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ABSTRACT

Because they are most sensitive to atmospheric moisture content, radar refractivity observations can
provide high-resolution information about the highly variable low-level moisture field. In this study, simu-
lated radar refractivity-related phase-change data were created using a radar simulator from realistic high-
resolution model simulation data for a dryline case. These data were analyzed using the 2DVAR system
developed specifically for the phase-change data.

Two sets of experiments with the simulated observations were performed, one assuming a uniform tar-
get spacing of 250 m and one assuming nonuniform spacing between 250 m to 4 km. Several sources of
observation error were considered, and their impacts were examined. They included errors due to ground
target position uncertainty, typical random errors associated with radar measurements, and gross error due
to phase wrapping. Without any additional information, the 2DVAR system was incapable of dealing with
phase-wrapped data directly. When there was no phase wrapping in the data, the 2DVAR produced ex-
cellent analyses, even in the presence of both position uncertainty and random radar measurement errors.
When a separate pre-processing step was applied to unwrap the phase-wrapped data, quality moisture anal-
yses were again obtained, although the analyses were smoother due to the reduced effective resolution of
the observations by interpolation and smoothing involved in the unwrapping procedure. The unwrapping
procedure was effective even when significant differences existed between the analyzed state and the state
at a reference time. The results affirm the promise of using radar refractivity phase-change measurements
for near-surface moisture analysis.
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1. Introduction

The amount and distribution of moisture in the
atmosphere are among the most important factors af-
fecting the prediction of mesoscale and storm-scale

weather (e.g., McPherson et al., 1997), particularly for
quantitative precipitation forecasting (QPF; Emanuel
et al., 1995; Fritsch et al., 1998; Droegemeier et
al., 2000). High-resolution measurements of moisture
within the boundary layer (BL) are even more impor-
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tant because BL moisture is the essential fuel for con-
vection and precipitation.

BL moisture has high spatial and temporal vari-
ability, resulting from often inhomogeneous lower
boundary forcing and BL convective eddies and rolls
(Weckwerth et al., 1996; Weckwerth and Parsons,
2006; Xue and Martin, 2006a). Typical surface obser-
vation networks are too coarse to resolve the fine-scale
structures in BL moisture. Consequently, BL moisture
is poorly characterized by existing observation plat-
forms (Weckwerth et al., 2004).

Ground-based GPS receiver networks provide only
path-integrated quantities and lack resolution in the
BL. The GPS-slant-path water vapor measurements
are most effective at the mid to upper levels where
slant paths intersect (Liu and Xue, 2006). At the
same time, the low-orbiting-satellite-based GPS oc-
cultation data generally do not reach the surface and
have poor horizontal resolution (Ware et al., 1996; An-
thes et al., 2008). Mesoscale surface observational net-
works (e.g., Brock et al., 1995) are currently the best
platform for near-surface moisture observations, but
their spatial resolution may not be sufficient to resolve
fine-scale structures important for convective initiation
(Weckwerth et al., 2004). Therefore, additional high-
resolution moisture measurements within the BL are
needed to fill the data gap, and such data have the
potential to significantly improve convective initiation
and quantitative precipitation forecasting.

High-resolution near-surface water vapor measure-
ments can be derived from radar-based refractivity
measurements utilizing returns from fixed ground tar-
gets (Fabry et al., 1997; Weckwerth et al., 2005).
Effective assimilation of radar refractivity measure-
ments into a NWP model is a relatively new research
area that requires much research. The actual impact
of such observations on storm-scale NWP also needs
investigation, which is most effectively accomplished
by combining meteorological and engineering knowl-
edge. Before testing data from a new platform, it
is valuable to perform experiments using simulated
data through observing system simulation experiments
(OSSEs; Lord et al., 1997), where observations as well
as error properties can be simulated and systemati-
cally evaluated. The OSSE framework also provides
exact information about error properties from differ-
ent sources.

In this study, we aim to develop the capability
to analyze refractivity-derived measurements of near-
surface moisture based on a variational method. We
first test such a capability using simulated refractiv-
ity and phase-change data. A previously modeled case
from the 2002 International H2O Project (IHOP 2002)
field experiment serves as the truth. Refractivity

and phase-change data are simulated using a realis-
tic radar refractivity emulator that includes simula-
tion of observation errors from several possible sources.
The data are analyzed using a specially designed two-
dimensional variational (2DVAR) system that prop-
erly accounts for observation and background errors.
The phase-wrapping issue is investigated in some de-
tail, including the effect of phase wrapping on the anal-
ysis quality. A practical phase-unwrapping procedure
is applied to the simulated data. The unwrapped data
are analyzed with a proper error estimate. The quality
of the analysis is evaluated by comparing the analyzed
moisture fields with the truth.

The rest of this paper is organized as follows: radar
refractivity measurements and the generation of sim-
ulated radar phase-change difference observations and
their associated error are discussed in section 2. The
2DVAR analysis method is described in section 3, and
the results of analysis experiments are presented in sec-
tion 4. Further discussion of our scheme’s effectiveness
is given in section 5 through sensitivity experiments.
A summary is provided in section 6.

2. Radar refractivity and phase-change differ-
ence measurements and observation simu-
lation

2.1 Radar refractivity measurements

In a vacuum, an electromagnetic (EM) wave trav-
els at the speed of light (c = 3×108 m s−1). In the
atmosphere, however, the speed of the wave decreases
by a factor equivalent to the index of refraction of the
air, denoted by n, which is given by

n = 1 + 77.6× 10−6

(
P

T
+ 4810

Pw

T 2

)
, (2.1)

where T is the temperature in degrees Kelvin, P is the
total pressure and Pw is the partial pressure of water
vapor both in hPa. In Eq. (2.1), the values of n are
very close to 1. Refractivity, N , is a more convenient
quantity that is related to the refractive index as de-
fined by Bean and Dutton (1968):

N ≡ (n− 1)× 106 = 77.6
(

P

T
+ 4810

Pw

T 2

)
. (2.2)

At warmer temperatures, N is most sensitive to vari-
ability in Pw.

A technique was developed by Fabry et al. (1997)
to make radar measurements of near-surface refrac-
tivity, thereby deducing near-surface moisture. This
technique is briefly described here. The phase of the
backscattered radar signal after coherent detection is
related to the path-integrated refractive index by the
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following equation,

φ (r, t) = −4πf

c

∫ r

0

n (r′, t) dr′ , (2.3)

where f is the radar transmitter frequency and r is
the distance between the radar and fixed ground clut-
ter targets. r′ is the integrant. When n is 1, which
is true when P and Pw are zero or when the wave
propagates in a vacuum,

ϕ (r, t) = −2rf

c
2π = −2r

λ
2π ,

where λ ≡ c/f is the wavelength (here the minus
sign is included based on convention). Because 2r is
the round-trip distance between the radar and ground
target, 2r/λ gives the round-trip distance in terms of
the number of wavelength, and each wavelength cor-
responds to a change of phase of 2π. In the real
atmosphere, the presence of atmosphere and water
vapor modulates the value of n, hence affects the
phase of EM waves returned to the radar. By ex-
amining phase difference between two ground clutters
that serve as the backward scattering targets along the
radar beams, mean refractivity index between those
two ground targets can be estimated.

Equation (2.3) and the related discussion, how-
ever, show that the phase of the returned signal wraps
around 2π every half a wavelength (half due to the
round trip), which is 5 cm for an S-band radar and 1.5
cm for X-band, making the use of phase problematic
for the estimation of n. To solve this problem, Fabry
et al. (1997) proposed using a reference map, which is
made at the so-called reference time. Using this refer-
ence map, a reduction in phase wrapping is obtained
by computing the phase change between the reference
and observation times (Fabry et al., 1997). The ref-
erence time should be chosen when the temperature
and humidity fields are nearly homogeneous over the
region of refractivity observations so that the phase at
the reference time can be determined with accuracy.

The phase change between measurement time tm
and reference time tref for target at distance r is given
by

δφ (r) =φ (r, tm)− φ (r, tref)

=− 4πf

c

∫ r

0

[n (r′, tm)− n (r′, tref)]dr′ , (2.4)

where φ (r, tm) and φ (r, tref) denote the currently mea-
sured and the reference phase values, respectively. An
important point is that the phase change δφ wraps
much less frequently than the phase measurement φ
itself because it is based on the change in refractive

index, which is much smaller than the actual refrac-
tive index. Of course, the drawback is that the method
requires making reference phase measurements under
sufficiently homogeneous conditions. Nevertheless, the
phase-wrapping problem can be mitigated or reduced
this way.

Again, we should emphasize that the refractive in-
dex change in Eq. (2.4) is integrated from the radar site
to the range of ground target. By taking the phase-
change difference (PCD) at two range values R1 and
R2 along the same radial where R2>R1, we have

∆φ (R1, R2) =δφ (R2)− δφ (R1)

=− 4πf

c

∫ R2

R1

[n (r′, tm)− n (r′, tref)]dr′

=− 4πf

c

∫ R2

R1

δn (r′) dr′ , (2.5)

where δn (r′) ≡ n (r′, tm)− n (r′, tref), i.e., the δ refers
to the change between current and reference times, as
in δφ. From Eq. (2.5) we can obtain the mean refrac-
tivity index change over the range between R1 and R2:

δn (R1, R2) = − c

4πf

δφ (R2)− δφ (R1)
R2 −R1

. (2.6)

To obtain the refractive index at the measurement
time, the refractive index at the reference time must
be known; it can be obtained through surface station
measurements. In that case, the reference time should
be chosen to be a time when the moisture distribution
is relatively homogeneous so that the surface station
network can properly characterize the field. Then, the
refractive index at the measurement time is the sum
of the refractive index at the reference time and the
refractive index change. Using Eq. (2.1), the mean re-
fractivity N between the ground targets can then be
obtained from the corresponding refractive index.

Two major limitations exist with the refractivity-
based moisture measurement using the Fabry tech-
nique described above:

(1) To mitigate the severe phase-wrapping effect,
phase measurements must be made at both the refer-
ence and measurement times. In addition to logistical
problems of obtaining a reference map, the homogene-
ity assumption over the observed field is not justified
under most conditions and certainly is difficult to val-
idate.

(2) Because the actual locations of clutter targets
are uncertain within the range volumes, it must be as-
sumed that R2 and R1 are centered in their respective
resolution volumes. This introduces the possibility of
significant error in the finite difference operation in
the final step of the algorithm Eq. (2.6). Even with
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the use of a reference field, phase wrapping can still
occur, when

∆φ (R1, R2) = |δφ (R2)− δφ (R1)| > 2π .

Phase wrapping is more likely to occur when the dis-
tance between two ground targets is large and/or when
the change in n from the reference time is large. Gen-
erally, the observed PCD is mod[∆φ(R1, R2), 2π]. An
unwrapping procedure is needed before the phase-
change data can be used, unless the data analysis
method is capable of unwrapping. Some of the inher-
ent uncertainties associated with the phase measure-
ments should be accounted for in the data assimilation
process. This study will also examine some of these
uncertainties.

2.2 Generation of simulated observations

To investigate issues associated with analyzing
near-surface moisture using radar-based refractivity
and phase measurements, simulated data are created
and analyzed using a 2DVAR scheme. The simulated
refractivity and phase change data are created using
a radar emulator based on the equations in the pre-
vious subsection. Numerical experiments using sim-
ulated data are often called observation system sim-
ulation experiments (OSSEs). In an OSSE, a truth
simulation of the atmosphere is created first, and sim-
ulated observations are then sampled from such a truth
simulation. The model used to produce the truth
field in this study was the Advanced Regional Pre-

diction System (ARPS; Xue et al., 2003), a general-
purpose non-hydrostatic atmospheric model. A fore-
cast of Xue and Martin (2006b) for a dryline convec-
tive initiation case from the 2002 International H2O
Project (IHOP 2002) field experiment (Weckwerth et
al., 2004) was used as the truth. This case was chosen
because the rapid moisture change across the dryline
and in time was good for testing the robustness of
this system. The event occurred on 24 May 2002 over
the southern Great Plains of the United States. For
that forecast, the ARPS model was initialized using
analysis data from the ARPS Data Analysis System
(ADAS; Brewster, 1996) at 1800 UTC 24 May 2002,
and the data were integrated for 6 h. A 700-km×400-
km model domain with a 1-km horizontal grid spacing
was used (Fig. 1). For our simulation experiments, we
assumed that the surface fields from their simulation
were located at a constant height, i.e., over completely
flat ground. These surface model fields were used for
the simulation of ∆φ(R1, R2), which were considered
the raw measurement data.

An S-band radar (λ = c/f ∼ 0.1 m) was assumed
and placed at x = 230 km and y = 350 km of the
domain (Fig. 1). We also assumed that the effective
range of the N measurements was within a 50-km ra-
dius of the radar (i.e., the practical limit of such mea-
surements due to the effect of the Earth’s curvature).
Two types of ground-target distributions were consid-
ered in this study: (1) Uniform (UFM) ground targets
were distributed along the radar radials up to a 50-km

Fig. 1. (a) Surface water vapor and (b) simulated refractivity fields at 1800 UTC 24 May
2002, the reference time. The black square mark denotes the radar location and the open
box denotes the domain shown in Fig. 2.
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Fig. 2. Simulated observations at the surface at 1900 UTC 24 May 2002, 1 hr after the reference
time: (a) water vapor field, (b) the N field, (c) the simulated phase difference between two targets
for the case of uniform ground target case (hereafter UFM), and (d) the phase difference for the
case of random target distribution, RND (see Table 1).

range with uniform spacing of 0.25 km, equaling the
gate spacing. (2) Random (RND) ground targets were
distributed along the radials from the radar to 50 km
with random spacing between 0.25 km and 4 km.

For this study, the reference time was set at 1800
UTC 24 May 2002. The surface water vapor field for
this time is shown in Fig. 1a. A distinct north-south
dry line is evident in the surface field. The simulated
refractivity field, N , at the same time, is given in
Fig. 1b. The N field has a quite similar pattern as
the specific humidity field, qv, given their strong inter-
dependence.

Figure 2 shows the qv, simulated N , and PCD fields
at 1900 UTC (1 h after the reference time) derived
from the truth simulation output. For the case of
UFM with constant target spacing (Fig. 2c), the distri-
bution of the simulated phase differences was similar
to the simulated N values, and the PCDs were not
wrapped anywhere in the domain (−0.6<∆φ<0). For

the RND case (Fig. 2d), the PCDs were proportional
to the distance between targets, so the PCD field had
an irregular pattern. In this case, phase wrapping of-
ten occurred where the distance between two targets
was close to 4 km (−8<∆φ<0). Initially, attempts
were made to correct the phase wrapping in the vari-
ational analysis when additional mesonet-type mois-
ture measurements were available. However, the phase
measurements could not be unwrapped using this tech-
nique. Separate phase unwrapping had to be applied
to the data before the variational analyses. In the ex-
periments, either perfect phase-wrapping was assumed
for the simulated data (first 8 experiments in Table
1), or the simulated data were subject to a practical
phase-unwrapping procedure that had been developed
and tested with real phase data (experiments UNW
in Table 1), or the simulated data contained phase-
wrapping that had not been corrected (RND WRP in
Table 1). These experiments are discussed in section
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Table 1. List of experiments, their moisture analysis errors, and the observation error standard deviations. In the
experiment names, UFM refers to experiments with uniform target spaces of 250 m and RND for randomly distributed
targets with spacing between 250 m and 4 km. UNW indicates the application of phase-unwrapping procedure to the
phased-wrapped data. PE, OE and POE indicate added position errors, random observational errors, and both, respec-
tively. WRP indicates the use of uncorrected phased wrapped data. RMSE is the root-mean square analysis error and
ME the maximum absolute analysis error. 21 and 24 refer to the 2100 and 2400 UTC 24 May 2002 analysis times. In the
last column are the error standard deviations (SDs) of the observations actually used, calculated against observations
simulated the same way without adding error. Such SDs are used to specify observation error variance in R in the
2DVAR. In UFM, the observations have no error, and the 0.05◦ is a small value used to specify R in the 2DVAR.

Experiments
Target Position Errors Obs. Errors RMSE ME Obs. Error

distribution (±125 m) (5◦) (g kg−1) (g kg−1) SDs (◦)

UFM Uniform No No 0.031 0.201 0.05
UFM PE Uniform Yes No 0.039 0.432 6.348
UFM OE Uniform No Yes 0.078 0.487 5.017
UFM POE Uniform Yes Yes 0.083 0.523 8.071
RND Random No No 0.036 0.217 0.129
RND PE Random Yes No 0.057 0.304 6.294
RND OE Random No Yes 0.049 0.225 4.994
RND POE Random Yes Yes 0.071 0.327 8.003
RND WRP Random No No 0.224 2.215 31.70
UNW Unwrapped No No 0.137 0.957 20.92
UNW PE Unwrapped Yes No 0.140 0.991 21.01
UNW OE Unwrapped No Yes 0.154 1.112 22.48
UNW POE Unwrapped Yes Yes 0.147 1.033 22.83
UNW POE 21 Unwrapped Yes Yes 0.360 1.685 81.48
UNW POE 24 Unwrapped Yes Yes 0.245 2.065 42.25

4.
An important advantage with the variational anal-

ysis technique is the ability to properly account for
errors in the analysis background and in the observa-
tions. Realistic observations should be simulated with
expected error. The simulated data shown in Fig. 2 do
not include added error. In this study, we simulated
random observation errors that contained instrument
(radar) measurement error, data representativeness er-
ror, and errors due to target position uncertainty. The
random phase errors were assumed to have a Gaussian
distribution with zero mean and a standard deviation
of 5◦, while the target position error was introduced by
assuming the targets were always located at the cen-
ter of the range gates (while the actual targets were
not). These errors were simulated and added to the
sampled phase, and the actual error standard devi-
ations were calculated against error-free observations
and were used to specify the observation error vari-
ance in the variational analysis. The observation er-
rors were assumed to be uncorrelated.

3. Two-dimensional variational analysis
method

3.1 Methodology

In this study, a two-dimensional variational
(2DVAR) system was developed based on a univari-

ate 3DVAR framework that was created for analyzing
GPS slant-path water vapor data (Liu and Xue, 2006;
Liu et al., 2007). For this study, the surface water
vapor field was analyzed by assimilating the phase dif-
ferences between two targets, i.e., ∆φ(R1, R2).

The cost function of our 2DVAR system is defined
as

J(qv) = Jb(qv) + Jφ(qv) , (3.1)

where

Jb (qv) =
1
2

(qv − qv,b)T B−1(qv − qv,b) ,

(3.2a)

Jφ(qv) =
1
2
[H(qv)−∆φ]TR−1[H(qv)−∆φ] .

(3.2b)

In Eq. (3.1), the cost function J is composed of a back-
ground constraint term, Jb, and phase difference ob-
servation term, Jφ. J is minimized by using an op-
timization algorithm iteratively and the final analysis
of the specific humidity qv at the surface, qv,a, is the
qv that minimizes J . The corresponding background
state vector is qv,b. The background term, Jb, mea-
sures the departure of the control variable (qv in this
case) from the background. Here B is the background
error covariance matrix, which determines how the ob-
servational information is spread in space, and how the
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background is weighted in the analysis, relative to the
observations. The above equations use the standard
notation of data assimilation literature, as described
in Ide et al. (1997). Additional information on vari-
ational data assimilation methodology, including the
formation of cost function, can be found in Kalnay
(2002).

The phase-difference observation term, Jφ, repre-
sents the departure of the state qv converted to the
observed quantity through observational operator H,
from the observations of the phase differences. In
our case, the observation operator H was based on
Eq. (2.4), where n was first calculated at the grid
points. Line integrations were performed between
ground targets, and n was interpolated to the line seg-
ments to facilitate numerical integrations. This pro-
cedure is similar to that used by Liu and Xue (2006),
where GPS slant-path water vapor was obtained by
integrating along slant paths in a three-dimensional
space.

The matrix R is the observation error covariance
matrix for the phase difference between two targets,
which is assumed to be diagonal in essentially all op-
erational data assimilation systems under the assump-
tion that observation errors are not correlated. This is
due to difficulties in estimating observation error cor-
relation and in inverting nondiagonal R matrix. In
practice, most of the correlated errors (such as those
related to radar beam elevation uncertainty, Bodine
et al., 2011) can be decreased or removed through
data thinning and/or bias correction (e.g., Harris and
Kelly, 2001). For this study, the error variances, or
the diagonal elements of matrix R, whose determina-
tion was described in the last paragraph of section 2,
were small relative to the background error, the fi-
nal analysis was therefore closer to the observations
than to the background. As the first step to test a
stand-alone variational analysis procedure to analyze
the moisture field from refractivity phase-change ob-
servations, in the simulated data experiments we as-
sumed that pressure and temperature were known, so
that only the moisture field needed to be determined.

As in the work of Liu and Xue (2006) and Liu
et al. (2007), the background error covariance matrix
B was based on a spatial Gaussian correlation model
that was isotropic or anisotropic and flow/field depen-
dent. In this study, because the observation density
was close to the grid resolution, the anisotropic, flow-
dependent, covariance model produced similar results
to the isotropic covariance model. Therefore, only
results from the isotropic covariance model are pre-
sented. Further, the effects of the spatial covariance
were realized through spatial recursive filters, as pro-
posed by Purser (1987) and Lorenc (1992), and the

implementation followed Liu et al. (2007).
The following Gaussian function was used to model

B (Huang, 2000):

bij = σ2
b exp

[
−1

2

(
rij

Lr

)2
]

, (3.3)

where σ2
b is the background error variance, which in

our case was estimated based on the actual error of
the background, given the truth field. bij are the ele-
ments of B, rij is the distance between two grid points,
i and j, the grid indices. Lr is the spatial decorrela-
tion length scale. As pointed out by Kalnay (2002),
for dense observations, B plays the role of observation
information smoothing, and for sparse observations, B
plays the role of observation information spreading. A
larger Lr in the above model tended to produce more
smooth analyses, and a smaller Lr tended to produce
analyses that fit individual observations more tightly
thereby retaining more small-scale structures present
in the observations. In practice, the optimal decor-
relation length scale depends on the observation den-
sity and the observation error level. It should also
reflect the background error correlation. The opti-
mal estimation and modeling of B represent a major
research problem that continues to require active re-
search (Kalnay, 2002).

3.2 Experimental design

In our experiments, 1800 UTC 24 May 2002 was
chosen as the reference time for phase observations,
and the moisture, temperature, and pressure fields
were assumed known at this time. The analysis times
1900, 2100, and 2400 UTC were chosen; they allowed
for the investigation of the sensitivity of analysis to
time difference from the reference time. A larger in-
crement increases the chance of phase wrapping.

The direct moisture output of the ARPS model is
water vapor mixing ratio. The partial pressure of wa-
ter vapor needed for the refractivity calculation was
derived using the gas law Pw = qvρdRvT where ρd

is the dry air density and Rv is the vapor gas con-
stant. In our analysis, the reference refractivity, Nref ,
was calculated from the T , P , and qv at 1800 UTC
24 May 2002. The background refractivity at each of
the analysis times was calculated from qv at 1800 UTC
and the T and P from the analysis time. Because of
the time offset, the initial qv contains error and the
error standard deviation (SD) can be calculated.

4. Results of the single and perfect observa-
tion experiments

To variationally analyze the phase-change data, the
observational operator H was implemented into an ex-
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isting 3DVAR code, and the tangent linear and ad-
joint codes of the operator were developed. To ver-
ify the correctness of the minimization procedure of
our 2D variational system and to help understand the
behavior of the analysis system, an idealized single-
observation test was performed first. Further ex-
periments using simulated phase-change data were
performed, assuming no observational error or phase
wrapping, or various forms of observation errors.

4.1 Single observation test

To perform a single-observation experiment, a sin-
gle observation was created first. This single observa-
tion was a phase difference between two targets of 20
km apart, and it was simulated from the truth field
between the targets. The decorrelation scale Lr was
specified as 3 km. The observations were assumed
to be perfect, which was equivalent to assuming that
the error level of the background was extremely high.
Therefore, the final analysis was expected to fit the
observation closely.

The analysis increment from the single observation
experiment is shown in Fig. 3. Because the observation
was not a point measurement in this case but an inte-
grated quantity along a path, the analysis increment
exhibited a shape stretched in the direction of the path
and spreading around the path, with the maximum in-
fluence radius being <10 km from the path. The back-
ground value was −15.31. The observation error SD
was specified to be a very small 0.05◦ in the 2DVAR.
The analyzed phase difference was −18.928, very close
to the observed value of −18.93 as expected.

v

Fig. 3. Analysis increment of moisture from the sin-
gle observation experiment. The contour intervals are
0.5 g kg−1 and outermost contour has a value of zero.
Gray straight line denotes the path between two targets
20 km apart.

4.2 Perfect observation experiments

To analyze the full 2D water vapor field from simu-
lated phase difference observations, two perfect obser-
vation experiments (UFM and RND in Table 1) were
performed. These experiments allowed us to examine
how well the analyzed moisture field was able to fit
the truth, in the case of very accurate observations.
Because no observation error was associated with the
data, we specified a very low 0.05◦ standard deviation
for R. The de-correlation scale Lr of the error covari-
ance model was 3 km. The sensitivity of the analysis
to the value of the de-correlation scale was examined.

The first experiment was UFM (Table 1), where
the distribution of the ground targets was uniform in
the radial direction (see section 2). The second exper-
iment, RND, was the same as UFM, except that the
ground targets were randomly spaced between 250 m
and 4 km (Table 1), which were more realistic.

The 2DVAR cost function and the norm of the
cost-function gradient as function of the number of
iterations during the minimization procedure for ex-
periment UFM were plotted (Fig. 4). Significant re-
ductions occur in both quantities occurred during the
first 20 iterations. Afterward, the cost function re-
mained relatively flat while the gradient norm contin-
ued to decrease over the next 50 iterations or so. In all
cases, the minimization algorithm was run for at least
100 iterations, which appeared to have been sufficient
for the desired accuracy. The cost function and the
gradient no longer decrease after 95 iterations (Fig. 4).

The analyzed water vapor mixing ratio fields for
UFM and RND at 1900 UTC 24 May 2004, 1 hr after
the reference time, are shown in Figs. 5a and b, respec-
tively. Both analyses were very close to the truth field
where phase-change observations were available. The
observations were confined within the 50-km range of
the radar, located at the center of plotting domain.
The RMSE and the maximum error (ME) between
the analysis and truth fields are presented in Table
1. The RMSE and ME were calculated only within
the 50-km radar range. The RMSEs for UFM and
RND were 0.031 and 0.036 g kg−1, respectively, which
indicate very good analyses in both cases. The ME
for UFM and RND were 0.201 and 0.217 g kg−1, re-
spectively. For a reference, the RMSE between the
background and truth fields was 1.06 g kg−1; there-
fore, the error was reduced by more than one order of
magnitude. These results show that the 2DVAR sys-
tem works very well to analyze the moisture field from
the phase-change data when the influence of phase
wrapping and observational errors could be negligi-
ble. UFM had smaller errors than RND because of
its higher, uniform observation density.
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Fig. 4. (a) The variation of the cost function J and (b) the norm of the gradient
∇J , with the number of iterations during the minimization procedure for experiment
UFM.
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Fig. 5. 2D analysis of water vapor fields (sold lines) at 1900 UTC 24 May 2002 (a) from UFM and
(b) from RND. Dashed lines are for the truth field. The contour interval is 0.5 g kg−1.

4.3 Sensitivity to decorrelation scale

In the absence of reliable error statistics, the decor-
relation scales used in background error correlation
models, as described by Eq. (3.3), were often empir-
ically determined. Optimal decorrelation scales often
exist for a particular observational network and a par-
ticular observation error level. As discussed earlier,
these scales control the spatial extent over which ob-
servation increments are spread, the smoothness of the
analysis, and how well the analysis fits the observa-
tions. A fixed value of 3 km was used for Lr in experi-
ments UFM and RND as reported earlier. The overall
RMSE (g kg−1) of the analyses as a function of the
decorrelation length Lr when experiments UFM and
RND as well as other experiments to be discussed later
were rerun using Lr values ranging from 1 km to 10

km (Fig. 6). For UFM and RND, the perfect obser-
vation cases, the optimal decorrelation length was ∼3
km.

5. Results of theimperfectobservation experi-
ments

5.1 Impact of target position error

For the S-band radar assumed in this study, the
range resolution was 250 m, which is the range resolu-
tion of the operational Weather Surveillance Radar
1988D (WSR-88D) radars. Because of the finite range
resolution, it was impossible to know the exact po-
sitions of the ground targets within each range gate.
The resulting ambiguity created target position errors
because the actual phase measurement corresponded
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Fig. 6. The overall RMSE (g kg−1) between analysis and
truth field as a function of the decorrelation length Lr.

to the mean target location (weighted by reflectivity)
within the gate, not the physical center of the gate,
which was assumed to be the target location in that
gate. Hence, errors associated with target position
uncertainty should be taken into account when esti-
mating the phase measurement error, and the relative
error was larger for smaller target distances.

To examine the impact of target position error,
simulated error was added to the phase measurements
in the next set of experiments with uniform and ran-
dom spacing. The added target position error was
assumed to have the form rtarget = rgate + α 250/2,
where α was a random number between −1 and 1
with a uniform distribution. Here rtarget is the range
of actual ground target, but the phase-difference ob-
servations were assumed to correspond to rgate. The
two experiments performed were called UFM PE and
RND PE, where PE indicates position error. These
experiments were the same as experiments UFM and
RND, except that range errors were included when
simulating the phase-difference observations.

As shown in Table 1, the RMSEs for UFM PE and
RND PE were 0.039 and 0.057 g kg−1, respectively,
and the MEs were 0.432 and 0.304 g kg−1, respec-
tively. As expected, the MEs for both cases were in-
creased due to the added target position error but the
increases were not large in absolute value. This is not
surprising, because the range spacing of 250 m was
much smaller than the 1-km spacing of the analysis
grid. The sensitivity of UFM PE and RND PE to the
decorrelation scale is shown in Fig. 6. The optimal
de-correlation length remained 3 km for UFM PE and
increased to 4 km for RND PE. Larger RMSE differ-
ences between the error and no-error cases were found
when a small decorrelation scale was used. For exam-
ple, the RMSE was ∼0.15 g kg−1 for RND PE versus
∼0.1 g kg−1 for RND when Lr was 1 km. In the

presence of observation error, the spatial covariance
acted to smooth out nonsystematic observation errors
when more observations were involved in the analy-
sis of grid-point values. Without this smoothing effect
(i.e., Lr near the grid interval), the analysis tended to
be noisy, contaminated by the errors from individual
observations. When an optimal decorrelation scale was
used, and/or when the average target spacing was sig-
nificantly larger than the range resolution, the impact
of the target position uncertainty and the associated
phase-measurement error on the water vapor analysis
was minimal.

5.2 Impact of random observational error

The experiments presented thus far did not con-
sidered typical random observational error, which was
caused by radar phase-measurement error, ground
target motion, radar beam height uncertainty, and
changes in the vertical gradient of refractivity (Bod-
ine et al., 2011). Such errors were properly simulated
by adding sampled errors to the raw phase measure-
ments, from which the PCD data were derived with or
without phase wrapping. The added phase errors had
1◦, 2◦, 5◦ or 10◦ standard deviations, with a Gaus-
sian distribution in four sets of experiment, but we
focused on the results of 5◦ error. These experiments
were named UFM OE and RND OE (Table 1). Addi-
tionally, UFM POE and RND POE further included
position-related error, as simulated earlier.

The analysis error statistics for UFM OE,
RND OE, UFM POE and RND POE are shown in Ta-
ble 1. The RMSEs for them were 0.092, 0.049, 0.083,
and 0.071 g kg−1, respectively. These RMSEs in-
creased compared to the corresponding no-error cases,
but the errors in absolute terms remained small. The
analysis fields for UFM POE and RND POE at 1900
UTC 24 May 2004 are provided in Fig. 7. Both anal-
ysis fields remained rather close to the truth field in
general. The analysis of RND POE showed noticeable
differences in small-scale structures from the truth.
This is the case because the phase-difference measure-
ments in RND POE spanned target spacing ranging
from 250 m to 4 km. Errors along the path between
two adjacent ground targets effectively had the same
sign; they did not cancel each other as is possible in the
UFM POE case. For this type of error, more ground
targets reduced errors, contrary to the position error
type.

The RMSEs of the analysis fields as a function of
the absolute phase errors for experiments UFM OE,
RND OE, UFM POE and RND POE are shown in
Fig. 8. For the uniform target cases (UFM OE and
UFM POE), the RMSE increased with the observa-
tion error more rapidly than with the nonuniform tar-



NO. 2 SHIMOSE ET AL. 301

 

 

(a) (b)

v v

Fig. 7. Analyses of surface water vapor fields (sold lines) at 1900 UTC 24 May 2002 (a) from
UFM POE and (b) from RND POE. Both include observational error with 5◦ standard deviation
and target position error. Dashed lines denote the truth field. The contour interval is 0.5 g kg−1.

get cases; in the latter case, the errors were spread
over longer paths so that the total error accumulation
was less. The impact of additional position error was
generally small because the RMSEs for the OE and
POE cases were very close. The RMSEs for the POE
cases were not always larger than the corresponding
OE cases, and any differences among them were prob-
ably insignificant.

5.3 Impact of phase wrapping error

The experiments presented thus far assumed that
the data were not subject to phase wrapping. In the
actual observations, however, phase wrapping did oc-
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cur (Fig. 2d). As discussed earlier, phase wrapping is
more likely to occur when the distance between two
targets is large and/or when the refractivity change
from the reference time is large. In our experiments,
only the RND case had a phase-wrapping issue. To
include this effect, experiment RND WRP was per-
formed, which was the same as RND except that the
original simulated phase-difference observations were
phased wrapped when they exceeded 2π (i.e., the ob-
servations analyzed are mod[∆φ(R1, R2), 2π], the re-
mainder of ∆φ(R1, R2)/(2π)). No effort was made to
unwrap such observations, thus some of the observa-
tions used may have contained very large errors.

The moisture analysis for RND WRP at 1900
UTC 24 May 2004 is shown in Fig. 9a. The analy-
sis field exhibited erroneous values where phase wrap-
ping occurred (c.f., Fig. 2d). The RMSE and ME for
RND WRP were 0.224 g kg−1 and 2.215 g kg−1, re-
spectively. The ME was very large because the phase-
wrapped observations had very large errors. In prac-
tice, a quality control procedure might be useful in
eliminating such erroneous data.

Because the analysis process was unable to solve
the variational phase-wrapping problem, even when
additional mesonet moisture observations were avail-
able (not shown), a phase-unwrapping procedure was
applied to the raw data first. The procedure de-
scribed in Cheong et al. (2008) for real refractivity
data processing was used here. The procedure first
calculated the mean of phase-wrapping rate for the
entire map and subtracts a synthetic mean phase-
wrapping map from the entire map. Then, the proce-
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Fig. 9. 2DVAR analysis of surface water vapor mixing ratio (sold lines) at 1900 UTC 24 May 2002
from (a) RND WRP and (b) UNW. Dashed lines denote the truth field. The contour interval is 0.5
g kg−1.

dure smoothes and interpolates the perturbation com-
ponent using two convolutions (one across range and
the other across azimuth) to achieve an equivalent 2D
filtering effect. The weights are a function of range and
azimuth to preserve a same spatial coverage of ∼ 4×4
km. This perturbation phase map was unwrapped on
a radial-by-radial basis by the abrupt phase change
from −π to +π. Finally, the mean phase-wrapping
rate is accumulated and added to the perturbation
phase component to derive the unwrapped phase for
each range cell.

Experiment UNW was performed, which was the
same as RND WRP except that phase ‘unwrapping’
was applied to the raw observations first. Figure 9b
shows the analysis field for UNW at 1900 UTC 24
May 2002. The unrealistic values in Fig. 9a are largely
gone. However, because the unwrapping process in-
volves spatial averaging, the analysis field appeared
smoother than the truth. The RMSE and ME of UNW
were 0.137 and 0.957 g kg−1, respectively; even though
they were larger than the RND case, the error was still
considered low for low-level moisture.

The next three experiments, UNW PE, UNW OE,
and UNW POE (Table 1) were the same as UNW,
except for the addition of position error, random er-
ror, and both, respectively. These error sources gen-
erally increased the RMSEs and MEs slightly, but
the increases were smaller compared to the error in-
crease due to phase wrapping and unwrapping (com-
pare UNW and RND). The impact of phase wrapping
and unwrapping was generally larger than either of
those two error sources (Table 1).

With phase unwrapping, the optimal decorrela-
tion scale of the 2DVAR analysis was increased to 7
km from the earlier 3 km (see Fig. 6 for UNW and

UNW PE). The higher optimal decorrelation scale was
because the original simulated observations were in-
terpolated and smoothed in the unwrapping proce-
dure, resulting in a lower effective resolution of the
final observations. For all of the analyses presented
in this paper, UNW experiments used the optimal 7-
km decorrelation scale. Figure 10a shows the analysis
field for experiment UNW POE, which is the same as
UNW PE except for the added random observational
errors. The analyzed field again appeared smoother
as in UNW (see Fig. 9b), with its RMSE and ME be-
ing 0.147 and 1.033 g kg−1, respectively, similar to
those of UNW. In a sense, experiment UNW POE in-
cluded the main sources of expected error associated
with phase-change measurements between ground tar-
gets. By applying a phase-unwrapping procedure that
had been proven effective to real measurements, rather
accurate surface moisture analysis was obtained using
a variational procedure developed in this study. Ap-
parently, the analysis was not very sensitive to the
expected data error for the situations considered. In
the next subsection, the impact of the time difference
from the reference was examined.

5.4 Sensitivity to the reference time differ-
ence

All of the experiments presented so far used sim-
ulated observations and the analyses were conducted
using 1900 UTC 24 May 2002, 1 hr after the reference
time. To investigate the sensitivity to longer reference-
time differences (for which more phase wrapping might
occur), we repeated experiment UNW POE at 2100
UTC and 2400 UTC (experiments UNW POE 21 and
UNW POE 24), three and six hours after the reference
time, respectively. The analysis fields for these two ex-
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Fig. 10. 2DVAR analysis of surface water vapor fields
(sold lines) from UNW POE at (a) 1900 UTC, (b) 2100
UTC, and (c) 2400 UTC 24 May 2002. Dashed lines de-
note the truth field. The contour interval is 1.0 g kg−1.

periments are shown in Figs. 10b and c. By these
times, the model simulations developed fine-scale
boundary layer convective eddies and rolls (Xue and
Martin, 2006a), and convection was initiated along the
dryline around 2100 UTC. By 2400 UTC, the main
dry line retreated westward and was located mostly
outside the plotted domain (Fig. 10c). The moisture
fields exhibited more small-scale structures than at
1900 UTC. For this reason, the moisture analysis RM-
SEs for them were somewhat larger than those with
the earlier time, at 0.360 and 0.245 g kg−1, respec-
tively (Table 1). Figures 10b and c show that the
analyzed contours still matched the truth reasonably
well. In these two cases, the background qv used in the
cost function and for calculating the reference phase
differences was more different from the truth at these
times than at 1900 UTC, with the RMSE between the
background and truth fields being 2.32 g kg−1 for 2100
UTC and 1.75 g kg−1 for 2400 UTC. Despite more oc-
currences of phase wrapping (not shown), the analysis
quality remained reasonable, indicating the effective-
ness of the phase-unwrapping procedure.

6. Conclusions

This study examined the ability to accurately ana-
lyze surface moisture fields at a high spatial resolution,
from electromagnetic wave phase difference data that
can be measured by ground-based weather radars be-
tween ground targets aligned along the radar beams.
The measurement was based on the principle that the
phase of the backscattered radar signal from ground
targets was related to the path-integrated refractive
index, which was strongly linked to water vapor (Fabry
et al., 1997). To reduce the phase-wrapping problem, a
known reference state was employed, as originally pro-
posed by Fabry et al. (1997), so that only incremental
phase differences between ground targets had to be
calculated, which were less susceptible to phase wrap-
ping. Two sets of experiment with simulated observa-
tions were performed, one assuming a uniform ground
target spacing of 250 m along the radar radials, and
one assuming randomly varying nonuniform spacing
between 250 m and 4 km. A 1-km resolution numeri-
cal simulation of a dryline case was used as the truth,
which was sampled using a realistic radar simulator
to produce refractivity-related phase change difference
observations between ground targets. Several sources
of observation error were considered and their impacts
examined, including errors due to ground target posi-
tion uncertainty, and typical random errors associated
with radar phase measurements. Gross error due to
phase wrapping as well as error associated with spa-
tial averaging and smoothing in the phase unwrapping
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procedure was also considered.
A 2DVAR analysis system was developed for ana-

lyzing the surface water vapor from the phase-change
observations. An observation operator and its ad-
joint were implemented within the 2DVAR system
that involves numerical integration along the radar
beams between targets. Analysis experiments were
conducted with the simulated observations with dif-
ferent error characteristics, and analysis errors were
calculated against the truth fields. The background
and observation error variances were specified based
on their actual error statistics calculated against the
truth. The spatial covariance of the boundary error
was modeled using a Gaussian function, and the op-
timal background error decorrelation scale was deter-
mined through numerical experimentations. The re-
sults are summarized as follows:

(1) The surface moisture field analyses produced by
our 2DVAR system from the phase change data cap-
tures the detailed structure of the moisture field rather
accurately, when no phase-wrapping problem exists in
the data.

(2) Experiments with data suffering from ground
target position ambiguity (uncertain within one range
gate) show that such errors affect the analysis quality
only slightly, and the effect is smaller when the target
spacing is large relative to the gate spacing.

(3) Experiments with data containing random
phase errors with standard deviations of up to 10◦

(results with 5◦ error were focused on) show that the
impact of such errors are also relatively small. Even in
the presence of both target position uncertainty and
random measurement errors, the RMSEs of the anal-
ysis were generally <0.1 g kg−1, while the maximum
error was generally <0.5 g kg−1.

(4) Our 2DVAR system failed to produce reason-
able surface moisture analysis when the observations
included phase wrapping. When the data were first
unwrapped in a separate pre-processing step, quality
analyses were produced. The unwrapping process in-
volves spatial interpolation and smoothing of the orig-
inal phase difference data, hence reducing the effective
resolution of the observations and the resulting mois-
ture field loses some of the fine scale details in the
truth field, and the RMSEs are usually between 0.1
and 0.21 g kg−1, but the maximum error can exceed
1 g kg−1. The optimal analysis decorrelation scale is
also larger.

(5) When the difference between the analysis and
reference times is larger, more phase wrapping tends
to occur. The phase-unwrapping procedure applied
was still effective, and the resultant analyses were of
slightly poorer quality, but the RMSEs remained be-
low 0.5 g kg−1. This suggests that the technique us-

ing a reference time and state in combination with a
phase-unwrapping procedure can be successfully ap-
plied, as long as the state at the reference time can be
estimated with sufficient accuracy.

Finally, we note that, as an initial effort to vari-
ationally analyze moisture field from radar phase
change data, we assume that the temperature and
pressure fields are known. In general, refractivity is
most sensitive to moisture. But in real-world prob-
lems, temperature and pressure fields also need to be
analyzed; this is the main limitation of this study. In
a 2DVAR or 3DVAR system without reliable, flow-
dependent, cross-covariance of background error, the
adjustment to temperature and pressure from the re-
fractivity data mainly depend on the sensitivity of re-
fractivity to these variables and their background val-
ues. In the future, we plan to use multivariate data as-
similation methods, such as the ensemble Kalman filter
(EnKF; Evensen, 2003, 2006), where flow-dependent
background covariance derived from the ensemble is
used to analyze all fields simultaneously. The 2D and
3D variational methods are useful for objective anal-
yses of surface moisture fields for weather forecasting
and diagnostic purposes and for initializing numeri-
cal weather prediction models when time constraints
are severe. The flow-dependent error covariance from
EnKF also helps to optimally determine the vertical
spread of surface moisture observation information.
We also realize that in the real world, the refractiv-
ity observation can be more complicated than consid-
ered in this study, and certain aspects of error, such as
those related to representativeness, can be very diffi-
cult to quantify (Bodine et al., 2011). Further research
is needed in these areas, as well as demonstration of the
impact of real refractivity observations for real cases.
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