1996; Suppiah, 2004;
Meinke and Stone, 2005; Braganza et al., 2009). SOI
is defined as the normalized atmospheric pressure dif-
ference between Tahiti and Darwin, and we used SOI
values calculated by the Climate Research Unit, Uni-
versity of East Anglia. We also used Niño 3.4 to de-
scribe ENSO. Niño 3.4 is a measure of SST difference
with data compiled by the Hadley Centre, UK Met Of-
fice for particular latitudes and longitudes normalized
to the period 1971–2000.

There is some evidence that the relationship be-
tween ENSO and rainfall is modulated by phases of
the Interdecadal Pacific Oscillation (IPO) (e.g., Power
et al., 2006). When the IPO is in a negative phase, the
impact of ENSO on Queensland rainfall is enhanced
(e.g., Verdon and Franks, 2006). The IPO index is
compiled infrequently, so we used the related PDO
index of Nate Mantua compiled by the University of
Washington based on HadSST (1900–1980), OI SST
v1 (1982–2001), and OI SST v2 (2002–present).
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Phenomena in the tropical Indian Ocean can also
influence Queensland rainfall; the Indian Ocean Dipole
(IOD) has been found to have some influence particu-
larly in spring (Risby et al., 2009). Some researchers
argue that Indian Ocean variability has a larger influ-
ence than ENSO on the incidence of drought in Aus-
tralia (e.g., Ummenhofer et al., 2009).

The Dipole Mode Index (DMI) is a measure of the
IOD defined as the difference in SST between the tropi-
cal western Indian Ocean and the tropical southeastern
Indian Ocean. We used the DMI based on HadISST1
(1870–present).

All of the data series for the indices we used are
available as monthly values from 1900 to 2009 at the
Royal Netherlands Meteorological Institute (KNMI)
Climate Explorer—a web application that is part of
the World Meteorological Organisation and European
Climate Assessment and Dataset project (2011)a. We
input current and lagged monthly values.

We recognize that ENSO and the IOD can be de-
scribed by other indices and that there are many other
phenomena, including the Madden-Julian Oscillation
(MJO) (Rashid et al., 2011) and the Southern Annu-
lar Mode (SAM) (Marshal et al., 2011) that have been
shown to impact Queensland rainfall. One limitation
of these indices is that they do not extend back to
1900.

We hope to consider other phenomena and more
indices in future research.

2.3 Atmospheric temperatures

The longest high-quality atmospheric temperature
data series for eastern Australia is for Observatory
Hill, Sydney, with maximum and minimum temper-
ature records dating to 1859. We used these data,
available from the Australian Bureau of Meteorology,
as input. There is no comparable temperature dataset
available for any Queensland location.

2.4 Solar data

Climate indices, rainfall, and temperature can be
regarded as internal features of the climate system.
However, variations in rainfall have also been directly
associated with variations in a number of external
attributes, including solar activity (Thresher, 2002;
Tomasino et al., 2004; Versteegh, 2005).

We used sunspot numbers and total solar irradi-
ance as inputs because long series of high-quality data
are available. Monthly measured total solar irradi-
ance is from Frohlich (2000) with the data downloaded
from KNMI Climate Explorer. Sunspot number data
was acquired from the Solar Influences Data Analysis

Centre (SIDC) at the Royal Observatory of Belgium,
downloaded from KNMI Climate Explorer.

3. Method

The neural network software used in this study was
Synapse (Peltarion, Stockholm, Sweden). This soft-
ware provides a versatile neural network platform in
which components can easily be combined and tested
for many different network topologies. A network was
assembled from the set of basic Synapse components,
which included the function layer, the weight layer,
the gamma memory, as well as standard components
for data input and analysis of output. With Synapse,
neural networks was also assembled using “snippets,”
which are modules preassembled from common com-
binations of the basic components.

In this study, supervised training was applied by
providing the network with the desired output target
rainfall (ASCE Task Committee on Application of Ar-
tificial Neural Networks in Hydrology, 2000a). During
training, the weights of the neurons are modified to
achieve a prediction of the next point in the input data.
By repeating this procedure with a large input data set
(the training set), the neural network “learns” the rela-
tionship between input and output data (Chakraverty
and Gupta, 2008). The weights are continuously in-
crementally adjusted, based on the calculated error,
which is the difference between ANN output and the
target response.

However, there is the potential danger of overtrain-
ing a neural network when the network parameters
are overly fine-tuned to the training data set. At this
point, the network attempts to fit the noise component
of the data, as well as learning the more generalized
inherent relationships. As a result, the network can
perform very well over the dataset used for training,
but it may exhibit poor predictive capabilities when
presented with new data (Wang and Sheng, 2010).

To prevent overtraining, a cross-training procedure
is usually applied, with a portion of the available data
reserved for this purpose. Initially, errors for both the
training and cross-training datasets decrease. After an
optimal amount of training, the errors for the train-
ing set continue to decrease, but those associated with
the cross-training dataset increase. Further training
will likely produce overfitting, and the current set of
weights are assumed to be optimal. Synapse enables
continuous monitoring of the errors in both the train-
ing set and the validation set during training, and this
was the approach used in this study to avoid overtrain-
ing.

Artificial neural networks can find existing complex

aAvailable at http://climexp.knmi.nl/about.cgi?id=someone@somewhere



722 NEURAL NETWORK USED TO FORECAST RAINFALL IN QUEENSLAND, AUSTRALIA VOL. 29

Fig. 2. Configuration of the neural network used in
this study. The components used were assembled using
Synapse (Peltarion).

relationships and patterns repeated over diverse time
periods. They can be optimized without a priori
knowledge of the underlying physical processes, and
they need not be constrained by a priori solution struc-
tures (Silverman and Dracup, 2000). One practical
limitation may be the amount of time it takes to train
the network; training time increases with the size and
number of input predictor datasets.

In developing this prototype model it was not pos-
sible to predetermine the optimal design of the neural
network for any particular combination of inputs. We
used trial and error to evaluate different configurations
of a dynamic design with the Synapse program. In
particular, we decided on a network design which con-
sistently yielded stable error minima for the training
and validation sets within 10 000 epochs.

The configuration of the ANN used (Fig. 2), con-
sists of two Synapse snippets connected in series—an
Elman network and a TDNN with two hidden layers.
This design was then maintained for all evaluations in
this study, henceforth referred to as the prototype or
the neural network. Although this configuration was
maintained throughout the investigation, the network
was independently trained for each set of input data.
Thus the specific network parameters associated with
components differed for each optimization.

Each input data file comprised a matrix of 1320
rows of monthly data commencing January 1900 and
up to 33 columns of attributes (Table 1). The output
data file comprised a column of forecast monthly rain-

fall corresponding to a 3-month lead from each month
defined in the input file.

Our objective was the best possible rainfall forecast
corresponding to 3 months in advance measured by the
root mean square error (RMSE). For practical reasons,
we began with a single site in Queensland, Kalamia Es-
tate, and progressively added the four classes of data
(Table 1). Kalamia Estate, which is very approxi-
mately halfway along the Queensland east coast, was
chosen at random from 20 high-quality rainfall sites
(Fig. 1).

Rainfall at Kalamia correlated poorly with each of
the input dataset predictors (Pearson correlation co-
efficient < 0.5). This is consistent with the literature
of Risbey et al. (2009), which indicates that in most

Fig. 3. Forecast monthly rainfall (mm) for Kalamia Es-
tate with increasing number of input attributes. The
3-month lead is compared to observed 3-month moving
average.
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Table 1. The four classes of data used to forecast Queensland rainfall. SOI, PDO, Niño 3.4 and DMI are climatic indices
that can be downloaded from the Royal Netherlands Meteorological Institute Climate Explorer.

1. Monthly 2. Climate indices 3. Atmospheric 4. Solar
Rainfall (mm) Temperature (◦)

Current month SOI current month Sydney maximum Sunspot number current month
for current month

Lagged 1 SOI lagged 1 month Sydney minimum Sunspot number lagged 1 month
for current month

Lagged 2 SOI lagged 2 months Sunspot number lagged 2 months
Lagged 3 PDO current month Total solar irradiance 1 month
Lagged 4 PDO lagged 1 month Total solar irradiance lagged 1 month
Lagged 5 Niño-3.4 current month Total solar irradiance lagged 2 months
Lagged 6 Niño-3.4 lagged 1 month
Lagged 7 Niño-3.4 lagged 2 months
Lagged 8 DMI current month
Lagged 9 DMI lagged 1 month
Lagged 10 DMI lagged 2 months
Lagged 11 SOI×PDO month
Lagged 12

Table 2. Neural network forecast skill relative to input data. The error values, RMSEs, and Pearson correlation coef-
ficients are used to compare the forecast monthly rainfall with 3-month lead forecasts for Kalamia Estate, compared to
the 3-month observed moving average.

Inputs RMSE (mm month−1) Pearson

Current rainfall 76.3 0.60
Current and lagged rainfall 72.0 0.64
Total rainfall + temperatures 66.8 0.69
Total rainfall + temperatures + SOI 73.1 0.65
Total rainfall + temperatures + SOI + PDO 66.6 0.75
Total rainfall + temperatures + SOI + PDO + Solar 71.7 0.65
Total rainfall + temperatures + SOI + PDO + Niño-3.4 62.4 0.77
Total rainfall + temperatures + SOI + PDO + DMI 70.0 0.75

regions the individual drivers of rainfall account for
<20% of monthly rainfall variability. Artificial neu-
ral networks can adapt to nonlinear relationships, and
this was evident with the prototype model. Once they
were optimized for the chosen input variables, they
were used to generate time series output that broadly
matched rainfall at Kalamia (Fig. 3) and much better
Pearson correlation coefficients (Table 2).

4. Results

The simplest model for Kalamia had a single at-
tribute as input, rainfall for the current month, with
the target output being forecast rainfall with a 3-
month lead. This forecast was then compared to
the observed 3-month moving average (Pearson cor-
relation coefficient = 0.60). Inclusion of the full set
of lagged rainfall values gave an improved forecast
(Pearson correlation coefficient = 0.64), and a time-
series curve with sharper peaks and broader troughs
(Fig. 3a). Marginal improvement was next achieved by

also inputting the atmospheric temperature dataset
(Fig. 3b; Pearson correlation coefficient = 0.69; Ta-
ble 2). Inputting the SOI also had limited impact,
(Fig. 3c; Pearson correlation coefficient = 0.65). A
more significant improvement came with the addition
of the PDO (Pearson correlation ceofficient = 0.75) by
increasing the forecast rainfall for summers with ob-
served higher rainfall (e.g., 1999 and especially 2009).
The input of Niño 3.4 modulated this addition and
improved the overall fit of forecast and observed rain-
fall (Fig. 3e). Inclusion of the solar attributes, solar
irradiance, and sunspot number did not enhance per-
formance of the model, and inclusion of the IOD did
not improve it significantly (Table 2).

The best combination tested in this study (current
and lagged rainfall, temperatures, SOI, PDO and Niño
3.4) reflected in the highest Pearson correlation coeffi-
cient and the lowest RMSE value (Table 2) was applied
to the other high-quality rainfall sites in Queensland,
and RMSE and Pearson correlation coefficients were
calculated for each site (Table 3).
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Table 3. Neural network forecast skill for Queensland high-quality rainfall sites. The error values, RMSEs, and Pearson
correlation coefficients are used to compare the forecast monthly rainfall with 3-month lead compared to the 3-month
observed moving average. The weighted non-dimensional index (WNDI) is used to normalize for differences in annual
rainfall between sites.

Location Pearson RMSE (mm month−1) Rainfall (mm yr−1) WNDI

Auguthella 0.49 28.5 535.6 0.639
Ayrshire 0.61 30.5 403.2 0.908
Barcaldine 0.61 27.4 503.0 0.655
Burketown 0.66 80.9 784.0 1.238
Cheriton 0.49 25.3 549.3 0.553
Fairymead 0.56 41.9 1079.0 0.465
Harrisville 0.60 32.9 800.5 0.490
Isisford 0.58 26.3 454.5 0.695
Jandowae 0.64 23.6 664.1 0.427
Kalamia 0.71 66.3 1071.0 0.702
Macknade 0.77 110.5 2149.9 0.617
Miles 0.38 27.6 653.4 0.506
Palmerville 0.88 50.6 1051.2 0.573
Pittsworth 0.56 29.9 699.7 0.513
Pleystowe 0.76 77.7 1649.3 0.565
Surat 0.59 21.5 590.0 0.438
Townsville 0.72 82.9 1197.5 0.831
UQ Gatton −0.58 34.1 771.6 0.533
Urandangie 0.60 26.8 301.2 1.070
Warrnambool 0.62 23.5 370.5 0.761

To compare the skill of the neural network among
sites, the RMSE values were normalized by dividing
the corresponding monthly average rainfall to give a
weighted non-dimensional index (WNDI) after Johns
et al. (2006) (Table 3).

It is not standard practice for climate scientists to
provide RMSE values for output from their GCMs or
output as time series graphs. Yet both of these meth-
ods allow easy comparisons across platforms and are
arguably more transparent than the current reliance
on colored maps and correlations (e.g., Hudson et al.,
2011). Indeed a high linear correlation can be mis-
leading if the set of predicted values is consistently a
constant multiple of the target value. RMSE, in par-
ticular, gives a simple, transparent quantitative mea-
sure of the difference between what is forecast and/or
calculated and what is observed and/or the target, and
this measure is easily understood across disciplines.

WNDI values varied with Burketown, a site in
northern central Queensland, reflecting the worst fore-
cast skill with an RMSE of 1.238 and Jandowae, in
southeast Queensland, reflecting the the best RMSE
at 0.427. However, there were no obvious general dif-
ferences in skill between inland and coastal locations
or more northern versus southern locations (Fig. 1 and
Table 3).

To facilitate a direct comparison between the fore-
casting skill of our neural network and the skill of the
general circulation model POAMA-1.5, Oscar Alves

(Centre for Australian Weather and Climate Research,
Australian Bureau of Meteorology) provided output
from POAMA, including monthly average rainfall fore-
casts with a 3-month lead for 18 of our 20 high-quality
rainfall sites. The values were provided as anomalies
and simple bilinear interpolations of surrounding grid
points; the interpolation was necessary for POAMA
forecasts for 250-km2 grid boxes. From these val-
ues, we calculated monthly rainfall then RMSE and
WNDI values (Table 4). Time series plots of output
for POAMA and also the neural network for five of the
high quality rainfall sites are shown in Fig. 3. The fore-
cast with a 3-month lead was compared with observed
rainfall for the same month (Fig. 4).

Both models occasionally produced negative val-
ues for rainfall forecasts during the drier months. In
all cases, negative values were adjusted to zero rainfall
as a physical constraint on the system before RSME
values were calculated.

The neural network is generally more skilled at
forecasting rainfall 3 months in advance giving a lower
RMSE compared to the RMSE for POAMA for each
location, with the exception of Burketown (Table 4).
The time series plots for Burketown are remarkably
similar for the two very different models: neural net-
work (Fig. 4e) versus GCM (Fig. 4f). Neither the neu-
ral network nor the POAMA forecast the observed
peak in rainfall for Burketown of ∼400 mm over the
Australian summer of 1997–1998 (Figs. 4e and f). The
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Fig. 4. Neural Network forecast versus POAMA forecast for five high-quality rainfall
sites. Forecast rainfall (mm) is monthly with 3-month lead, compared to observed
3-month moving average.

neural network grossly overestimated rainfall values
during the summer of 2001. Both the neural network
and POAMA overestimated rainfall for the summer of
2007–2008.

At Kalamia the neural network and POAMA both
underestimated rainfall for the Australian summers of
1996–1997 and 1999–2000 (Fig. 4a and b). POAMA
grossly overestimated rainfall for the summer 1998–
1999 and underestimated rainfall for the summer of
2008–2009 (Fig. 4b).

The neural network forecast the very wet summer
of 2008–2009 at Kalamia (Fig. 4a), but it did not
forecast this same event at Ayrshire Downs (Fig. 4g).
POAMA did forecast three wet summers for Ayrshire
Downs (Fig. 4h), and these events approximated the
magnitude, but not timing, of the two exceptionally
wet summers of 1999–2000 and 2008–2009 (Fig. 4h).

The POAMA forecasts for both Jandowae and
Fairymead Sugar Mill (Figs. 4d and j), were much
noisier than the corresponding forecasts by the neural
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Table 4. Comparing forecast skill of POAMMA with the neural network (NN). RMSE is a comparison of the monthly
forecast 3 months in advance with the observed rainfall for that month. WNDI is a normalized value to facilitate
comparisons among locations with different rainfall amounts.

Location RMSE NN RMSE POAMMA Rainfall WNDI NN WNDI POAMA
(mm month−1) (mm month−1) (mm yr−1)

Augathella 46.6 51.8 535.6 1.044 1.161
Ayrshire 47.9 52.1 405 1.419 1.544
Barcaldine 43.8 58.1 503 1.045 1.386
Burketown 117.7 114 784 1.802 1.745
Cheriton 42.6 52.3 549.3 0.931 1.143
Fairymead 66.1 80.7 1079 0.735 0.897
Harrisville 49.4 64.7 820 0.723 0.947
Isisford 41 53.8 454.5 1.083 1.420
Jandowae 41.2 55.2 664.1 0.744 0.997
Kalamia 102.1 124.4 1071 1.144 1.394
Miles 44.9 57.4 653.4 0.825 1.054
Palmerville 80.7 88 1051.2 0.921 1.005
Pittsworth 47 59.8 699.7 0.806 1.026
Pleystowe 135.4 157.6 1649.3 0.985 1.147
Townsville 130.2 139.1 1197.5 1.305 1.394
UQ Gatton 53.6 64.5 777.6 0.827 0.995
Urandangie 44.4 47.1 301.2 1.769 1.876

network (Figs. 4c and i). While POAMA appeared
to overestimate and underestimate seasonal rainfall
at these sites over the period July 1993 to December
2009, the neural network underestimated particularly
the drier periods (Figs. 4c and i). There may be an
opportunity to significantly improve the skill of the
neural network through the optimization processes by
focusing on these drier periods. In particular, given
the nature of the optimization process, the neural net-
work model would apparently have more to gain in
minimizing errors through focusing on wet months be-
cause they contain larger values, and they may thus
preferentially influence the optimization process.

The Queensland Climate Change Centre of Excel-
lence has developed a statistical model to forecast rain-
fall in Queensland’s grazing lands for the 5-month pe-
riod from November to March each year, a period it
defines as summer. The Seasonal Pacific Ocean Tem-
perature Analysis-1, SPOTA-1, uses its own climate
indices based on differences in SST patterns in the Pa-
cific Ocean. The most accurate SPOTA forecasts are
made in any particular year at the start of November
for the following 5-month summer period. The aver-
age lead-time for the SPOTA rainfall forecast is thus
2.5 months.

It was inherently more difficult to make a di-
rect comparison between the neural network and
the SPOTA 5-month seasonal forecast, than with
POAMA. To compare output from our prototype with
SPOTA, we calculated an average monthly rainfall for
the 5-month summer period with a 3-month lead using

the forecast values previously described (Table 5).
Comparing the WNDI values of 0.410 for SPOTA

to the WNDI value of 0.509 for the neural network
indicates that SPOTA is more skilled at forecasting
summer rainfall in Queensland’s rangelands (Table 5).
This could be because the indices used by SPOTA are
superior, or the difference may be due to the smaller
average lead-time used in this comparison for SPOTA
(2.5 months), or it could be a function of differences
in the geographic area or time periods that were com-
pared.

Although the neural network model output for the
5-month period may appear less accurate than the
SPOTA-1 forecast, it does contain additional informa-
tion. The neural network output provides information
on the distribution of rainfall within the 5-month pe-
riod as well as the total amount of rainfall.

5. Discussion and conclusions

Australia has particularly variable rainfall patterns
(Nicholls et al., 1997). During the past decade, east-
ern Australia has experienced persistent drought fol-
lowed by catastrophic flooding, with three-quarters of
the state of Queensland declared a natural disaster in
January 2011 (Hurst, 2011).

The Australian Bureau of Meteorology has directed
some of its research effort over this period towards the
development of a GCM, the POAMA. This computer
model of the climate system can provide a dynamic
seasonal rainfall forecast, with most skill at predict-
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Table 5. Comparison of forecast skill of SPOTA with the neural network for summer* in the rangelands. The neural
network WNDI scores are a comparison of observed average monthly rainfall for the period July 1993 to December 2009
for summer to the forecast average monthly rainfall with a 3-month lead. The SPOTA WNDI compares the observed
average monthly rainfall for the period 1890– 2010 for summer to the forecast average monthly rainfall with a lead time
varying from 0 to 5 months.

Locations RMSE (mm month−1) Rainfall (mm yr−1) WNDI

Neural Network Values
Auguthella 20.6 535.6 0.461
Ayrshire 32.8 403.2 0.976
Barcaldine 20.7 503.0 0.493
Cheriton 21.2 549.3 0.464
Fairymead 38.6 1079.0 0.429
Harrisville 23.1 800.5 0.346
Isisford 19.9 454.5 0.526
Jandowae 14.4 664.1 0.260
Kalamia 55.9 1071.0 0.626
Macknade 106.0 2149.9 0.591
Miles 26.9 653.4 0.494
Pittsworth 22.5 699.7 0.385
Pleystowe 66.5 1649.3 0.484
Surat 16.2 590.0 0.330
Townsville 73.5 1197.5 0.74
UQ Gatton 26.7 771.6 0.423
Warrnambool 20.4 370.5 0.637

Average Neural Network 0.509
Value
SPOTA Value 0.410

Note: *Summer is defined by SPOTA as the months November, December, January, February, and March.

ing rainfall during austral winter and spring seasons
increasing during dry period extremes of the ENSO
(Hudson et al., 2011).

GCMs, including POAMA, are built up from an
understanding of the physical processes that create
weather. They are mathematical representations of
general atmospheric circulation patterns based on the
Navier–Stokes equations using thermodynamic terms
to incorporate phase change and Earth’s energy bud-
get. According to Zwiers and Von Storch (2004), im-
provements in forecasts by these models is likely to
come from a better understanding of the dynamics of
the system, but so far improvement has been limited
by its complexity and by the many apparently non-
linear relationships that do not yield to analysis from
primary principles.

In Australia, the dynamic systems are often quan-
tified and measured through climate indices. Roger
Stone (Stone et al., 1996), Scott Power (Power et al.,
2006), Stewart Franks (Kiem et al., 2003), Ken Day
(2010) and others have emphasized the importance of
these indices for rainfall forecasts in Queensland. Our
understanding of these drivers of rainfall variability
continues to improve (e.g., Risbey et al., 2009), but
Vaze et al. (2011) claim that GCMs still fail to simu-

late actual observed annual rainfall time series or the
trend in annual rainfall (Vaze et al., 2011). POAMA
has, however, significant skill at forecasting some of
the actual climate indices and the Bureau of Meteo-
rology issues, for example, daily advice on the state of
the ENSO based on forecasts from this GCM with this
information then incorporated into statistical models.

In their review of the role of statistics in climate
research, Zwiers and Von Storch (2004) explained how
statistical analyses can help identify which pieces of
information derived from observations of the climate
system are worthy of synthesis and interpretation, but
they are pessimistic specifically about the application
of neural networks, in particular claiming that, while
neural networks can substantially reduce the cost of
the operational processing of high volumes of remotely
sensed data, they have not improved our ability to syn-
thesize knowledge.

We dispute this premature conclusion. Our proto-
type neural network for rainfall prediction in Queens-
land can improve the synthesis of knowledge and the
actual seasonal forecast.

A problem for the many researchers who have used
climate indices to forecast Queensland rainfall is that
their models have thus far limited them to consider-
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ing combinations of linear correlations individually. In
contrast, our prototype neural network has the ability
to consider large numbers of climate indices and other
inputs simultaneously and to find solutions indepen-
dently of assumed relationships.

In our first attempt at optimizing the neural net-
work for a given set of input attributes, we found
that patterns within rainfall data alone can provide
a forecast (Fig. 3a). Our optimal model included cur-
rent rainfall, lagged rainfall, atmospheric temperature,
SOI, PDO, and Niño 3.4 as input attributes. The in-
clusion of PDO significantly improved the forecast of
the magnitude of rainfall at Kalamia during the sum-
mer of 2008–2009, suggesting a role for this index,
which has thus far been excluded from official Aus-
tralian Bureau of Meteorology statistical forecasts.

RMSE values for our prototype neural network sug-
gest its skill at forecasting rainfall with a 3-month lead
at least as good as POAMA for Queensland’s high-
quality rainfall observation data (Table 4).

Time series output from POAMA and our proto-
type neural network (Fig. 3) indicate that both models
can simulate the actual timing of annual rainfall time
series (cf. Vaze et al., 2011, but they often fail to cap-
ture the magnitude of specific events. POAMA does
appear to perform better at simulating drier periods
(e.g., Burketown in Fig. 3f) and the neural network is
more skilled at capturing the magnitude of some wet
summers (e.g. Kalamia in Fig. 3a).

The impetus for the development of the prototype
materialized only recently, after the flooding of Bris-
bane in January 2011. Output and design of the proto-
type is still considered experimental and preliminary.
Design improvements may be made through focusing
on drier periods, particularly during the optimization
process. There is also significant potential for further
experimentation with input variables, including the
use of the potentially superior indices used by SPOTA.
Furthermore, a neural network does allow for results
from other techniques to be combined, so output from
POAMA, in particular its forecast SOI index, could be
input into our prototype, likely significantly improving
forecast skill.

Although they are not developed from a first prin-
ciples understanding of physical processes, further re-
search into the application of artificial neural networks
to rainfall forecasting in Queensland is likely to result
in a significantly improved seasonal rainfall forecast,
and this likelihood has an intrinsic real value.
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