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ABSTRACT

Based on near-term climate simulations for IPCC-AR5 (The Fifth Assessment Report), probabilistic
multimodel ensemble prediction (PMME) of decadal variability of surface air temperature in East Asia
(20◦–50◦N, 100◦–145◦E) was conducted using the multivariate Gaussian ensemble kernel dressing (GED)
methodology. The ensemble system exhibited high performance in hindcasting the decadal (1981–2010) mean
and trend of temperature anomalies with respect to 1961–90, with a RPS of 0.94 and 0.88 respectively. The
interpretation of PMME for future decades (2006–35) over East Asia was made on the basis of the bivariate
probability density of the mean and trend. The results showed that, under the RCP4.5 (Representative
Concentration Pathway 4.5 W m−2) scenario, the annual mean temperature increases on average by about
1.1–1.2 K and the temperature trend reaches 0.6–0.7 K (30 yr)−1. The pattern for both quantities was
found to be that the temperature increase will be less intense in the south. While the temperature increase
in terms of the 30-yr mean was found to be virtually certain, the results for the 30-yr trend showed an
almost 25% chance of a negative value. This indicated that, using a multimodel ensemble system, even if a
longer-term warming exists for 2006–35 over East Asia, the trend for temperature may produce a negative
value. Temperature was found to be more affected by seasonal variability, with the increase in temperature
over East Asia more intense in autumn (mainly), faster in summer to the west of 115◦E, and faster still in
autumn to the east of 115◦E.
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1. Introduction

Climate change research today no longer focuses
merely on global trends over hundreds of years. In-
stead, decadal (10–30 years) climate prediction is be-
coming a new priority (Hurrell et al., 2009; Latif et al.,
2009; Meehl et al., 2009). In order to meet the actual
needs of sustainable economic and social development,
near-term decadal changes over regions of interest have
gained more attention from both governments and so-
ciety.

Prediction by fully coupled climate models is the

most promising method for decadal climate prediction.
An experiment testing the decadal hindcast/prediction
of coupled models has recently been included in phase
five of the Coupled Model Intercomparison Project
(CMIP5) (Taylor et al., 2009) and conducted by the
main international institutions for climate modeling
(Smith et al., 2007; Sugiura et al., 2009). Yoshim-
itsu et al. (2012) examined the predictability of ma-
jor climate variability on decadal time scales in terms
of the Atlantic Multidecadal Oscillation (AMO) and
Pacific Decadal Oscillation (PDO) using the Model
for Interdisciplinary Research on Climate (MIROC).
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Wu and Zhou (2011) used the Flexible Global Ocean-
Atmosphere-Land System model (FGOALS gl), devel-
oped by the State Key Laboratory of Numerical Mod-
eling for Atmospheric Sciences and Geophysical Fluid
Dynamics (LASG), Institute of Atmospheric Physics
(IAP) , to carry out predictions of SST decadal vari-
ability. Meehl et al. (2010) conducted decadal predic-
tions of SST in the Pacific using version three of the
Community Climate System Model (CCSM3). Du et
al. (2012) employed a global atmosphere–ocean model
to investigate the sensitivity of decadal predictions
to the initial atmospheric and oceanic perturbations.
Results from many experiments have shown that the
dominant error sources in decadal model predictions
are the individual model formulations and errors relat-
ing to the initial conditions, with the latter resulting
especially from the lack of uniformity between schemes
of model initialization. For example, the Max Planck
Institute for Meteorology in Hamburg (MPI) applied
the SST nudging approach (Keenlyside et al., 2008)
and the MIROC adopted the Incremental Analysis Up-
date (IAU) scheme (Mochizuki et al., 2010). There-
fore, how to reduce uncertainty in model predictions
has become a key problem in terms of decadal climate
prediction.

Ensemble prediction technology has been devel-
oped to help address the problem of uncertainty in
climate model prediction. Probabilistic ensemble pre-
diction in particular is useful because it can esti-
mate uncertainty quantitatively using probabilities,
thus providing greater value than deterministic pre-
dictions in climate change risk analysis and decision-
making (Thompson, 1962; Murphy, 1973; Krzyszto-
fowicz, 1983; Min et al., 2009). To date, single-model
probabilistic ensemble prediction has been widely ap-
plied in climate projection in order to reduce the pro-
jection errors caused by initial condition errors. How-
ever, a multimodel ensemble technique has also been
applied recently to reduce the systematic and random
errors from model formulation biases (Fritsch et al.,
2000; Stephenson and Doblas-Reyes, 2000; Kharin and
Zwiers, 2002; Peng et al., 2002; Palmer et al., 2004;
Greene et al., 2006; Räisänen and Ruokolainen, 2006;
Zhi et al., 2010; Furtado et al., 2011). Doblas-Reyes
et al. (2000) studied the skill of three AGCMs in cli-
mate prediction, and found that the multimodel ap-
proach provided a systematic improvement in predic-
tion. Tippett and Barnston (2008) discussed the skill
of multimodel ENSO probability prediction based on
forecast data from seven individual models of the De-
velopment of a European Multimodel Ensemble Sys-
tem for Seasonal-to-Interannual Prediction (DEME-
TER) project, and pointed out that multimodel en-
semble predictions generally have higher skill than

single model predictions. Min et al. (2009) con-
structed an operational seasonal forecast system us-
ing a probabilistic multimodel ensemble prediction
(PMME) system at the Asia–Pacific Economic Coop-
eration (APEC) Climate Center (APCC). Zhi et al.
(2010) examined the hindcasting skills of eight indi-
vidual models for the IPCC AR4 (Fourth Assessment
Report) scenario runs and found that the multimodel
superensemble hindcasting skill for surface tempera-
ture was higher than that of the ensemble mean, as
well as individual models, and performed a multimodel
superensemble prediction of surface temperature un-
der the SRES (Special Report on Emissions Scenar-
ios) A1B scenario for the period 2010–30. Hoerling et
al. (2011) diagnosed the predictability of North Amer-
ican decadal climate for the period 2011–20 in terms
of surface air temperature and precipitation. How-
ever, decadal climate prediction is very much in the
early stages of development. There have been very few
studies in which multimodel ensemble prediction has
been used on the decadal scale. Furthermore, the use
of PMME for decadal climate prediction, especially in
terms of using it to obtain and interpret the character-
istics of decadal climate change, is a very new research
field (Frame et al., 2007).

In this paper, we report on work in which up-
to-date predictions of surface air temperature for the
next 30 years from eight global climate system mod-
els for IPCC-AR5 (Meehl et al., 2009) were used to
predict the decadal variability of surface air tempera-
ture over East Asia during the period 2006–35 based
on Gaussian Kernel Ensemble Dressing (GED). The
purpose of the study was not only to apply the GED
method for grasping the spatiotemporal dependence
of ensemble members by multivariate extension, but
also for extracting the mean value and trend of surface
air temperature anomalies in future decades by linear
transformation and the interpretation of spatiotempo-
ral characteristics in both quantities.

2. Data

2.1 Data source

The study was based on up-to-date near-term (30-
yr) hindcasts/predictions of monthly mean surface air
temperature from eight global climate system models
for IPCC-AR5. The eight models were taken from
China, Japan, Germany, France and England. Every
model was initialized with climate system observation
data near the end of 1960, 1980 and 2005 according
to at least three schemes. Altogether, there were 45
results from eight models with three integrations of
1961–90, 1981–2010 and 2006–35. The external forc-
ing factors, such as atmospheric composition (includ-
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Table 1. Basic information of the eight models used in the study.

Number of
initialization

Model Organization Country Resolution scheme

Bcc-csm1.1 Beijing Climate Center China ∼2.8◦ × 2.8◦ 4
China Meteorological Administration

MIROC5 Atmosphere and Ocean Research Institute Japan ∼1.4◦ × 1.4◦ 6
(The University of Tokyo),
National Institute for Environmental
Studies, Japan Agency for Marine-Earth
Science and Technology

MPI-ESM-LR Max Planck Institute for Meteorology Germany ∼1.875◦ × 1.875◦ 3
MRI-CGCM3 Meteorological Research Institute (Tokyo) Japan ∼1.12◦ × 1.12◦ 3
MIROC4h Atmosphere and Ocean Research Institute Japan ∼0.56◦ × 0.56◦ 3

(The University of Tokyo),
National Institute for Environmental
Studies, Japan Agency for Marine-Earth
Science and Technology

IPSL-CM5A-LR Institute Pierre-Simon Laplace France ∼3.75◦(Lon)×1.9◦(Lat) 6
HadCM3 Met Office Hadley Centre England ∼3.75◦(Lon)×2.5◦(Lat) 10
CNRM-CM5 Centre National de France ∼1.4◦ × 1.4◦ 10

Recherches Meteorologiques
/Centre Europeen de Recherche
et Formation
Avancees en Calcul Scientifique

ing CO2) and solar forcing, were considered in three
integrations. For past decades (1961–2010) the forcing
used observed values. For future decades, the RCP4.5
(Representative Concentration Pathway 4.5 W m−2)
scenario was used. Table 1 shows the basic information
of the models used in the study.

To estimate the skill of PMME, NCEP (National
Centers for Environmental Prediction)–NCAR (Na-
tional Center for Atmospheric Research) 2.5◦×2.5◦ re-
analysis data of monthly mean air temperature at 2 m
were used as observed values of surface air tempera-
ture.

2.2 Data preprocessing

The preprocessing of the data was divided into
three steps, as follows:

(1) Monthly mean surface air temperature grid
data for East Asia (20◦–50◦N, 100◦–145◦E) were ex-
tracted from model predictions and actual observa-
tions.

(2) Annual and seasonal means of surface air tem-
perature from the monthly mean data were computed.
Then, the full field of annual and seasonal means was
handled in the anomaly field with respect to the 30-yr
average of the annual mean temperature for the period
1961–90. Finally, the anomaly field was interpolated
into the 2.5◦×2.5◦ grid.

(3) With the surface air temperature anomaly field
data established, the annual series for every grid was

constructed. The time series was also divided into
three parts, representing the training, reference and
prediction periods: 1961–90, 1981–2010, and 2006–35,
respectively.

2.3 Uncertainty of data after processing

According to Hawkins and Sutton (2009), within
a 30-yr period the main sources of prediction uncer-
tainty for surface air temperature in climate models
are the individual model formulations and initial con-
dition errors, with the former of the two being the
source of maximum error. Figure 1 (left) shows the
mean RMSE of annual mean temperature over East
Asia based on the eight models’ hindcasts for the pe-
riods 1961–90 and 1981–2010, which reached 1.5–2.9
K and 1.5–3.1 K, respectively. The formulation for
RMSE is

TRMSE =

[
1
N

N∑

i=1

(Fi −Oi)2
]1/2

, (1)

where Fi is the value of prediction and Oi is the ob-
served value, N is the number of sample forecast and
observed values.

After data preprocessing, the prediction of decadal
variability of surface air temperature was transformed
into the prediction of temperature anomalies, so as
to avoid the considerable model errors resulting from
“drift”. Figure 1 (right) shows the average RMSE of
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Fig. 1. The mean RMSE (K) of annual mean temperature (left) and its anomalies (right) with
respect to 1961–90 from the eight models’ hindcasts during the periods 1961–90 and 1981–2010
over East Asia (20◦–50◦N, 100◦–140◦E).

temperature anomalies over East Asia with respect to
the period 1961–90 based on the eight models’ hind-
casts for the periods 1961–90 and 1981–2010. As can
be seen, this reduced the results to 0.8–1.0 K and 0.9–
1.0 K, respectively. However, the uncertainty from ini-
tialization and stochastic model errors still existed in
the prediction of temperature anomaly decadal vari-
ability. Therefore, we used the 45 results from the
different models and initial conditions, as described in
section 2.1, as ensemble members to carry out PMME,
so as to reduce the prediction model errors and, in par-
ticular, to estimate the uncertainty of prediction.

3. Methods

The GED method was used to perform the PMME
of surface air temperature decadal variability over East
Asia based on temperature anomalies from predic-
tions by different models and initial conditions. The
method treats prediction of annual series of tempera-
ture anomalies in subsequent decadal years as random
events based on prediction results, in this case from
eight individual models. The random events were rep-
resented by a random vector X of dimension m, which
was the number of the ensemble size. The entry xm

of this vector was the n-year series of surface air tem-
perature anomaly from each ensemble member. The
probabilistic information of vector X could be derived
by the m-dimension joint probability density for vector
X. Firstly, the probability density was determined by
estimation of temporal autocovariance of the column
vector X. Then, the marginal probability density dis-
tribution of the 30-yr mean and trend of temperature
anomalies (hereafter referred to simply as ‘mean’ and

‘trend’) was extracted using linear transformation. Fi-
nally, the spatiotemporal characteristics of surface air
temperature decadal variability were analyzed compre-
hensively.

3.1 Joint probability density of PMME

The determination of joint probability density
fx(x, θ) of the random vector X is the key to PMME.
Here, θ represents the characteristic parameters of the
probability density f . Firstly, the probability density
for a deterministic prediction is Dirac’s delta function
at the realization x1:

fx(x) = δ(x− x1) . (2)

δ represents Dirac’s delta function.
Similarly, the probability density for a set of model

predictions is equivalent to the sum of Dirac delta
functions at several distinguishable realizations xi, i =
1, . . . , m:

fx(x) =
m∑

i=1

δ(x− xi) . (3)

However, the ensemble predictions are indistinguish-
able, especially for single-model ensemble predictions
from different initial conditions. So, we needed to in-
troduce the internal noise component εi as additive
noise to the “true” prediction x:

x = xi + εi , (4)

where εi is the component of noise vector ε with expec-
tation 0. The density function of vector ε is defined as
fε(ε). Correspondingly, the probability density fx(x)
of ensemble predictions is derived as the noise expecta-
tion of the average of delta functions containing noises
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(Honerkamp, 2002):

fx(x) =Eε

[
1
m

m∑

i=1

δ(x− xi + εi)

]

=
∫

1
m

m∑

i=1

δ(x− xi + εi)fε(ε)dε

=
1
m

m∑

i=1

fε(x− xi) . (5)

The above formula derivation shows that the fx(x)
of ensemble prediction is the average of the noise den-
sity at indistinguishable predictions. Namely, dressing
with the noise density fε(εεε), the probabilistic informa-
tion between the ensemble prediction xi is interpolated
to the point x. Equation 5 also shows that there is
strong connection between the determination of fx(x)
and kernel density estimation. In the present work,
we mainly investigated annual and seasonal surface
air temperature anomalies, so the distribution of the
noise vector εεε was assumed to be a multivariate Gaus-
sian distribution with covariance matrix

∑∑∑
D. Cor-

respondingly, the joint probability density of surface
air temperature anomaly PMME was the multivariate
Gaussian ensemble kernel dressing:

fx(x|x1, . . . ,xm)

=
1
m

m∑

i=1

1
2πm/2|∑∑∑D|1/2

·

exp
[
−1

2
(x− xi)T

∑∑∑−1
D (x− xi)

]
. (6)

The uncertainty of ensemble prediction is reflected by
the temporal autocovariance matrix

∑∑∑
D.

However, as the multimodel ensemble hind-
casts/predictions were distinguishable, we needed to
comprise the weight ωi characterizing the probability
of xi as the “best” prediction. Consequently, the joint
probability density of surface air temperature PMME
contains the weight:

fx(x|x1, . . . ,xm)

= ωi

m∑

i=1

1
2πm/2|∑∑∑D|1/2

·

exp
[
−1

2
(x− xi)T

∑∑∑−1
D (x− xi)

]
. (7)

3.2 Parameter estimation of joint probability
density

Parameter estimations including noise/dressing co-
variance and weights ωi are the main ways to deter-

mine joint probability density of surface air tempera-
ture PMME.

3.2.1 Dressing covariance
The method of multivariate kernel density esti-

mation (Silverman, 1986) was adopted to estimate
the dressing covariance

∑∑∑
D. The results showed

that there is a proportional relationship between
∑∑∑

D

and estimated raw error covariance
∑∑∑

raw :
∑∑∑

D =
hopt

∑∑∑
raw. The proportional coefficient hopt is defined

as (Silverman, 1986)

hopt =
[

4
m(n + 2)

] 1
n+4

, (8)

where m is the number of ensemble members and n is
the time dimension of entry xm.

In order to estimate
∑∑∑

raw, the distance vector of
two arbitrary entries xi and xj is defined as dij =
1/
√

2(xi − xj). The expectation of the square dis-
tance vector module is derived with the independent
noise vector ε. The derivation is expressed as follows:

Eε

(
dijd

T
ij

)
=

1
2
Eε

(
εεεiεεε

T
i + εεεjεεε

T
j − εεεiεεε

T
j − εεεjεεε

T
i

)

=
1
2
Eε

(
εεεiεεε

T
i

)
+

1
2
Eε

(
εεεjεεε

T
j

)

=
∑∑∑

raw . (9)

We find that
∑∑∑

raw is equal to the average of the
differences of all possible pairs of individual simula-
tions

∑∑∑
raw =

1
2Ntot

m∑

i,j=1,i>j

(xi − xj)(xi − xj)T , (10)

where Ntot is the pair number in the collection
{(xi,xj)|i, j = 1, . . . , m, i > j}.

Supposing the dressing covariance is stationary in
time,

∑∑∑
raw converges to a Toeplitz structure.

∑∑∑
raw=




σε(0) σε(−1) · · · σε(−n + 1)

σε(1) σε(0) · · · ...
...

...
. . . σε(−1)

σε(n− 1) · · · σε(−1) σε(0)




,

(11)
where the function σε is

σε =
n∑

t=|τ |+1

m∑

i,j=1,i<j

×

(xi, t − xj, t)(xi, (t−|τ |) − xj, (t−|τ |))
2nNtot

. (12)

trepresents the time dimension.



1134 PMME OF DECADAL VARIABILITY OF EAST ASIA SURFACE AIR TEMPERATURE VOL. 30

Fig. 2. Example of a bivariate probability density func-
tion of a random vector X (f is the probability density
function; x and y are the mean and trend of the surface
air temperature anomaly, respectively).

Finally,
∑∑∑

raw could be derived from the training
period 1961–90.

3.2.2 Weight
The weights ωi were estimated at each grid point

by the expectation maximization (EM) algorithm
(Raftery et al., 2005), a method that takes observa-
tions into account. We applied this method to the
training period 1961–90 with the predictions from the
different models and observations to determine ωi. For
details of the EM algorithm, please refer to Raftery et
al. (2005).

3.3 Linear transformation
∑∑∑

raw and ωi derived from the training period
1961–90 were respectively applied in the construction
of the joint probability density for the periods 1981–
2010 and 2006–35, with the corresponding multimodel
ensemble hindcasts/predictions. In order to derive the
spatiotemporal characteristics of surface air tempera-
ture decadal variability, we took two steps into con-
sideration. Firstly, the spatial information was dis-
regarded. We concentrated on the individual grids
from multimodel ensemble predictions. Then, the ran-
dom vector X only contained the temporal informa-
tion, and xi was the 30-yr series of surface air tem-
perature anomalies from each ensemble member. In
order to extract useful information regarding decadal
climate change, we translated the random vector X
into a 2D vector Z = (Z0,Z1)T by linear transforma-
tion X

L−→ Z. Z0 and Z1 are, respectively, the 30-yr
mean and trend of temperature.

Z = (PP T)−1P︸ ︷︷ ︸
L

X

P =
1
n

(
1 1 1 · · · · · · 1

1 2 3 · · · · · · n

)
, (13)

where n is the number of time series.
Then, the m-dimension joint probability of surface

air temperature density was transformed into the 2D
joint probability of density:

fz(z|x1, . . . ,xm)

= ωi

m∑

i=1

1

2πm/2|L∑∑∑−1
D LT|1/2

·

exp
[
−1

2
(z−Lxi)T

(
L

∑∑∑−1
D LT

)
(z−Lxi)

]
. (14)

By the above formulation, the joint probability
density of mean and trend were computed for the
periods 1981–2010 and 2006–35, respectively (Fig. 2).
The marginal probability density of mean and trend
contained characteristics of surface air temperature
decadal variability. Finally, according to the grids’
marginal probability density, the spatial and seasonal
characteristics of surface air temperature decadal vari-
ability over East Asia were analyzed in depth using the
probability maps.

4. Results

In this section we report the results from apply-
ing the above ensemble prediction method in PMME
of decadal variability of 30-yr mean and trend of sur-
face air temperature over East Asia based on the tem-
perature anomalies from the eight ocean–atmosphere
coupled models’ predictions.

4.1 Evaluation of PMME skill

Before ensemble prediction, the skill of surface air
temperature PMME over East Asia was evaluated by
rank probability score (RPS) based on model hind-
casts and observed data during the period 1981–2010.
The formulation of RPS is as follows:

RPS(p, d) = 1− 1
k − 1




k∑

i=1

(
i∑

n=1

pn −
i∑

n=1

dn

)2

 ,

(15)
where p : (p1, p2, . . . , pk) and d : (d1, d2, . . . , dk) are
the forecast and observed probabilities of different
ranks k, respectively. The member of d set is 1 or
0, and if di(i = 1, 2, . . . , k) is 1, all the other dj

(j 6= i, j = 1, 2, . . . , k) is 0. The probability prediction
of annual mean temperature TANN was divided into 10
ranks: TANN < −1.5 K; −1.5 K 6 TANN < −1.0 K;
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Fig. 3. Ranked probability scores for annual mean tem-
perature (TANN) and its trend (TANN) for the eight mod-
els’ hindcasts and PMME (dashed frame) during the pe-
riod 1981–2010.

−1.0 K6 TANN < −0.5 K, −0.5 K6 TANN < 0
K; 0 K6 TANN < 0.5 K; 0.5 K6 TANN < 1.0 K;
1.0 K6 TANN < 1.5 K; 1.5 K6 TANN < 2.0 K;
2.0 K6 TANN < 2.5 K; TANN > 2.5 K. The prob-
ability prediction of trend ∆TANN was also divided
into 10 ranks: ∆TANN < −1.2 K (30 yr)−1; −1.2
K (30 yr)−1 6 ∆TANN < −0.9 K (30 yr)−1; −0.9
K (30 yr)−1 6 ∆TANN < −0.6 K (30 yr)−1; −0.6
K (30 yr)−1 6 ∆TANN < −0.3 K (30 yr)−1; −0.3
K (30 yr)−1 6 ∆TANN < 0 K (30 yr)−1; 0 K (30
yr)−1 6 ∆TANN < 0.3 K (30 yr)−1; 0.3 K (30
yr)−1 6 ∆TANN < 0.6 K (30 yr)−1; 0.6 K (30
yr)−1 6 ∆TANN < 0.9 K (30 yr)−1; 0.9 K (30
yr)−1 6 ∆TANN < 1.2 K (30 yr)−1; ∆TANN > 1.2
K (30 yr)−1. Correspondingly, we were able to obtain
the average RPS value of mean and trend in different
ranks. The average was between 0 and 1. The more
accurate the ensemble hindcast, the higher the value
of average RPS was. The results showed that PMME
performs better at predicting the mean and trend of
surface air temperature for the next 30 years based on
the results from the eight ocean-atmosphere models
than it does based on the individual model (Fig. 3).
The RPS of probability prediction of mean tempera-
ture was 0.94, and the RPS of the trend was 0.88.

4.2 Results for a single grid point

Figure 4 shows the results for the single grid point
(45◦N, 122.5◦E). In the upper row the ensemble mean
and spread from the eight individual models’ predic-
tions are plotted. The lower panel shows the marginal
distribution of the mean Z0 (left), trend Z1 (middle),
and bivariate distribution Z = (Z0, Z1) for the an-
nual mean of surface air temperature respectively in
the reference period 1981–2010 and prediction period

2006–35. All values are the anomaly field with respect
to the 30-yr average of the annual mean temperature
for the period 1961–90.

As seen in the lower panel of Fig. 4 (left), for 1981–
2010 the probability density of the mean of 0.3 K was
maximum; for 2006–35 the maximum was about 1.4 K
with respect to 1961–90, and the likelihood of a posi-
tive mean reached 100%. This shows that there was a
clear increase in annual mean temperature for the next
30 years of 2006–35 and the magnitude of increase was
larger than that for the period 1981–2010.

For the trend over 30 years (Fig. 4, middle), there
was a larger variability than the mean both in the
period 1981–2010 and 2006–35. This shows that the
trend was more affected by natural variability of the
climate system and less determined by external forc-
ings than the mean within 30 years. For the pe-
riod 2006–35, the maximum trend was around 1.1
K (30 yr−1) and around 0.8 K (30 yr−1) for 1981–
2010, but we can see that there was an almost 25%
chance of obtaining a negative trend in the two pe-
riods. Figure 5 shows the probability density distri-
butions of the surface air temperature 30-yr trend in
2006–35 from the eight models at the grid point (45◦N,
122.5◦E). For the BCC model, the probability density
of the trend of −0.4 K (30 yr−1) was the maximum.
The chance of a 30-yr trend for negative values reached
76%, 47% and 27% based on model results from BCC
(Beijing Climate Center), CNRM-CM5 (Centre Na-
tional de Recherches Meteorologiques coupled model
5) and HadCM3 (Hadly Centre coupled model 3), re-
spectively (Fig. 5,black line). Furthermore, we checked
45 runs from the eight models and found 10 runs that
showed a negative trend (Table 2). Detecting a neg-
ative trend was part of the uncertainty from internal
fluctuations of the climate system reflected by the en-
semble system. This shows that in the presence of
longer-term anthropogenic forced warming, the natu-
ral variability of the climate system is likely to produce
multi-year periods with no positive trend. Accord-
ing to IPCC-AR4, the probability of a future climate
event is divided into three categories: >99% (virtu-
ally certain), >90% (very likely), and >66% (likely).
We found that in the next 30 years of 2006–35 an in-
crease of mean temperature is ‘virtually certain’,but a
trend with a positive value is only ‘likely’ at this grid
point. Owing to little spatial difference in the trend,
the situation that a positive trend is only ‘likely’ can
be considered universal over East Asia.

4.3 Spatial characteristics

Results for a single grid point showed detailed lo-
cal probabilistic information for surface air tempera-
ture decadal variability, but another main aim of the



1136 PMME OF DECADAL VARIABILITY OF EAST ASIA SURFACE AIR TEMPERATURE VOL. 30

Fig. 4. Results of PMME of surface air temperature at the grid point (45◦N, 122.5◦E).
All values are anomalies with respect to 1961–90. Upper: time series of ensemble mean
(black solid line) and ensemble spread (two dashed lines). Bottom: marginal distribution
of the mean (left) and trend (middle) in 1981–2010 (gray line) and 2006–35 (black line);
corresponding bivariate distribution (right).

Fig. 5. Marginal distributions of the trend of surface air temperature
in 2006–35 from the eight models at the grid point (45◦N, 122.5◦E).
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Table 2. Statistics of negative trends of surface air temperature in 2006–35 from 45 runs of the eight models at grid
point (45◦N, 122.5◦E).

Number of ensemble member Number of negative trend
Models with different initialization schemes in different ensemble members

BCC 4 3
CNRM-CM5 10 5
HadCM3 10 2
IPSL-CM5A-LR 6 0
MIROC5 6 0
MIROC4h 3 0
MPI-ESM-LR 3 0
MRI-CGCM3 3 0
Total 45 10

study was to investigate the spatial characteristics of
decadal temperature changes over East Asia. A prob-
ability map was used for this purpose.

The probability maps reflected the spatial patterns
of mean temperature and temperature trend, exceed-
ing prescribed values. Figure 6 shows the probability
maps for the 30-yr mean in the period 2006–35 for ex-
ceeding 1.4 K, 1.3 K, 1.0 K and 0.9 K, as well as the
trend for exceeding 0.8 K (30 yr)−1, 0.7 K (30 yr)−1,
0.6 K (30 yr)−1 and 0.5 K (30 yr)−1. The thresholds
were selected according to an average expectation of
1.1–1.2 K for mean temperature over East Asia and
0.6–0.7 K (30 yr)−1 for trend.

In Figs. 6a–d, a north–south pattern can be ob-
served, where in the southern part of East Asia it is
less likely that a specific threshold is exceeded than in
the northern part. Moreover, in the northern part of
East Asia, the probability inland was slightly higher
than that in coastal areas and the surrounding sea,
and in the southern part of East Asia the probability
inland was also a little bit higher than in the west-
ern Pacific. From the above analysis we can infer that
in the next 30 years the increase in mean tempera-
ture will be most significant in northwestern inland
areas, and least significant in the western Pacific. Fur-
thermore, the probabilities for TANN>1.4 K (Fig. 6a)
varied between 30% and 60% in northern inland ar-
eas, which approximately reflected the expected value
of mean temperature. In other words, the surface air
temperature in northern inland areas may increase by
1.4 K during the period 2006–35 with respect to the
period 1960–90. Meanwhile, the magnitude of mean
temperature increase may reach 1.3 K, 1.0 K and 0.9
K respectively in northeastern (Fig. 6b), southwestern
(Fig. 6c) and southeastern (Fig. 6d) parts of East Asia.

The trends within the period 2006–35 (Figs. 6e–
h) also showed a north–south pattern, but the spatial
difference was significantly less than the mean value.
Similar to the mean value, the probability of the trend
over the western Pacific was the least. However, the

most inconsistent feature in terms of the mean was
that in the northern part of East Asia the probabil-
ity around coastal areas and its surrounding sea was
higher than that in inland areas. The average expec-
tation of the trend in the northeastern part of East
Asia was approximately 0.8 K (30 yr)−1. Correspond-
ingly, the probabilities of TANN>0.8 K (30 yr)−1 var-
ied between 50% and 60% (Fig. 6e). Meanwhile, the
magnitude of the trend may reach 0.7 K (30 yr)−1,
0.6 K (30 yr)−1 and 0.5 K (30 yr)−1 in northwest-
ern (Fig. 6f), southwestern (Fig. 6g) and southeastern
(Fig. 6h) parts of East Asia, respectively.

Furthermore, results given by even-weighted and
uneven-weighted PPME (probabilistic multimodel en-
semble prediction) were compared. Figure 7 shows
the probability maps exceeding 0.8 K (30 yr)−1 for
the trend of annual mean temperature over East Asia
during the period 2006–35 by these two methods. As
seen in the upper panel of Fig. 7, the north–south pat-
tern was also demonstrated by even-weighted PPME,
but there were still some differences in some areas,
such as southwestern and southeastern parts of East
Asia. For example, in the north part of Sichuan
Province (32.5◦N, 105◦E, marked by two arrows in
the upper panel of Fig. 7), the probability given by
even-weighted PPME was slightly higher than by the
uneven-weighted method. Therefore, we found that
the trend of annual temperature increase around this
area for the period 2006–35 was slower according to
the uneven-weighted method compared to the even-
weighted method (Fig. 7, bottom). Meanwhile, RPS
(Fig. 7, column) for hindcasts during 1981–2010 in this
area by the uneven-weighted method was higher than
by the even-weighted method, which adds confidence
to the result given by the uneven-weighted method.
Owing to near independence between the mean and
trend, the joint probability density of mean and trend
can be expressed as the multiple of their marginal
probability densities. Therefore, we were able to ob-
tain joint probability information with high anomaly
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Fig. 6. Probability maps exceeding prescribed values for mean temperature (left col-
umn) and trend (right column) of annual mean temperature (ANN) over East Asia
during 2006–35 given by the 45 simulations of the ensemble.

(>1.0 K) and high trend [>0.8 K (30 yr)−1] according
to the probability maps of mean and trend.

4.4 Seasonality

The seasonality of surface air temperature decadal
variability over East Asia was investigated in terms of
seasonal mean temperature anomalies. Figures 8a–d
show the probability maps for TANN>1.3 K in spring,
summer, autumn and winter, respectively. The prob-
ability map for TANN>1.3 K in autumn was the high-
est, especially in the northwestern part of East Asia

(Fig. 8c). Except for some regions where the proba-
bility for TANN >1.3 K was highest in winter (Fig. 8d,
rectangle), such as east to 135◦E and north to 42◦N,
and around the eastern part of the Tibetan Plateau,
the probability for TANN>1.3 K was the highest one in
autumn from northwestern inland areas, east to 135◦E
and southeast to the West Pacific (Fig. 8c, arrows).
Thus it can be seen that the average expectation of
mean temperature over East Asia was the highest one
in autumn, corresponding to a larger magnitude of
temperature increase than in other seasons. Similar
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Fig. 7. Probability maps (upper) exceeding 0.8 K (30 yr)−1 for the trend of annual
mean temperature (ANN) over East Asia during 2006–35 given by even-weighted
(left) and uneven-weighted (right) PPME. Bottom: time series (curve) of ensemble
mean and its trend (straight line) at the grid point (32.5◦N, 105◦E) (marked by two
arrows in the panel). The column is the RPS for hindcasts during 1981–2010 by the
even-weighted (dashed) and uneven-weighted (solid) PPME.

to the annual mean, the spatial structures of mean
temperature in different seasons also exhibited higher
values in the north and lower values in the south.

In contrast to the mean value, the trend within the
period 2006–35 between different seasons was not so
significant. However, the trend still possessed season-
ality. As can be seen from Figs. 8e–h, the probabilities
of ∆TANN>0.7 K (30 yr)−1 in summer and autumn
were higher than those in winter and spring. In sum-
mer (Fig. 8f, arrows), the probability of ∆TANN>0.7
K (30 yr)−1 was the highest one from northwestern
inland areas to the southeast of coastal areas, and in
autumn (Fig. 8g, arrows) the highest probability was
mainly located in the region from the northeastern
part of East Asia, west to 115◦E and south to the West
Pacific. In the west, to 115◦E, the expected value of
the trend was higher; namely, with a more rapid tem-
perature increase in summer. In the east, to 115◦E,
the temperature increase was more rapid in autumn.
The spatial patterns of the trend in different seasons
were similar to those of the annual trend.

5. Concluding remarks

The GED methodology was extended into a mul-
tivariate version. The additional dimensions were in-
troduced to capture the temporal autocorrelation of
the multimodel ensemble system. The uncertainty of
the ensemble system was represented by the tempo-
ral autocovariance. According to the autocovariance
derived in the training period, an uneven-weighted
multivariate Gaussian kernel functions was identified
and applied in the prediction of surface air tempera-
ture over East Asia for the next 30 years. After han-
dling the full field of temperature predictions from the
eight ocean–atmosphere models for IPCC-AR5 in the
anomaly field, the parameters of the mixture model
were estimated in the training period 1961–90. Then,
by use of linear transformation, the PMME of mean
and trend surface air temperature in the reference
period 1981–2010 and prediction period 2006–35 was
conducted by the above mixture model derived in the
training period. The following results were obtained
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Fig. 8. Probability maps exceeding prescribed values for the temporal mean (left
column, >1.3 K) and trend [right column, >0.7 K (30 yr)−1] of spring (a, e), summer
(b, f), autumn (c, g), winter (d, h) temperature over East Asia during 2006–35 given
by the 45 simulations of the ensemble, equivalent to Figs. 6b and f.

under the RCP4.5 scenario:
(1) The analysis of prediction uncertainty showed

that the average RMSEs of surface air temperature
prediction over East Asia from the eight individual
models in the periods 1961–90 and 1981–2010 were
1.5–2.9 K and 1.5–3.1 K, respectively. After anomaly
transformation of the temperature was performed, the
average RMSEs of temperature anomaly prediction
were only 0.8–1.0 K and 0.9–1.0 K, and the range of
average RMSE became significantly narrower to avoid
model errors resulting from model “drift”. However,
the initial condition errors and model random errors

still existed. It was possible to apply PMME to es-
timate the uncertainty of model prediction of surface
air temperature and reduce prediction errors.

(2) According to the autocovariance and weights
derived in the training period 1961–90, the uneven-
weight PMME of mean and surface air temperature
during the reference period (1981–2010) were reason-
able with a RPS of 0.94 and 0.88, respectively.

(3) Through detailed interpretation of the prob-
ability density of surface air temperature PMME at
the single grid point (45◦N, 122.5◦E), we found that
in the next 30 years the probability of TANN>1.4 K
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will be the maximum, the temperature increase is cer-
tain, and the magnitude of the temperature increase
will be larger than that in the period 1981–2010 at
this grid point. However, even if in the next 30 years
the probability of ∆TANN>1.1 K is the maximum, the
negative trend is unlikely (with some confidence), but
not impossible, which demonstrates that as far as the
ensemble system shows, even if longer-term warming
exists during the period 2006–35 over East Asia, the
trend of surface air temperature may produce a nega-
tive value in multi-year periods.

(4) The average temperature anomaly over East
Asia for the period 2006–35 was found to be approx-
imately 1.1–1.2 K with respect to 1960–90, and its
trend about 0.6–0.7 K (30 yr)−1. Both quantities
showed spatial differences. The mean and trend of
the temperature anomaly was higher in the north, but
became smaller in the south, and the minimum was
located in the West Pacific. Inconsistently, the maxi-
mum probability of the mean was in northwestern in-
land areas, but the maximum probability of the trend
was located in the coastal area and its surrounding sea
in the northeast of East Asia. Through preliminary
analysis, the increases of the mean in northwestern,
northeastern, southwestern and southeastern parts of
East Asia were around 1.4 K, 1.3 K, 1.0 K and 0.9 K,
respectively, while the increases of trend were around
0.8 K (30 yr)−1 , 0.7 K (30 yr)−1, 0.6 K (30 yr)−1 and
0.5 K (30 yr)−1, respectively.

(5) The seasonality of surface air temperature
decadal variability over East Asia in the period 2006–
35 was found to be significantly distinct, except over
some regions east to 135◦E and north to 42◦N, and
around the eastern part of the Tibetan Plateau. The
magnitude of temperature increase was the highest one
in autumn in East Asia. Roughly, in the west to 115◦E,
the temperature increased more rapidly in summer,
but in the east to the 115◦E it increased more rapidly
in autumn.

In this study, bivariate uneven-weighted GED was
applied to PMME of mean and trend of surface air
temperature anomalies over East Asia by analyzing
the temporal uncertainty of temperature anomaly pre-
diction. However, while the meteorological fields were
found to have spatial uncertainty, conversely, some me-
teorological fields (e.g. precipitation and cloud, among
others) did not satisfy the symmetrical Gaussian dis-
tribution. Therefore, how to estimate the uncertainty
of climate model prediction for some other meteoro-
logical fields by higher-dimension extension of GED
needs to be further investigated.
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