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ABSTRACT

An evolutionary strategy-based error parameterization method that searches for the most ideal error
adjustment factors was developed to obtain better assimilation results. Numerical experiments were designed
using some classical nonlinear models (i.e., the Lorenz-63 model and the Lorenz-96 model). Crossover and
mutation error adjustment factors of evolutionary strategy were investigated in four aspects: the initial
conditions of the Lorenz model, ensemble sizes, observation covariance, and the observation intervals. The
search for error adjustment factors is usually performed using trial-and-error methods. To solve this difficult
problem, a new data assimilation system coupled with genetic algorithms was developed. The method was
tested in some simplified model frameworks, and the results are encouraging. The evolutionary strategy-
based error handling methods performed robustly under both perfect and imperfect model scenarios in the
Lorenz-96 model. However, the application of the methodology to more complex atmospheric or land surface
models remains to be tested.
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1. Introduction

Atmospheric and other similar models (e.g., land,
hydrological, and oceanic) still have large but un-
known deficiencies. This uncertainty comprises one of
the major obstacles to atmospheric research because
large unknown errors can seriously undermine model-
ing results (Li et al., 2007; Reichle, 2008). Poor error
estimation or parameterization can lead to filter diver-
gence (Jazwinski, 1970), a situation in which the fil-
ter becomes so overconfident around an incorrect state
that the subsequent observation data are ignored and
the estimate cannot be moved back toward the true
state (Anderson, 2007; Li et al., 2009; NG et al., 2011).
A practical way to address this issue is through a lo-
calization or inflation technique. In Ensemble Kalman
Filter data assimilation, localization is used to mod-
ify the error covariance matrices to suppress the influ-
ence of distant observations, removing spurious long-

distance correlations (e.g., Houtekamer and Mitchell,
2001; Greybush et al., 2011; Tian and Xie, 2012).
Much effort has been devoted to advancing the state-
of-the-science in data assimilation for better inflation
techniques. Some experimental research has been per-
formed regarding the atmospheric and oceanic data as-
similation (DA) field, such as covariance or multiplica-
tive inflation (Anderson and Anderson, 1999), additive
inflation (Hamill et al., 2005), and the “relaxation-to-
prior” method proposed by Zhang et al. (2004). All
of these methods for dealing with model errors are
meant to alleviate the bias error in ensemble second
moment. As an extended application of the maximum
likelihood theory developed in the works of Dee (1995)
and Dee and da Silva (1999), Zheng (2009) proposed a
“multivariate covariance inflation” to extrapolate the
inflation factor to a time-dependent diagonal matrix.
However, only a simple model and independent ob-
servation errors were tested in that study. Liang et
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al. (2011) further developed the work of Zheng (2009)
and they used spatially correlated observation errors
to test the inflation method on more realistic mod-
els. Motivated by the “relaxation-to-prior” method
(Zhang et al., 2004), Bai and Li (2011) proposed a
new method to generate the ensemble perturbation
based on the crossover principles originally developed
in intelligent computing research. The essence of the
method is to generate proper ensemble perturbation to
inflate the covariance matrix and to obtain appropriate
weights for innovation in the ensemble Kalman filter
by which filter divergence can be effectively mitigated.
Combined with the factor search frameworks, the most
ideal error adjustment factors guaranteed the best DA
performance in the corresponding circumstances. The
preliminary results from idealized cases suggested its
potential for data assimilation. Nevertheless, the ex-
periments also indicated that the crossover principle
suffers from high computational costs due to its com-
plex conceptual formulation and relative difficulty of
implementation.

Subsequent to the work of Bai and Li (2011), the
main purpose of this study was to develop a new pa-
rameterization method using evolutionary strategies
(hereafter, ES, cf, Recehenberg, 1965), which is both
relatively easy to achieve by programming and is com-
putationally efficient. Basically, ESs are population-
based metaheuristic optimization algorithms that use
biology-inspired mechanisms like mutation, crossover,
natural selection, and survival of the fittest to refine a
set of solution candidates iteratively (Back et al., 1997;
Fogel, 2006). Technically, crossover is an operator ap-
plied to two or more selected candidates (the so-called
parents) that results one or more new candidates (the
children). Mutation is applied to one candidate and
results in one new candidate. Crossover and mutation
lead to a set of new candidates (the offspring). With
the aim of facilitating implementation, the emphasis
in this study was to develop evolutionary strategies in-
spired by natural mutation and natural selection con-
cepts in biological evolution that are more computa-
tionally efficient. Mutation operation in evolutionary
strategies is more important than in the genetic al-
gorithms (GAs) proposed by Bai and Li (2011). In
addition, the algorithms generally operate directly on
the actual values that are to be optimized, in contrast
with the GAs, which usually operate on a separately
coded transformation of objective variables. There-
fore, the evolutionary strategy proposed in this work
is simple in concept, has brief parameterizations, and
is easy to implement. This strategy has been proven
to be an efficient method to solve optimization prob-
lems, and it has been successfully applied in the ar-
eas of function optimization, neural network training,

and fuzzy control systems (Back et al., 1997; Whitley,
2001; Lee et al., 2006). Finally, we chose an evolu-
tionary strategy to address error estimation issues in
response to the suggestions of Whitaker et al. (2008:
pp477): “One can either add more tunable parame-
ters to the parameterization to force the structures to
match, or try to develop new parameterization that
more accurately reflect the structure of the underlying
system error covariance.”

This paper is organized as follows: in section 2 the
methods are described, the study results are discussed
in section 3, and in section 4 conclusions are presented.

2. Methods

In this study, ES principles were applied to sequen-
tial deterministic filters. After a one-step assimilation,
each column of the analysis ensemble perturbation was
taken as the initial population of the ES algorithms.
The size of the initial population was the same as the
number of ensembles. Each individual of the popula-
tion was real-coded to calculate its fitness value. Based
on the principles of Darwinian evolution, the popu-
lation was optimized by choosing genetic operators
(e.g., inheritance, mutation, selection, and recombina-
tion). The offspring after the evolution were taken as
the final analysis ensemble perturbation into the next
step of assimilation. In this section, the DA methods
are briefly described, including evolutionary strategy-
based error parameterization methods and error factor
searching methods.

2.1 Data assimilation methods

Based on the ensemble transform Kalman filter-
ing method (ETKF, Bishop et al., 2001), a new error
parameterization method coupled with ES was devel-
oped. The method takes each ensemble of the ETKF
as an individual in the evolutionary algorithms, while
the integrations of ensembles are taken as the evolu-
tion of the individual. This study may be considered
a continuation of the previous work by Bai and Li
(2011) because the same ensemble data assimilation
approach (ETKF) and the same model were used. [For
more details about the DA methods, refer to Bai and
Li (2011).] After a one-step assimilation, all ensem-
ble perturbation matrices are taken into account. The
analysis ensemble perturbation matrix is denoted as
an m×N -dimensional matrix Xa [cf. Eq. (13) of Bai
and Li, 2011], where m is the model dimension and N
is the number of ensembles. Elements in each column
of Xa represent the ensemble disturbance between en-
semble analysis and the ensemble mean state. The ith
column element is Xa(i) = {xa(i) − x̄a}, where x̄a is
the analysis mean state and xa(i) is the analysis state
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after the assimilation.
In this study, the analysis ensemble perturbation

Xa(i) was further investigated to address filter diver-
gence problems. Although all KF-based algorithms
assume that the perturbations should satisfy Gaussian
distribution, DA systems may violate this assumption
after several steps of assimilation. Therefore, the ES
principle has been introduced to obtain a more appro-
priate perturbation with the constraint of the fitness
function by adjusting crossover and mutation factors.
This method represents an alternative to traditional
methods, such as multiplicative methods and additive
methods, which are meant to change the ensemble per-
turbation to respond to a lack of Gaussian conformity
caused by the nonlinear model during the assimilation
process. To take the above perturbation as the par-
ents’ individual perturbation, evolutionary techniques
are applied. The offspring Xa,o(i) (the ‘o’ in the sub-
script means the offspring) after the evolutionary ac-
tion are taken as the final analysis ensemble perturba-
tion into the next assimilation step. Finally, the model
state vector at time tn is the summation of the assim-
ilation mean and the evolutionary offspring [cf. Eq.
(15) of Bai and Li (2011)].

xa, tn
= x̄a + Xa,o(i) . (1)

2.2 Evolutionary strategy-based error param-
eterization methods

Error parameterization methods proposed in this
work use the analysis ensemble perturbation Xa(i) as
the initial population, which is denoted as Xa for sim-
plicity. Based on Schwefel (1981), the evolutionary
algorithm is allowed to self-adapt the vector of stan-
dard deviation σ appropriate for each parent. Each
evolving trial solution is encoded not only with the
vector of object variables Xa to be optimized but also
with a vector of standard deviation σ that in part de-
termines how Xa and σ are mutated into Xa,o and σo.
Specifically, for all components i = 1 . . . N , N is the
ensemble size.

The following steps describe the evolutionary algo-
rithm proposed in this work:

(1) The generation of the initial population. The
individual is composed of the target valuable Xa and
the standard deviation σ. Each part is divided into N
components as shown:

(Xa,σ) = [(Xa,1,Xa,2, . . . ,Xa,i, . . . ,Xa,N ),
(σ1, σ2, . . . , σi, . . . , σN )] , (2)

The relationship between Xa and σ is the following:
{

σo,i = σi · exp[λ1 ·N(0, 1) + λ2 ·Ni(0, 1)]
Xo,i = Xa,i + σo,i ·Ni(0, 1) , (3)

where (Xa,i, σi) is the ith components of the parent
individual; (Xo,i, σo,i) is the ith components of the
offspring individual; N(0, 1) is an evenly distributed
random number with the range [0, 1] that is generated
for each mutation per individual; Ni(0, 1) is also an
evenly distributed random number with the range [0,
1], but this number is generated for each σi. λ1 is

the global parameter equal to
(√

2
√

N
)−1

; λ2 is the

local parameter equal to (
√

2N)−1; and N is the size
of the population. These equations indicate that the
offspring are obtained randomly based on the parent
individuals.

(2) Generation of the new population. According
to evolutionary strategy, the new population is gen-
erated by convex crossover between the population of
assimilation analysis and the population after the evo-
lution. In our algorithm, several improvements to the
convex crossover operator have been made:

Xa,o(i) = (1− e1)×Xa,i + e1 ×Xo,i , (4)

in convex crossover operation, error adjustment factor
e1 is the random number with the uniform distribution
within (0, 1). The value of the error adjustment fac-
tor determines the accuracy of the DA systems. The
offline searching process is equivalent to bringing the
feedback mechanism to the DA system to obtain more
ideal results.

(3) Repeat steps 1 and 2. To take the standard de-
viation σ and the convex crossover error adjustments
factor e1 as the feedback factors, the best error ad-
justment factor (σ, e1) is calculated to yield the most
ideal final result during data assimilation.

2.3 Error factor searching methods coupled
with GA

To handle error adjustment factor searching prob-
lems, a coupled forward-inverse approach was devel-
oped, implemented, and tested by Bai and Li (2011).
The coupled approach was formulated using ETKF
and the genetic algorithm. The offline method adopts
an outer optimization algorithm to find appropriate
error adjustment factors (σ, e1).

3. Numerical experiments

We investigated the performance of the methods we
developed in a number of experiments with small toy
models. We conducted two experiments, starting with
the 3-element Lorenz (Lorenz-63) model from the work
of Lorenz (1963), followed by the 40-element Lorenz
(Lorenz-96) model from the work of Lorenz (1996).
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3.1 Experiments with the Lorenz-63 model

The Lorenz-63 model consists of a system of three
coupled and nonlinear ordinary differential equations
(Lorenz, 1963):





dx

dt
= α(y − x) + qx

dy

dt
= rx− y − xz + qy

dz

dt
= xy − bz + qz

, (5)

where α = 10, r = 28, b = 3/8. x(t), y(t) and z(t) are
the dependent variables. The terms qx, qy, and qz are
assumed to represent the unknown model errors. As
described in Evensen (2007), the terms were set as 2,
12.13, and 12.31 amplitudes of Gaussian white noise
to simulate model errors.

3.1.1 The fitness function
Fitness function is the method used to determine

the performance of each individual of the population
in the genetic algorithm. This is the only way to
achieve the selection step in the genetic algorithm. We
used the root-mean-square error of the analysis state
(RMSEa) to evaluate the accuracy of the assimilation
results. The target of the search was the minimum of
the fitness function. Although the fitness function im-
ported here uses the truth in toy models and this new
DA method is limited for now to synthetic studies, the
choice of the fitness function in actual applications has
been thoroughly discussed in Bai and Li (2011). The
analysis RMSE is defined as the following:

RMSEa =

√√√√ 1
N

[
N∑

i=1

(xa,i − xs,i)2
]

, (6)

where N is the number of the ensemble, xs,i is the
truth, and xa,i is the analysis value.

3.1.2 Experimental results
In this study, the genetic algorithm was used to

consider with the second moment error in ETKF.
Therefore, the application process of ES was inves-
tigated according to the ensemble DA. The ES algo-
rithms (see section 2.2) were implemented. Coupled
with the fast-searching genetic algorithm discussed in
Bai and Li (2011), the most ideal error adjustment fac-
tors were obtained with the constraints of fitness func-
tion. After the evolution, the algorithm used the best
offspring to propagate forward until a new observation
value was met. By updating the error adjustment fac-
tors adaptively, the entire procedure continued until
the GA’s end conditions were met.

3.1.3 Evolutionary strategy principles experiments
The application process of ES is presented in this

section. In Bai and Li (2011), a feasible solution
space for DA systems was defined. Figure 1 shows the
schematic of the application with 10 ensembles. The
mutation and crossover operations search all of the
points in the lineage of the two parents can easily be
seen. Therefore, the capacity of ES for wide searching
is more ideal than that of the convex crossover opera-
tor (Bai and Li, 2011).

3.1.4 Sensitivity experiments of evolutionary strategy
principles

To evaluate the ES DA systems, the ensemble
sizes, observation windows, and observation error mag-
nitudes were all varied. The standard experiment
parameters were set as the following: initial value
x0=[8.0 0.0 30.0], time increment ∆t=0.01, observa-
tion windows w= 8, observation error Ro=[2 2 2], and
ensemble number N=3. All parameters except one
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Fig. 1. The schematics of ensemble analysis perturbations after
evolutionary strategy operation to the ensemble number N=10.
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Fig. 2. The assimilation results with different ensemble numbers and
different initial values. “Different error factor combination” means dif-
ferent values of σ and e1. (a) Results with different ensemble number,
and (b) results with different initial value. With the different error fac-
tor combinations, the RMSE changes rapidly with an evident multiple
hill and multiple valley phenomenon, which can be taken as evidence
that the target functions are convex functions.

were fixed each time. Using this method, the influ-
ence of evolution was studied to analyze the function of
each parameter. Meanwhile, the correctness of the ES
methods can be further proven according to the normal
Lorenz model DA experiment, which has been stud-
ied thoroughly by many researchers (Evensen, 2007;
Kalnay et al., 2007). Four sets of parameters were
considered (Table 1):

(1) The influences of the ensemble numbers. In this
experiment, only the ensemble sizes were changed, and
other parameters were maintained. Different error fac-
tor combinations (σ, e1) were applied, and the results
indicate the following (Fig. 2a): (a) With the increase
of the ensemble sizes, the RMSE of the assimilation
system decreased, which is in accord with the result of

the standard Lorenz model experiment. If the ensem-
ble number increased to 10, the change was no longer
apparent (Kalnay et al., 2007). (b) When the ensemble
number was smaller, the amplitudes of RMSE change
appeared to change dramatically with changes in the
error factor. With the increase of the ensemble num-
ber, the amplitude tended to change smoothly. (c)
With the different error factors combination (σ, e1),
the RMSE changed rapidly with evident multihill and
multivalley phenomena, which can be taken as evi-
dence that the target functions are convex functions.
Therefore, search methods should be applied to obtain
the most ideal combination.

(2) The influence of initial value. As seen in Fig. 2b,
the initial values yielded small changes from case to
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Table 1. The parameters for the DA sensitivity experiments with the Lorenz-63 model.

Initial value Observation covariance

X Y Z X Y Z Observation interval Ensemble numbers

Case-1 1.5 −1.5 25 1 1 1 4 3
Case-2 3.5 −3.5 27 2 2 2 8 6
Case-3 5.5 −5.5 29 4 4 4 12 10
Case-4 9.5 −9.5 33 8 8 8 20 20
Case-5 8 0 30 10 10 10 25 30

Table 2. The best RMSE and optimal error adjustment factors (σ: mutation factor; e1: crossover factor; RMSEm: the
minimum of RMSEa).

Initial value Observation interval Initial value Initial value

σ e1 RMSEm σ e1 RMSEm σ e1 RMSEm σ e1 RMSEm

Case-1 0.1 0.3 0.5594 0.1 0.5 0.4903 −0.3 0.9 0.4605 −0.4 0.8 0.5795
Case-2 0.1 0.5 0.5667 −0.4 0.8 0.5795 −0.4 0.8 0.5795 0.5 0.9 0.4723
Case-3 0.2 0.3 0.6374 0.2 0.3 0.6994 −0.2 0.2 0.7706 0 0.7 0.4237
Case-4 −0.4 0.8 0.5795 −0.5 0.1 1.0035 −0.2 0.5 1.0316 0.1 0.8 0.4243
Case-5 0.2 0.2 0.6046 0.5 0.2 1.3287 −0.3 0.5 1.1178 −0.1 0.9 0.4233

case. However, the multiple hill characteristic of the
minimum solution of RMSE with the different cases
was more apparent. Therefore, combined with the
fast-searching genetic algorithm, the most ideal error
couples can be determined to acquire the most ideal
RMSE results of each case.

(3) The influence of observation covariance. The
results of assimilation changed with observation co-
variance (Fig. 3a). When the observation covariance is
increasing, the RMSE of assimilation systems increases
significantly as well, which is in accord with the con-
clusion of the normal assimilation methods (Evensen,
2007; Kalnay et al., 2007).

(4) The influence of the observation interval. The
RMSE of assimilation changed with the changes of er-
ror adjustment factors (Fig. 3b). The results indicate
the following: (a) With the increase of the observa-
tion interval, the RMSE of assimilation systems in-
creased significantly, in accord with the normal results
(Evensen, 2007; Kalnay et al., 2007). (b) When the
observation intervals change, more ideal results can be
obtained when the crossover error factor is 0.5 (i.e., the
crossover operation emphasizes the balance between
the analysis ensemble perturbation and the mutation
perturbation). (c) The increase of the observation in-
terval causes the amplitude of RMSE to change dra-
matically.

Table 2 shows the schematic of the most ideal
RMSE with the most ideal mutation and crossover fac-
tors. The results indicate the following: (a) As for dif-
ferent cases, the positions of the best mutation and
crossover factors differ, which means that ES gives
different weights to analysis ensemble perturbation

and mutation perturbation. The most ideal analysis
smooths the mutation value and analysis value, which
is in accord with the “relaxation-to-prior” method pro-
posed by Zhang et al. (2004). (b) With the increase of
the ensemble number, the most ideal error factor gives
more weight to the analysis value. When the ensem-
ble number increases to a certain value, the most ideal
assimilation result tends to be a constant value.

Figure 4 shows the schematic of RMSE change,
which is identical to the standard conclusions drawn
by other researchers (Evensen, 2007; Kalnay et al.,
2007). The results indicate the following: An increase
of the ensemble number significantly reduces the as-
similation error. An increase of observation covariance
and observation interval increases assimilation RMSE.
The changes of initial value of the model bring little
change to the results.

3.2 Evaluations with the Lorenz-96 model

To detect the larger effects of the proposed assim-
ilation technique, we conducted experiments with the
40-element Lorenz-96 model. The Lorenz-96 model is
a toy model originally proposed in the context of atmo-
spheric dynamics that is used extensively to test novel
techniques and applications. It is a time-continuous
model consisting of a set of nonlinear ordinary differ-
ential equations coupled in a ring geometry, which uses
the following formula:

dxl

dt
= −xl−2xl−1 + xl−1xl+1 − xl + F . (7)

Here, l = 1, 2, . . . , 40. x(t) can be seen as a scalar
meteorological variable. The boundary is cyclic, i.e.,
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Fig. 3. The assimilation results with different observation intervals and different observation vari-
ances. (a) Results with different observation intervals, and (b) results with observation variances.
The color brown means “Filter Divergence” and denotes the regions with RMSEs >1.0.

x−1=xl−1, x0=xl, and xl+1=x1. This model behaves
chaotically in the case of external forcing F=8. In
this study, Eq. (7) was solved using the Runge-Kutta
fourth-order scheme with an integration time step of
0.01. Thus, five steps correspond to six hours.

In the Observation System Simulation Experi-
ments (OSSEs), the Lorenz-96 model was set up first.
Then we created some bogus observations to assimi-
late. To detect the performance of the proposed meth-

ods in a more complex model, we varied ensemble size,
number of observations, and observation magnitude as
we had previously. All of the results obtained from the
experiments were the same as those of the ordinary
DA system (Khare et al., 2008). When the ensemble
number increased, the accuracy of the DA system in-
creased, but the running time became longer. When
the observation interval and observation error covari-
ance were large, the accuracy of the DA system de-
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Fig. 4. The best error factor variations and RMSE for
the cases given.

Fig. 5. RMSE changes with different error factors (a)
The multiple hill characteristics of the solution (ensem-
ble size N = 25) and (b) the significant increase of the
RMSE error when the ensemble size increases (ensemble
size N = 25, 40, 60). When the fast-searching method
was applied, the smallest RMSE for each case resulted.

creased.
To illustrate the influence of evolutionary strate-

gies proposed in this study, we use a typical example
from the ensemble numbers variations. In this config-

Fig. 6. When the error adjustment factors changed, the
RMSE of the assimilation also changed. The results are
shown for different parameter setups with the Lorenz-96
model. (1) without model error (F=8), (2) with moder-
ate model error (F=8.5), and (3) with severe model error
(F=9).

uration, the standard experimental parameters were
set thus: the ensemble number N=25, observational
number m=16, and the observational error covariance
Ro=2. Figure 5 gives the RMSE of the assimila-
tion result changes when the error adjustment factor
changed. The following characteristics were revealed:
(1) A better filter performance can be obtained within
the best range of 1.0–1.2. Beyond this range, the op-
timization is no longer obvious. (2) Within the best
numerical range, the obvious multiple hill and multi-
ple valley characteristics of the target destination func-
tions can be seen (Fig. 5a). The best error adjustment
factor can be detected using the proposed evolution-
ary strategies. (3) With the increase in the ensemble
number, the RMSE of the assimilation systems signif-
icantly decreased (Fig. 5b). This was also a finding of
Khare et al. (2008). All of the results obtained here
were compared with those of Khare et al. (2008) to
confirm their accuracy.

To examine the sensitivity of the proposed methods
to the variations of the different model error assump-
tions, we designed another group of experiments with
different experiments parameters based on the work
of Tian et al. (2011). The performance of assimila-
tion systems were compared under the perfect-model
assumption (F=8 for all truth, forecast, and assimi-
lation runs), a different (incorrectly specified) forcing
coefficient (F=8.5), and the severe model error (F=9)
(Fig. 6). The experimental configurations were exactly
the same as those for the perfect model case. Notably,
in the presence of several kinds of model errors, the
results indicate the following: (1) The trend of the er-
ror adjustment factors is the same as the trend of the
forcing coefficients. When the model error increases,
the RMSE of the assimilation systems significantly in-
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creases. (2) In each case, the multiple hill and multi-
ple valley characteristics show that better assimilation
results can be obtained using the proposed evolution-
ary strategies. (3) When the forcing coefficient is 8.5,
the same assimilation results as those obtained for a
perfect-model assumption can be achieved by search-
ing for the best error factors (Fig. 6, red circle). There-
fore, the DA methods coupled with the evolutionary
strategy can achieve the same results when the model
error is large; the evolutionary strategy is capable of
outperforming the normal DA methods under both
perfect and imperfect model scenarios with lower com-
putional costs. The method is robust even when the
forecast model contains a significant bias error, as is
confirmed by the proposed method when the perfect
model was replaced by the imperfect one.

4. Summary and concluding remarks

In this study, considering the suggestions of
Whitaker et al. (2008), a new scheme was devel-
oped to improve the evolutionary algorithm-based er-
ror parameterization methods proposed by Bai and
Li (2011). Applying the evolutionary strategy, off-
spring were generated through the typical procedure
using the mutation and crossover operations. Ac-
cording to the premise of maintaining the original
assimilation mean value, the offspring was added as
the updated analysis information to propagate for-
ward. Because mutation factors and crossover factors
are considered in ESs to control the evolution posi-
tion and model performance, the use of ESs can not
only optimize the ensemble population but can also
bring feedback mechanisms to the DA system (Bai and
Li, 2011). Coupled with fast-searching genetic algo-
rithms, the most ideal error adjustment factors may be
retrieved. Several numerical experiments performed
with the Lorenz-63 model and the Lorenz-96 model
showed that our method performed better than the
original ones. Compared with traditional error pro-
cessing methods such as multiplicative inflation meth-
ods and addictive methods, DA systems, based on evo-
lutionary strategy, can to some extent explain the in-
ner physical laws of the error processing and propa-
gating in ensemble data assimilation. The preliminary
results suggest the potential performance of our model
for real atmospheric assimilation: it provides a promis-
ing new method for data assimilation, especially for its
applicability to some new ensemble-based 4Dvar meth-
ods (e.g., Wang et al., 2010; Tian et al., 2011; Tian and
Xie, 2012)
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