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ABSTRACT

Precipitation and surface temperature are two important quantities whose variations are closely related
through various physical processes. In the present study, we evaluated the precipitation–surface temperature
(P–T) relationship in 17 climate models involved in the Coupled Model Intercomparison Project Phase 5
(CMIP5) for the IPCC Assessment Report version 5. Most models performed reasonably well at simulat-
ing the large-scale features of the P–T correlation distribution. Based on the pattern correlation of the
P–T correlation distribution, the models performed better in November-December-January-February-March
(NDJFM) than in May-June-July-August-September (MJJAS) except for the mid-latitudes of the North-
ern Hemisphere, and the performance was generally better over the land than over the ocean. Seasonal
dependence was more obvious over the land than over the ocean and was more obvious over the mid- and
high-latitudes than over the tropics. All of the models appear to have had difficulty capturing the P–T
correlation distribution over the mid-latitudes of the Southern Hemisphere in MJJAS. The spatial variabil-
ity of the P–T correlation in the models was overestimated compared to observations. This overestimation
tended to be larger over the land than over the ocean and larger over the mid- and high-latitudes than over
the tropics. Based on analyses of selected model ensemble simulations, the spread of the P–T correlation
among the ensemble members appears to have been small. While the performance in the P–T correlation
provides a general direction for future improvement of climate models, the specific reasons for the discrep-
ancies between models and observations remain to be revealed with detailed and comprehensive evaluations
in various aspects.
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1. Introduction

Numerical simulation with climate models is an im-
portant approach to understanding climate changes
in the history and projections of climate in the fu-
ture. Climate models are approximations of the real
world. Thus, systematic biases in mean states and un-
certainty in future projections are inevitable in climate
models. For a proper application of climate model sim-
ulations, it is necessary to evaluate the performance of
climate models in various aspects. Given the availabil-

ity of the new version of climate model simulations
aimed at providing the basis for the IPCC’s Assess-
ment Report version 5 (AR5) in the coming years, we
evaluated the models’ performance in climate simula-
tions.

In this study, we evaluated the precipitation–
surface temperature (P–T) relationship. There are
several reasons for choosing this topic. First, precipita-
tion and surface temperature are two important quan-
tities in climate studies that are directly related to our
lives. Second, the variations in these two variables are
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closely related in different ways that indicate different
physical connections between them. A positive P–T
correlation indicates an oceanic forcing of precipitation
in which higher SST and more precipitation follow the
ocean surface warming (Wu et al., 2006). In contrast,
more precipitation reduces downward shortwave radi-
ation reaching the earth’s surface and thus leads to
surface cooling, which contributes to a negative P–T
correlation (Trenberth and Shea, 2005). Surface latent
heat flux anomalies associated with precipitation and
wind changes can influence SST and thus modulate
the P–T correlation (e.g., Wu and Kirtman, 2007; Wu
et al., 2009). Thus, the performance of the climate
models in the P–T relationship provides information
about whether the physical processes in the models
are realistic, which contributes to understanding the
biases that may appear in precipitation and surface
temperature variations. Third, the P–T relationship
has not been evaluated systematically over the global
domain according to the literature. Previous evalua-
tions have been limited to several individual models
(e.g., Trenberth and Shea, 2005; Wu et al., 2006).

Pronounced seasonal change and regional feature
has been identified in the P–T relationship. A posi-
tive P–T correlation has been observed in the equa-
torial central-eastern Pacific Ocean through the year
(Trenberth and Shea, 2005; Wu et al., 2006; Wu and
Kirtman, 2007). In contrast, the P–T correlation in
the tropical western Pacific warm pool and Indone-
sian regions depends on the season: positive in bo-
real winter and negative in boreal summer (Wu and
Kirtman, 2007). This seasonality indicates a seasonal
change in the ocean-atmosphere connection. A nega-
tive P–T correlation prevails over the continental land
in summer, whereas a positive P–T correlation is ob-
served in high-latitude land regions in winter (Tren-
berth and Shea, 2005). The contrast of the P–T cor-
relation between winter and summer over land regions
has been pointed out in previous studies in different re-
gions, such as the United States and Canada (Madden
and Williams, 1978; Idso and Balling, 1992; Isaac and
Stuart, 1992; Zhao and Khalil, 1993), South America
(Rusticucci and Penalba, 2000), England and Wales
(Tout, 1987), and Switzerland (Rebetez, 1996). The
contrast of the P–T relationship between land and
ocean regions in the tropics has been noted by Wang
et al. (2008). An out-of-phase relationship between
decadal precipitation and surface temperature varia-
tions has been identified in Australia (Power et al.,
1999).

The organization of the text is as follows. The data
and methods used in the present study are described
in section 2. In section 3, we present the results of
the P–T correlation in observations and compare the

model simulations with respect to observations over
the global domain, the land, the ocean, the tropics,
the mid- and high-latitude regions, respectively. In
addition, the spread among model ensemble members
is addressed in section 3 as well. A summary is given
in section 4.

2. Data and methods

The monthly mean precipitation from version 2 of
the Global Precipitation Climatology Project (GPCP)
(Adler et al., 2003) was used as a proxy for ob-
servations. GPCP precipitation data were available
on a 2.5◦×2.5◦ grid over the global domain from
1979 to 2010. The University of Delaware monthly
mean precipitation and surface air temperature data
(http://www.cdc.noaa.gov/cdc/data.UDel AirT Pre-
cip.html) were used in this study. This dataset
was produced by combining a large number of sta-
tions, both from the Global Historical Climatology
Network (GHCN; Vose et al., 1992) and, more ex-
tensively, from the archive of Legates and Willmott
(Legates and Willmott, 1990). This dataset has a
resolution of 0.5◦×0.5◦ covering the land for the pe-
riod 1901–2008, provided by the National Oceanic
and Atmospheric Administration’s Oceanic and At-
mospheric Research’s Earth System Research Labo-
ratory (NOAA/OAR/ESRL), Physical Sciences Divi-
sion (PSD), Boulder, Colorado, USA, from its web-
site at http://www.esrl.noaa.gov/psd/. Over the
oceans, we used the SST data from the NOAA Ex-
tended Reconstruction SST, version 3 (Smith et al.,
2008), which was provided by NOAA/OAR/ESRL
PSD, Boulder, Colorado, USA, from its website at
http://www.cdc.noaa.gov/. This SST dataset has a
resolution of 2.0◦×2.0◦ and covers 1854 to the present.

Monthly mean precipitation, surface air temper-
ature, and surface skin temperature from 17 models
of the IPCC Coupled Model Intercomparison Project
phase 5 (CMIP5; Taylor et al., 2012) were used in
this study (Table 1). The model outputs used in the
present analysis were obtained from historical simula-
tions. The IPCC CMIP5 provided a large amount of
model outputs that require a substantial time to down-
load through the Internet. Here, we only analyzed one
member for each of the 17 models for a fair comparison
with one realization of observations. For some selected
models with multiple simulations, we analyzed all of
the simulations to address the spread of the results
among the model members.

The IPCC CMIP5 models have different spatial
resolutions. For a fair comparison with observations,
we interpolated the precipitation and surface temper-
ature to a common 2◦×2◦ grid for both the obser-



768 PRECIPITATION-SURFACE TEMPERATURE RELATIONSHIP VOL. 30

Table 1. Information of the 17 climate models used in the present analysis.

Institute Model Resolution Grid numbers: lon*lat

BCC BCC-CSM1.1 128×64
BNU BNU-ESM 128×64
CCCMA CanCM4 128×64
NCAR CCSM4 288×192
CNRM-CERFACS CNRM-CM5 256×128
CSIRO-QCCCE CSIRO-Mk3.6.0 192×96
LASG-IAP FGOALS-S2.0 128×108
NOAA-GFDL GFDL-CM3 144×90
NASA-GISS GISS-E2-R 144×90
NIMR-KMA HadGEM2-AO 192×145
MOHC HadGEM2-CC 192×145
INM INM-CM4 180×120
IPSL IPSL-CM5A-LR 96×96
MIROC MIROC4h 640×320
MPI-M MPI-ESM-P 192×96
MRI MRI-CGCM3 320×160
NCC NorESM1-ME 144×96

Institute Acronyms

BCC: Beijing Climate Center, China Meteorological Administration

BNU: College of Global Change and Earth System Science, Beijing Normal University

CCCMA: Canadian Centre for Climate Modeling and Analysis

NCAR: National Center for Atmospheric Research

CNRM-CERFACS: Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en

Calcul Scientifique

CSIRO-QCCCE: Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate

Change Centre of Excellence

LASG-IAP: LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences

NOAA-GFDL: NOAA Geophysical Fluid Dynamics Laboratory

NASA-GISS: NASA Goddard Institute for Space Studies

NIMR-KMA: National Institute of Meteorological Research/Korea Meteorological Administration

MOHC: Met Office Hadley Centre

INM: Institute for Numerical Mathematics

IPSL: Institut Pierre-Simon Laplace

MIROC: Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and

Japan Agency for Marine-Earth Science and Technology

MPI-M: Max Planck Institute for Meteorology

MRI: Meteorological Research Institute

NCC: Norwegian Climate Centre

vations and the model simulations. To examine the
dependence of the results on the spatial resolution, we
performed a parallel analysis of the correlation for pre-
cipitation and surface temperature interpolated to a
0.5◦×0.5◦ grid. The results were very similar. In this
report, we only show maps for correlations calculated
on the 2◦×2◦ grid.

The historical simulations of the IPCC models cov-
ered more than 100 years up to 2005. The GPCP pre-
cipitation was only available from 1979. In this analy-
sis, the P–T correlation was calculated for a common
period 1979–2005 in both observations and models.
This parameter was chosen for convenience of com-
parison of the magnitude of the correlation between

the observations and model simulations because the
significance of the correlation depends on the number
of years used in the correlation calculation.

The P–T correlation changes with season (Tren-
berth and Shea, 2005; Wu and Kirtman, 2007).
Thus, it was necessary to calculate the correlation
for different seasons to understand the seasonal de-
pendence of the relationship and the model perfor-
mance. Following Trenberth and Shea (2005), the P–
T correlation was calculated for groups of months for
both observations and model simulations: May–June–
July–August–September (MJJAS) and November–
December–January–February–March (NDJFM).

The P–T correlation is a two-dimensional field that
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includes both the pattern and magnitude of the cor-
relation. In this study, we used the Taylor diagram
(Taylor, 2001) to quantify the model performance in
simulating the P–T correlation field. Only a short de-
scription is given here. The Taylor diagram provides
information about the pattern correlation, the ratio of
the standard deviation, and the root-mean-square dif-
ference of the P–T correlation between model simula-
tions and observations. The diagram only displays two
quantities (the pattern correlation and the ratio of the
standard deviation), with the third quantity related
to the first two quantities through the Law of Cosine.
On the Taylor diagram, the observed field (the P–T
correlation in this study) is represented by one point
(the reference point) with unit correlation coefficient
and unit standard deviation, which is on the abscissa.
The model points are plotted based on the pattern cor-
relation and the ratio of the standard deviation with
respect to the observations. The distance of the model
points from the reference point is determined by both
the pattern correlation and the ratio of the standard
deviation. The closer the model point to the reference
point, the shorter the distance, a better agreement be-
tween the model simulation and observation in the P–
T correlation. Visually, the Taylor diagram shows the
relative contribution of the pattern correlation and the
variance to the good or bad performance of a model.

3. Results

3.1 Observations

Figure 1 shows the distribution of the P–T cor-
relation calculated for groups of months: MJJAS and
NDJFM. According to the availability of observations,
the correlation over land was based on the University
of Delaware precipitation and surface air temperature
data; the data over the ocean was based on GPCP pre-
cipitation and Extended Reconstruction of Sea Surface
Temperature version 3 (ERSST v3) SST. The distri-
bution of the P–T correlation displays obvious regional
features and seasonal dependence (Fig. 1).

In MJJAS, there is a large and positive P–T corre-
lation over the equatorial central-eastern Pacific Ocean
(Fig. 1a). A positive correlation was also seen over
the equatorial Atlantic Ocean, the western and east-
ern equatorial Indian Ocean, and the Antarctic region.
A negative P–T correlation dominates over the North-
ern Hemisphere land regions as well as over equato-
rial South America and the Indonesian land regions.
The largest negative correlation appeared over south-
eastern Europe, eastern China, India, the western
United States, and western tropical North Africa. A
weak negative correlation was obtained over the mid-
latitudes of the North Pacific and North Atlantic re-
gions.

Fig. 1. Point-wise correlation between observed monthly
mean anomalies of precipitation and surface temperature
(surface air temperature over the land and SST over the
ocean) for groups of months of (a) MJJAS and (b) ND-
JFM during 1979–2005.

In NDJFM, a large positive correlation extended
from the equatorial eastern Pacific to the equatorial
western Pacific (Fig. 1b). There was a positive cor-
relation over the equatorial Atlantic Ocean and the
equatorial western Indian Ocean, the South Pole re-
gion, and the high-latitude land regions of the North-
ern Hemisphere. Negative correlation was obtained
over the Southern Hemisphere land regions as well as
over the Rocky Mountain region and the subtropical
Asian region.

The P–T correlation over the continental regions
exhibited obvious differences between MJJAS and ND-
JFM. The negative P–T correlation was large in the
summer hemispheres but weak in winter hemispheres.
In the Northern Hemisphere high-latitudes, the P–T
correlation switched from weakly negative to strongly
positive over northern Eurasia, northeast Canada, and
Greenland. In the Antarctic region, the positive cor-
relation enhances from summer to winter. The most
noticeable seasonal change over the ocean occurred in
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the equatorial eastern Indian Ocean and the tropical
western North Pacific. In the former region, the P–
T correlation was large and positive in boreal sum-
mer but weak in boreal winter. In the latter region,
the P–T correlation was positive in boreal winter and
weak negative in boreal summer. There was a notice-
able seasonal change in the mid-latitude North Pacific,
where the correlation was negative in MJJAS but weak
in NDJFM. The negative P–T correlation in MJJAS
is likely related to the impact of precipitation on SST
through cloud and radiation changes along the storm
track (Wu and Kinter, 2010). This cloud-radiation ef-
fect was weak in boreal winter.

The P–T correlation in the present study was gen-
erally consistent with previous studies. The preva-
lence of the positive correlation over most of the equa-
torial oceanic regions, the seasonal change over the
continents with negative correlation in summer hemi-
spheres, and the positive correlation over the high-
latitude lands of the Northern Hemisphere in winter
agreed well with Trenberth and Shea (2005). The sea-
sonal changes in different land regions were consistent
with previous regional studies (Madden and Williams,
1978; Tout, 1987; Isaac and Stuart, 1992; Zhao and
Khalil, 1993; Rusticucci and Penalba, 2000). The
seasonal changes observed over the equatorial eastern
Indian Ocean and the tropical western North Pacific
were consistent with Trenberth and Shea (2005) and
Wu and Kirtman (2007).

There were, however, several notable discrepancies
between the present study and Trenberth and Shea
(2005). The positive P–T correlation over the equato-
rial western Pacific in NDJFM appeared larger than
that obtained by Trenberth and Shea (2005). Tren-
berth and Shea (2005) obtained a positive correlation
along the Antarctic coast, which was not seen in this
study. A positive correlation appeared over the mid-
latitude oceans of the Southern Hemisphere in MJ-
JAS in Trenberth and Shea (2005), but not in this
study. The negative correlation over the tropical west-
ern North Pacific in summer appeared smaller than
in Trenberth and Shea (2005). In this study a large
positive correlation was obtained in the South Pole re-
gion where Trenberth and Shea (2005) got a negative
correlation. These discrepancies occurred due to the
differences in the datasets. Trenberth and Shea (2005)
used the European Center for Medium-range Weather
Forecasts 40-year reanalysis (ERA40) surface air tem-
perature and GPCP precipitation. We examined the
local correlation of the ERA40 surface air temperature
with the University of Delaware surface air tempera-
ture over the land and the ERSST3 SST over the ocean
as well as the local correlation of the GPCP precipita-
tion with the University of Delaware precipitation over

the land. Relatively low correlation (correlation coef-
ficient <0.6) between the ERA40 surface air tempera-
ture and ERSST3 SST was obtained over the tropical
western North Pacific and middle and high latitudes
of the Southern Hemisphere. This appears to be the
reason for the discrepancies in the tropical western Pa-
cific and along the coast of Antarctic continent. The
correlation between the GPCP precipitation and the
University Delaware precipitation was low (<0.4) over
the Antarctic continent, which likely contributed to
the discrepancy there.

As pointed out by Trenberth and Shea (2005),
the regional and seasonal changes in the P–T corre-
lation indicate different connections between precipi-
tation and surface temperature variations. The pos-
itive correlation over the equatorial oceans indicates
the oceanic forcing of precipitation (Wu et al., 2006;
Wu and Kirtman, 2007). The equatorial Pacific warm-
ing during El Niño events induced anomalous heat-
ing and more precipitation (Wu et al., 2006). Similar
forcing was observed in the equatorial Atlantic and
the equatorial Indian Ocean (Wu and Kirtman, 2007),
though it was not as prevalent as in the equatorial Pa-
cific. Over the continental land regions, the negative
correlation appeared because of the surface tempera-
ture decrease following the suppression of downward
solar radiation associated with the precipitation in-
crease (Trenberth and Shea, 2005). This type of phys-
ical connection can also be seen over the tropical west-
ern North Pacific in summer (Wu and Kirtman, 2007).
The positive correlation over the high-latitude land re-
gions in winter occurred because the atmosphere can-
not hold much moisture when the temperature is very
low, and thus little precipitation occurs. The north–
south contrast of correlation over Europe in winter
is related to the shift of the North Atlantic storm
track. A northward (southward) shift of the storm
track would bring warmer (colder) and wetter (drier)
air to northern Europe, resulting in a positive P–T
correlation, whereas the southern Europe would expe-
rience drier (wetter) condition, leading to a negative
P–T correlation (Trenberth and Shea, 2005).

3.2 Model simulations

Figure 2 shows the Taylor diagram indicating the
P–T correlation in the 17 climate model simulations
compared to the observations over the global domain
for groups of months of MJJAS and NDJFM, respec-
tively. The P–T correlation was calculated based on
precipitation and surface air temperature over the land
regions and based on precipitation and surface skin
temperature over the oceanic regions. Each point cor-
responded to a single simulation of a specific model
(Fig. 2). The radial distance of the points from the
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Fig. 2. The Taylor diagram showing the pattern statistics of the P–T correlation on 2◦×2◦ grids
over the global domain for 17 climate model simulations compared to the observations for groups
of months of MJJAS (a) and NDJFM (b) during 1979–2005.

origin was the ratio of the standard deviation of the
model simulated P–T correlation field with respect to
the standard deviation of the observed P–T correlation
field. We noted that the standard deviation indicated
the spatial variability of the P–T correlation. The az-
imuthal location of the points indicated the pattern
correlation coefficient between the simulated and ob-
served P–T correlation fields. The observation point
(the reference point for comparison with model sim-
ulations) was on the abscissa, with one unit of stan-
dard deviation. In calculating the pattern correlation
and the standard deviation for the Taylor diagram,
the P–T correlation was multiplied by the cosine of
the latitude to take into account of the decrease of the
longitude–latitude grid-cell area with the latitude.

Most of the points derived from the 17 climate
model simulations tended to be close to each other
(Fig. 2). This indicates general agreement among mod-
els in simulating the P–T correlation over the global
domain. In MJJAS, most of the points had a pattern
of correlation of 0.50–0.62 and a standard deviation of

1.3–1.7 (Fig. 2a). In NDJFM, most of the points had
a pattern correlation of 0.58–0.64 and a standard de-
viation of 1.5–1.8 (Fig. 2b). In comparison, the model
simulations agreed with the observations better in ND-
JFM than in MJJAS based on the pattern correla-
tion. In both MJJAS and NDJFM, the P–T correla-
tion showed larger spatial variability in models than in
observations by ∼50%–60%. The CSIRO model exhib-
ited the largest standard deviation, whereas the MRI
exhibited the smallest standard deviation in both MJ-
JAS and NDJFM. The BNU model had the largest
pattern correlation in NDJFM. The INM model had
the lowest pattern correlation in both MJJAS and ND-
JFM. The MRI model had a pattern correlation second
to the INM.

The P–T correlation differed over the ocean and
the land regions (Fig. 1). In particular, the correlation
over continental land regions displayed a large seasonal
change. To examine the model performance in the P–
T correlation over the land and ocean regions sepa-
rately, the Taylor diagrams constructed based on the

Fig. 3. The same as Fig. 2 except for the land.
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Fig. 4. The same as Fig. 2 except for the ocean.

land and oceanic grids, respectively, for the 17 model
simulations (Figs. 3 and 4).

Over land, the pattern correlation was ∼0.7, and
the standard deviation varied from 1.5 to 2.0 in MJ-
JAS (Fig. 3a). In NDJFM, the pattern correlation
was ∼0.75 (Fig. 3b), higher than in MJJAS. The INM
model deviated greatly from the other models, with
the pattern correlation of 0.42 in MJJAS and 0.52
in NDJFM, respectively. Like the global domain, the
CSIRO model showed the largest standard deviation
and the MRI model showed the smallest standard de-
viation in both MJJAS and NDJFM. One notable fea-
ture was that the pattern correlation tended to be
larger when the standard deviation was higher in MJ-
JAS. The reason for this may be the following: The
magnitude of the P–T correlation indicated the signal
for co-variability of precipitation and surface temper-
ature. A higher standard deviation suggests a larger
signal for co-variability. The models with a larger sig-
nal are expected to capture the P–T correlation distri-
bution better compared to those with a smaller signal.

Over the ocean, the pattern correlation varied
from 0.3 to 0.5 in both MJJAS (Fig. 4a) and NDJFM
(Fig. 4b). The standard deviation varied from 1.2 to
1.6 in MJJAS and from 1.3 to 1.7 in NDJFM. The
CSIRO model showed the largest standard deviation
in both MJJAS and NDJFM. The BNU model per-
formed the best and the MRI model was the worst in
both MJJAS and NDJFM based on the pattern corre-
lation (Fig. 4b). The BNU model had a large standard
deviation, second to the CSIRO model, in both MJ-
JAS and NDJFM. Compared to the land, the pattern
correlation was smaller and displayed a larger spread
among the models, and the spatial variability of the
correlation was smaller. The seasonal dependence of
the model performance was not as obvious as over the
land. Similar to the land in MJJAS, there was a ten-
dency toward a larger pattern correlation that corre-

sponded to a higher standard deviation in both MJJAS
and NDJFM.

The land and ocean coverage varied with the lati-
tude and differed between the Northern and Southern
Hemispheres. To examine the impact of the land and
ocean distribution, we further evaluated model perfor-
mance by separating the global domain into the trop-
ics (30◦S–30◦N), mid-latitudes (30◦–60◦N, 30◦–60◦S),
and high latitudes (60◦–90◦N, 60◦–90◦S). The corre-
sponding Taylor diagrams are shown in Fig. 5 (trop-
ics), Fig. 6 (mid-latitudes), and Fig. 7 (high-latitudes).

In the tropics, there was a notable spread among
the models (Fig. 5). In MJJAS, the pattern correla-
tion varied from 0.42 to 0.72 and the standard devi-
ation changed from 1.0 to 1.7 (Fig. 5a). In NDJFM,
the pattern correlation was mostly between 0.58 and
0.74, and the standard deviation varied from 0.8 to
1.5 (Fig. 5b). The INM model deviated from the other
models in NDJFM, with a relatively low pattern cor-
relation. The BNU model had a somewhat higher pat-
tern correlation than the other models in both MJJAS
and NDJFM. The IPSL model had the lowest pattern
correlation in MJJAS (Fig. 5a). The MRI model dis-
played the smallest standard deviation in both MJJAS
and NDJFM. In comparison, most models performed
better in NDJFM than in MJJAS. A tendency for a
larger correlation corresponding to a higher standard
deviation occurred in both MJJAS and NDJFM.

In the mid-latitudes of the Northern Hemisphere,
where land covers a large part, the pattern correlation
was mostly between 0.7 and 0.8, and the standard de-
viation is between 1.0 and 1.5 in MJJAS (Fig. 6a). In
NDJFM, most of the models had a pattern correlation
between 0.4 and 0.5, and the standard deviation var-
ied from 1.2 to 1.7 (Fig. 6b). The INM model had the
lowest pattern correlation in NDJFM and was one of
the two models with the lowest pattern correlation in
MJJAS, whereas the National Center for Atmospheric
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Fig. 5. The same as Fig. 2 except for the tropics (30◦S-30◦N).

Fig. 6. The same as Fig. 2 except for the mid-latitudes of the Northern Hemisphere (30◦–60◦N) (a
and b) and the mid-latitudes of the Southern Hemisphere (30◦–60◦S) (c and d).

Research (NCAR) model had the highest pattern cor-
relation in NDJFM. In comparison, the models per-
formed much better in MJJAS than in NDJFM. In
the mid-latitudes of the Southern Hemisphere, which
is mainly covered by the ocean, the models had diffi-
culty capturing the spatial distribution of the P–T cor-
relation and the standard deviation was ∼50% larger
than in observations in MJJAS (Fig. 6c). In NDJFM,
the pattern correlation varied from 0.3 to 0.5, and the

standard deviation was mostly between 1.0 and 1.5
(Fig. 6d). Thus, the models performed better in ND-
JFM than in MJJAS, which contrasted sharply with
the Northern Hemisphere. In comparison, the model
performance was better in the Northern Hemisphere
than in the Southern Hemisphere, in summer (Figs. 6a,
d) or in winter (Figs. 6b, c).

In the high latitudes of the Northern Hemisphere,
the models exhibited a notable spread in MJJAS, with
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Fig. 7. (a, b) The same as Fig. 2 except for the high-latitudes of the Northern Hemisphere (60◦–
90◦N) and (c, d) the high-latitudes of the Southern Hemisphere (60◦–90◦S).

the pattern correlation varying from 0.2 to 0.5 and the
standard deviation varying from 1.4 to 2.0 (Fig. 7a).
The CSIRO model had the largest standard deviation,
and the MRI model had the lowest standard devia-
tion. In NDJFM, the models were clustered around a
pattern correlation of 0.6, and the standard deviation
varied between 1.8 and 2.3 (Fig. 7b). In comparison,
the models performed much better in NDJFM than
in MJJAS based on the pattern correlation. In the
high latitudes of the Southern Hemisphere, most of the
models had a pattern correlation∼0.6 or higher in MJ-
JAS (Fig. 7c). Three models (i.e., LASG-IAP, NASA-
GISS, MRI), however, displayed a relatively low pat-
tern correlation. The standard deviation revealed a
large spread among the models. In NDJFM, the pat-
tern correlation was mostly ∼0.7 or greater, except for
the LASG-IAP and MRI models (Fig. 7d). The stan-
dard deviation varied from 2.0 to 3.5. In comparison,
the models captured the distribution of the P–T cor-
relation better in NDJFM than in MJJAS. There was
a tendency for a larger pattern correlation to corre-
spond to a higher standard deviation in both MJJAS
and NDJFM. In NDJFM, the models displayed a much
higher pattern correlation in the Southern Hemisphere
than in the Northern Hemisphere (Figs. 7b and d).

From the above comparison, the seasonal depen-
dence was more obvious in the middle and high lati-
tudes than in the tropics. Except for the mid-latitudes
of the Northern Hemisphere, the pattern correlation
was generally higher in NDJFM than in MJJAS. The
land and ocean coverage was an important factor in
the performance of the models, which may explain the
high pattern correlation in the mid-latitudes of the
Northern Hemisphere and the high-latitudes of the
Southern Hemisphere as well as the contrast of the
pattern correlation between the Northern Hemisphere
and the Southern Hemisphere in the summer or win-
ter season. The spatial variability of the correlation
tended to increase from lower latitudes to higher lat-
itudes. Another notable feature was that an increase
in the pattern correlation tended to accompany an in-
crease in the standard deviation in the tropics and
high-latitudes of the Southern Hemisphere.

As noted above, the INM model displayed rela-
tively low pattern correlation compared to the other
models over the land, and the MRI model showed a rel-
atively low pattern correlation over the ocean. There-
fore, we examined in detail the distribution of the P–
T correlation in these two models to understand their
performance. For this purpose, we analyzed the dis-
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Fig. 8. The same as Fig. 1 except for a single simulation
of the INM model.

tribution of the P–T correlation for the INM and MRI
models, respectively (Figs. 8 and 9). As in Fig. 1, the
correlation was calculated for two groups of months
(MJJAS and NDJFM) separately.

For the INM model, most differences from observa-
tions occurred over land regions. In MJJAS, large dif-
ferences from observations occurred over the equato-
rial western Pacific and the land regions of the South-
ern Hemisphere, including Australia, southern Africa,
and South America (Fig. 8a). In these regions, the ob-
served P–T correlation was weak, whereas the INM
model displayed a large positive correlation. Over
equatorial South America and western and southeast-
ern China, the P–T correlation simulated by the INM
model was positive (Fig. 8a), which was opposite to
observations (Fig. 1a). The INM model simulated a
positive correlation over the Arctic and Greenland, as
well as over subtropical northern Africa where the ob-
served correlation was weak. The positive correlation
over the Antarctic continent had a much larger cover-
age in the INM model than in observations. In ND-
JFM, the P–T correlation over equatorial Africa and
equatorial South America was opposite that in the ob-
servations (Fig. 8b). A positive correlation was simul-

Fig. 9. The same as Fig. 1 except for a single simulation
of the MRI model.

ated over subtropical land regions of the Northern
Hemisphere, including northern Africa, India, China,
and western North America, where the observed corre-
lation was weak or negative (Figs. 8b and 1b). A simi-
lar difference was seen over the Arctic region. The pos-
itive correlation over the Antarctic region was larger
and had a broader coverage compared to observations.
In comparison, the INM model performed better over
the ocean than over land. Thus, the low pattern cor-
relation of the INM model over the global domain was
due to the large differences from observations over the
land. This suggests a need for improvement of the land
surface component in the INM model.

The distribution of the P–T correlation in the MRI
model showed notable differences from observations in
several oceanic regions. Specifically, it did not prop-
erly represent the positive P–T correlation over the
equatorial eastern Pacific Ocean in both MJJAS and
NDJFM (Fig. 9). The positive correlation over equato-
rial Atlantic and Indian Oceans was weaker compared
to observations in NDJFM (Fig. 9b). The positive cor-
relation was excessive over the Arctic and Greenland in
NDJFM (Fig. 9b) and over the Antarctic coast in both
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Fig. 10. The same as Fig. 2 except for 10 simulations of CanCM4 model along with the mean of
individual correlations and the ensemble mean correlation.

MJJAS and NDJFM (Figs. 9a and b). Over the land
regions in the tropics and mid-latitudes, it reproduced
the pattern well but with some overestimation in the
magnitude of the negative correlation. Overall, the
performance of the MRI model was not as good over
the ocean as over the land. Thus, a direction for im-
provement in the MRI model is the oceanic processes
and/or the atmosphere–ocean coupling processes, e.g.,
over the equatorial oceanic regions.

3.3 Spread among model members

In the previous subsections, the evaluation of the
model performance was based on a single simulation
of individual models. We considered whether the sin-
gle simulation could represent the other simulations
of the same model. To address this issue, we ana-
lyzed the correlation for all the members of some sub-
jectively selected models. The spread among the en-
semble members versus the difference between model
simulations and observations yielded information re-
garding whether the individual model simulations were
representative of other simulations. The analysis also
provided useful information about the statistical sig-
nificance of the difference of the model simulation from
the observations (Taylor, 2001).

We calculated the P–T correlation for members
of three models. These were MOHC (3 members),
NOAA-GFDL (5 members), and CCCMA (10 mem-
bers). Taylor diagrams were constructed for all three
of these models. The results indicate that the spread
among the model members were relatively small com-
pared to the difference from the observations. Here, we
have shown only the results from the CCCMA model
that has the largest number of ensemble simulations
(Fig. 10).

Apparently, the pattern correlation and the stan-
dard deviation were very close among the members

of the CCCMA model simulations. The spread was
much smaller than the distance of the model simula-
tions from the observation reference. This is true for
both MJJAS and NDJFM. In comparison, the pattern
correlation was somewhat higher in NDJFM than in
MJJAS, as was the standard deviation. Figure 10 also
shows the points corresponding to the mean of the
correlation based on individual members and the cor-
relation based on the ensemble mean. In NDJFM, the
two points were quite close, with a difference of ∼0.04
in the pattern correlation (Fig. 10b). In MJJAS, the
two points showed a difference of ∼0.08 in the pattern
correlation (Fig. 10a). The MOHC and GFDL models
showed differences between the mean correlation of in-
dividual members and the ensemble mean correlation
was smaller than those in the CCCMA model (figures
not shown).

We examined the distribution of the P–T corre-
lation obtained as the mean correlation of individual
members and as the ensemble mean correlation. The
distributions were very similar. The P–T correlation
based on the ensemble mean of 10 simulations of the
CCCMA model is shown is Fig. 11. While the distribu-
tion exhibits similarities with observations in the trop-
ics and mid-latitudes, there were some notable differ-
ences. In MJJAS, the positive correlation along equa-
torial Pacific extended too far westward, and the pos-
itive correlation along the South Pacific Convergence
Zone (SPCZ) was larger and extended too far eastward
(Fig. 11a). The positive correlation over equatorial
Atlantic Ocean was too weak, compared to observa-
tions. The negative correlation over the eastern trop-
ical North Africa was much larger than observations,
as was the negative correlation over Australia. In the
Arctic and Antarctic regions, the positive correlation
was much larger than in observations. In NDJFM, the
positive correlation along the SPCZ extended too far
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Fig. 11. The same as Fig. 1 except for ensemble mean of
the CanCM4 10-member simulations.

eastward (Fig. 11b). The positive correlation over the
high-latitudes of the Northern Hemisphere was higher
than observations. Very large positive correlation oc-
curred over the Arctic and Antarctic regions.

4. Summary

Precipitation and surface temperature variations
may be linked to each other through physical processes
that vary from region to region and change from sea-
son to season. As such, the P–T relationship can in-
dicate the physical processes in the climate system.
For climate models, a proper simulation of the P–T
correlation can indicate a model’s ability to realis-
tically represent the physical processes and thus the
precipitation and surface temperature variations. An
improper P–T correlation may degrade the precipita-
tion and surface temperature variations in the models.
Thus, it is important to evaluate how well the climate
models capture the P–T relationship. In the present
study, we compared the P–T correlation between ob-
servations and 17 climate models newly available from
the IPCC CMIP5 project. The main results are sum-

marized below.
The P–T correlation was mostly positive over the

tropical oceans and negative over the mid-latitude
lands in both observations and model simulations. The
P–T correlation exhibited obvious seasonal change
over the land. The negative P–T correlation over the
land was large in summer and small in winter. Positive
P–T correlation occurred over the high-latitude land
regions of the Northern Hemisphere in boreal winter.
These results are in general agreement with previous
studies.

Based on the pattern correlation, the model perfor-
mance was better in NDJFM than in MJJAS, except
for the mid-latitude lands of the Northern Hemisphere,
where the models had the largest pattern correlation
with the observations. The model performance was
generally better over the land than over the ocean.
The seasonal dependence of the model performance
was more obvious over the land than over the ocean
and more pronounced over the mid- and high-latitudes
than over the tropics. All of the models had difficulty
capturing the P–T distribution over the mid-latitudes
of the Southern Hemisphere in MJJAS.

The spatial variability of the P–T correlation was
larger in the models than in observations. The spatial
variability of the P–T correlation in the models tended
to be larger over the land than over the ocean and in-
creased with the latitude with the smallest variability
over the tropical oceans. In the tropics and the high
latitudes of the Southern Hemisphere, there was a ten-
dency toward an increase in the spatial variability of
the correlation in the models; it was accompanied by
an increase in the pattern correlation between model
simulations and observations.

Some individual models deviated greatly from the
other models in simulating the P–T correlation. Two
examples are the INM and MRI models. The INM
model had a relatively low pattern correlation, mainly
due to its difficulty in capturing the P–T correlation
over the land. The MRI model had relatively low pat-
tern correlation due to the improper P–T correlation
over the equatorial oceanic regions.

The spread of the –P–T correlation among the en-
semble members was much smaller compared to the
model–observation difference based on evaluation of
selected model simulations. The mean of the P–T cor-
relation estimated based on individual members was
quite close to the P–T correlation estimated based on
ensemble mean.

The evaluation of the P–T correlation provides im-
portant information about the performance of the cli-
mate models in simulating the co-variability of precip-
itation and surface temperature. It also gives useful
information for potential problems and thus the di-
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rection of future improvement of individual models.
The specific reasons for discrepancies between model
simulations and observations, however, remain elusive
at the current stage. The discrepancies over the land
may be related to the performance of the land model
and those over the Arctic and Antarctic regions may
be related to the performance of the sea ice model.
The performance may also be related to the capability
of the models to simulate the coupled processes, e.g.,
the ENSO in the tropical Pacific Ocean. Thus, evalua-
tions of other aspects in the models, such as ENSO and
land surface energetics, which are expected to be ac-
complished by other climate scientists, would be bene-
ficial to the understanding of plausible reasons for the
model-observation discrepancies in the P–T correla-
tion.
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