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ABSTRACT

A conceptual coupled ocean–atmosphere model was used to study coupled ensemble data assimilation
schemes with a focus on the role of ocean–atmosphere interaction in the assimilation. The optimal scheme
was the fully coupled data assimilation scheme that employs the coupled covariance matrix and assimilates
observations in both the atmosphere and ocean. The assimilation of synoptic atmospheric variability that
captures the temporal fluctuation of the weather noise was found to be critical for the estimation of not only
the atmospheric, but also oceanic states. The synoptic atmosphere observation was especially important in
the mid-latitude system, where oceanic variability is driven by weather noise. The assimilation of synoptic
atmospheric variability in the coupled model improved the atmospheric variability in the analysis and the
subsequent forecasts, reducing error in the surface forcing and, in turn, in the ocean state. Atmospheric
observation was able to further improve the oceanic state estimation directly through the coupled covariance
between the atmosphere and ocean states. Relative to the mid-latitude system, the tropical system was
influenced more by ocean–atmosphere interaction and, thus, the assimilation of oceanic observation becomes
more important for the estimation of the ocean and atmosphere.
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1. Introduction

As a flow-dependent data assimilation scheme, the
ensemble Kalman filter (EnKF) (Evensen, 1994; Tip-
pett et al., 2003) in principle is equivalent to the four-
dimensional Variational Assimilation (4DVar) scheme.
Yet, EnKF is much more promising for the application
to complex models such as coupled ocean–atmosphere
general circulation models (OAGCMs), because it does
not require an adjoint model. In an OAGCM, EnKF
is critical in the model initialization for climate predic-
tions (e.g. Zhang et al., 2009, 2010). Since the memory

of the climate system lies in the ocean, most prediction
studies have focused on the improvement of the initial
state of the ocean. Previous works on the initializa-
tion in OAGCMs either used crude nudging schemes
(e.g. Latif et al., 1993; Rosati et al., 1997; Luo et al.,
2005; Smith et al., 2007; Keenlyside et al., 2008), or
applied data assimilation in the component model sep-
arately (e.g. Ji et al., 1995; Rosati et al., 1997; Fuji
et al., 2009). Recently, an EnKF scheme was imple-
mented in an OAGCM for the assimilation of both at-
mospheric and oceanic data (Zhang et al., 2007). This
scheme was found to significantly improve the initial
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coupled state and, in turn, the seasonal climate predic-
tion, over that from a traditional 3D Variational As-
similation (3DVar) ocean initialization (Zhang et al.,
2008). However, except for a few studies in simplified
coupled climate models (e.g. Sun et al., 2002; Zhang
et al., 2011; Zhang, 2011a, b), EnKF has not been ex-
plored extensively in coupled climate models. This is
due in part to the relatively new development of the
EnKF method itself, but also because of the more com-
plex nature of the coupled climate system, especially
the different time scales between the atmosphere and
ocean. Therefore, important issues on EnKF assimila-
tion in OAGCMs remain to be explored. Here, we are
concerned with two questions. First, how important
is the assimilation of synoptic atmospheric variability
for coupled climate prediction? And second, what is
the role of ocean–atmosphere coupling in coupled data
assimilation and for the initialization and climate pre-
diction?

There have been studies that suggest the impor-
tance of the assimilation of atmospheric observations
in climate prediction, notably ENSO prediction. Using
a simple nudging scheme, forecasting is improved using
the initial ocean state that is forced by the observed
surface wind (Cane et al., 1986; Latif et al., 1993) and,
furthermore, the initialization is obtained by assimi-
lating the observed surface wind in the coupled mode,
instead of forcing the ocean in the ocean-alone mode
(Chen et al., 1995). Using an EnKF, ENSO forecast-
ing is improved by including the assimilation of atmo-
spheric observations in the coupled model, relative to
that initialized using the ocean-alone 3DVAR assimi-
lation (Zhang et al., 2008). Yet, there have been no
studies that systematically explored the roles of cou-
pled assimilation and atmospheric observation in the
coupled system.

Here, we will explore the role of coupled assimi-
lation and the role of atmospheric observation in cou-
pled EnKF data assimilation systematically. As a pilot
study, we applied a type of EnKF, known as EAKF
(Anderson, 2001, 2003), to a simple conceptual cou-
pled ocean–atmosphere model. We compared various
coupled assimilation schemes with the focus on the
role of ocean–atmosphere coupling in the coupled sys-
tem. Special attention was also paid to the role of
synoptic atmospheric observations in the coupled as-
similation. The coupled climate was studied in two
settings, a mid-latitude-like system and a tropical-like
system, the former being driven completely by weather
noises. Our study shows that the fully coupled assim-
ilation scheme, which assimilates both oceanic and at-
mospheric observation through the coupled covariance
matrix, gives the best analysis. This optimal analysis
is achieved because the assimilation of synoptic atmo-

spheric variability improves the surface atmospheric
forcing to the ocean. In particular, high frequency
atmospheric data captures the temporal behavior of
the weather noise and therefore improves the surface
“stochastic” atmospheric forcing to the ocean. The
weather noise forcing is particularly important in the
mid-latitude system. In addition, the coupled covari-
ance between the atmospheric and oceanic states fur-
ther improves the oceanic state directly in the analysis
through the background covariance between the atmo-
sphere and ocean.

The paper is arranged as follows. We describe our
conceptual coupled climate model in section 2. We
then compare different coupled assimilation schemes
in the mid-latitude and tropical systems in sections 3
and 4, respectively. Finally, a summary and discussion
is provided in section 5.

2. The model

The simple climate model consists of a fast and
chaotic “atmosphere” and a slowly oscillating “ocean”.
The atmospheric “wind”, or “weather noise”, is gov-
erned by the Lorenz63 model (Lorenz, 1963)





ml
dx1

dt
= al(x2 − x1)

ml
dx2

dt
= blx1 − x2 − x1x3

ml
dx3

dt
= x1x2 − clx3

, (1)

where the factor ml = 1/6 is used to match the time
steps of the Lorenz model with the rest of the model
equations. The “surface air temperature” Ta is deter-
mined by an idealized thermodynamic model:

ma
dTa

dt
= c(T − Ta)− µaTa + c4x2 . (2)

The slow ocean consists of “sea surface temperature”
(SST) T and “thermocline depth” h, which are de-
scribed by an oscillator model (Jin, 1997)




dT

dt
= RT + γh + c(Ta − T ) + c2x2 − en(h + bT )3

dh

dt
= −rh− αbT

.

(3)
The default model parameters are

al = 10, bl = 28, cl = 8/3,ma = 1/20, µa = 1/3 , (4)

for the atmosphere,

α = 0.125, γ = 0.75, r = 0.25, b0 = 2.5, µ = 0.5,

b = b0µ, R = γb− 1 = 0.3125, en = 1 , (5)
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for the ocean,
c = 1 , (6a)

for thermal coupling, and

c2 = 0.05, c4 = 0.1 , (6b)

for the forcing of weather noise. All variables are in
the nondimensional form, with a nondimensional time
t ∼1 corresponding to a dimensional time of ∼two
months. The model is solved using a 4th order Runge-
Kutta method, with a time step of dt = 0.002 (∼2.88
h, or 250 steps ∼1 month).

In this conceptual coupled model, the Lorenz63
model can be thought of as representing internal at-
mospheric variability of, say, “wind”; this wind com-
ponent is induced by the chaotic instability of the at-
mosphere itself and is independent of oceanic feed-
back. The wind variability acts as a weather noise
that drives the air temperature (via the term c4x2) and
SST (via the term c2x2) variabilitya. The air temper-
ature is coupled with SST through a negative ocean–
atmosphere feedback c(T − Ta) mechanism, and thus
represents the part of atmospheric variability that is
strongly coupled with the ocean. The ocean model
was originally derived for the tropical coupled ocean–
atmosphere system (as the recharge oscillator model)
(Jin, 1997) with an internal oscillation mode of ∼2–
3 years. This oscillator is used here symbolically to
represent an ocean-alone system. To avoid confusion,
this model will be referred to as the “ocean oscillator
model” hereafter.

In spite of its simplicity, the conceptual model cap-
tures the essential feature of a coupled system, with a
fast atmosphere (days) coupled with a slowly varying
ocean (months to years). The model parameters for
the atmosphere wind model [Eq. (1)] and the oceanic
model [Eq. (3)] are the standard parameters of Lorenz
(1963) and Jin (1997), respectively, except for the tun-
able relative coupling strength µ. Other model param-
eters are tuned such that the coupled model captures
some important statistical features of the coupled vari-
ability in a much more realistic system such that this
model may be of relevance to more complex climate
systems. We constructed two model settings, a mid-
latitude-like and a tropics-like coupled system. In the
mid-latitude system, parameters take the default val-
ues in Eqs. (4–6). In particular, the oceanic instabil-
ity parameter is small [µ = 0.5 in Eq. (5)] such that
the oceanic mode is a damped oscillating mode. As
such, the mid-latitude system is driven completely by

the atmospheric noise using large forcing parameters
c2 = 0.05, c4 = 0.1 in Eq. (5). In the tropical system,
the atmospheric forcing effect is reduced by 10 times to
c2 = 0.005, c4 = 0.01. Furthermore, the instability is
enhanced with µ = 1.5 such that the oceanic mode be-
comes self-exciting. Mathematically, the mid-latitude
system is a damped system forced by strong stochas-
tic noise, while the tropical system is a self-exciting
system modified by weak stochastic noiseb.

In the mid-latitude system, the atmospheric wind
exhibits fast and chaotic variability (Fig. 1b). The
ocean exhibits slow irregular oscillation punctuated
by rapid events associated with the atmospheric forc-
ing (Fig. 1a); the air temperature consists of fast
variability due to the wind and slow variability due
to SST feedback (Fig. 1b). The mid-latitude sys-
tem captures some major features in a state-of-the-
art OAGCM, the National Center for Atmospheric Re-
search Community Climate System Model version 3.5
(NCAR CCSM3.5), as seen by comparing the lagged
correlation in the mid-latitude North Atlantic in the
OAGCM CCSM3.5 (Fig. 2a) and in the simple model
(Fig. 2b). In the CCSM3.5 (Fig. 2a) and the simple
model (Fig. 2b), both auto-correlations imply a short
decorrelation time of less than one month for the sur-
face wind and a long decorrelation time of several
months for the SST. Both autocorrelations of the air
temperature decline rapidly in the first month and
then slowly for several months, both attributed by the
fast atmospheric wind and slow SST feedback. Both
cross-correlations between wind and SST are higher for
wind leading SST than for SST leading wind, suggest-
ing that the wind is a major driving agent for SST vari-
ability with little feedback from SST. In comparison,
both cross-correlations between air temperature and
SST are more symmetric with lead-lags, although the
correlations are still stronger for air temperature lead-
ing SST. This reflects the nature of the negative ocean–
atmosphere feedback in the mid-latitude system, with
the air–sea heat flux playing a dual role of first driving
and later damping the SST (Frankignoul et al., 1998).
Therefore, the simple model captures some statistical
features of ocean–atmosphere feedback in more realis-
tic systems.

In the tropics, the ocean exhibits a self-exciting
oscillation without any perturbation. Figures 3a and
b show a self-exciting solution perturbed weakly by
the chaotic atmosphere. In comparison with the mid-
latitude system in Figs. 1a and b, the tropical solu-
tion exhibits a much more regular cycle perturbed by

aThe internal variability “wind” can also be thought of as “precipitation” which forces salinity variability in the ocean but with
little feedback from the salinity.

bThe intensity of noise forcing plays the critical role here. The result remains robust for the mid-latitude system when the
instability parameter is increased to µ = 1.5, and remains robust for the tropical system when the instability parameter is reduced
to µ = 0.5.



1238 ENSEMBLE CDA—THE ROLE OF OCEAN–ATMOSPHERE INTERACTION VOL. 30

Fig. 1. Time series of (a) SST (T ) and ocean thermocline depth (h), (b) atmospheric winds
(x1, x2, x3) and air temperature (Ta) in the control simulation of the mid-latitude coupled
system.

Fig. 2. Auto correlations (solid line) and cross-correlations (dashed
line) of monthly SST, air temperature and wind in (a) CCSM3.5 North
Atlantic average and (b) the mid-latitude coupled system. The wind
is the zonal surface wind in (a) and x2 in (b). The cross-correlations
are between SST and the atmospheric temperature and wind, with the
positive lags for SST leading the atmosphere.
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Fig. 3. The same as Fig. 1, but for the tropical coupled system.

Fig. 4. The same as Fig. 2, but for the tropical coupled system.

weak noise. Owing to the weak impact of weather
noise, the lagged correlation shows that, in both the
OAGCM (meridional wind, Fig. 4a) and the simple
model (Fig. 4b), the air temperature almost co-varies
with SST, while the wind is almost uncorrelated with
SST.

In short, in spite of its idealized nature, the sim-
ple model captures important features of the coupled

ocean–atmosphere system and therefore provides a
useful tool for exploring the role of ocean–atmosphere
interaction in coupled assimilation.

3. Coupled assimilation in the mid-latitude
system

The next step was to study different schemes of
data assimilation in the coupled mid-latitude model
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Table 1. Data assimilation schemes.

Name Atmos. obs. Ocean obs. Model Background Covariance Matrix

CP-AO Yes Yes Coupled Coupled
CP-A Yes No Coupled Coupled
CP-O No Yes Coupled Coupled
As-O Yes Yes 1st: atmos. model (forced by Atmos.-alone, Ocean-alone

SST obs.); 2nd: ocean model
(forced by atmos. analysis.)

CP-ABOB Yes Yes Coupled Atmos.-alone, Ocean-alone
CP-A2OB Yes Yes Coupled In CP-ABOB, add atmospheric covariance

to ocean for oceanic analysis
CP-O2AB Yes Yes Coupled In CP-ABOB, add oceanic covariance to

the atmosphere for atmospheric analysis

in the perfect model scenario, with the focus on the
ocean state, whose long memory is critical for cli-
mate predictability. First, a control simulation was
performed with the initial conditions h = 0, T = 0,
Ta = 0.15, x1 = x2 = x3 = 0.0001 (Figs. 1 and 3). The
model was spun off and then integrated for 200 years
to represent the “truth”. A synthetic observation was
constructed by adding an observational noise onto the
truth. The observational error for each variable was
an independent Gaussian noise with a standard de-
viation 10% that of the control simulation. Unless
otherwise specified, the coupled model assimilated the
observation every 10 steps (∼1.2 days) for the atmo-
sphere and 40 steps (∼5 days) for the ocean. Each
ensemble had 20 members and each assimilation was
integrated for 200 years with no inflation on the back-
ground covariance. The initial condition for the en-
semble member was constructed from the observation
at the time with a small random perturbation. Here,
we discuss the results with all observational variables
assimilated. When a subset of the observational states
are assimilated, the results remain qualitatively con-
sistent. Further sensitivity experiments showed that
our major conclusion remains qualitatively valid for
other settings, including assimilation time steps, en-
semble members, the magnitude of the observational
error and the inflation factors.

We first compare results from three coupled assim-
ilation schemes in the mid-latitude system, all using
the coupled background covariance matrix in the filter
analysis: CP-A assimilated the atmospheric observa-
tion only, CP-O assimilated the oceanic observation
only, and CP-AO assimilated both atmospheric and

oceanic observations (Table 1). We will compare these
results in terms of the normalized RMSEs (root mean
square error normalized by the standard deviation of
the control)c. The most comprehensive scheme was
the fully coupled assimilation scheme CP-AO, which
assimilated observations of both the atmosphere and
ocean. The RMSE reduced to 30% (∼0.03) and 3%
(∼0.003) of the observational errors for the atmosphere
and ocean, respectively (Fig. 5) (note that in Fig. 5 the
uncoupled scheme As-O will be discussed later in sec-
tion 3b). If only the ocean observation was assimilated
(CP-O), the RMSE reduced to 20% (∼0.02) and 85%
(∼0.085) of the observational errors for h and SST,
respectively (Fig. 5), but remained comparable with
the control for the atmospheric variables, with RM-
SEs of 0.55 and 0.9d (both off the scale in Fig. 5) for
air temperature and winds, respectively. The modest
oceanic errors, especially for SST, were much larger
than those in CP-AO, suggesting the importance of
the atmospheric observation for the ocean state in the
coupled assimilation. The poor constraint of the ocean
observation on the atmosphere was expected because
the wind does not respond to SST [as in Eq. (1), and
the poor correlation of <0.2 (Fig. A1b)], and the air
temperature is driven primarily by the stochastic wind
forcing with only a weak response to SST [correlation
of <0.4 (Fig. A1b)].

In contrast, when the atmospheric observation was
assimilated into the coupled model (CP-A), the anal-
ysis improved dramatically. The RMSE of CP-A re-
duced to almost the same level as in CP-AO (Fig. 5),
suggesting that, for the mid-latitude system, atmo-
spheric observation can play a much more important

cTo reduce the impact of the outlier problem in EAKF (Lawson and Hansen, 2004; Anderson, 2010), a simple approach was
used. For each scheme, the RMSE was calculated with the top 5% of the RMSEs excluded (the result was similar if the top 1%
was excluded). In this way, our major conclusions become robust for different assimilation settings and model parameters.

dEven though the atmospheric wind was forcing the air temperature and SST dynamically, with no dynamic feedback at all,
as shown in Eq. (1), the wind was still improved slightly by oceanic observations (normalized RMSE below 1 in CP-O). Further
experiments showed that this improvement was due to the background covariance between the wind and air temperature used in
the analysis. Therefore, SST observation improves the air temperature, and in turn, wind. The instantaneous covariance allows
the “response” variable to improve the “forcing” variable.
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Fig. 5. Analysis RMSE (normalized by the standard deviation of the
control run) of all the six variables for the different assimilation schemes
in the mid-latitude coupled system. OB: observation; coupled schemes:
CP-A, CP-O and CP-AO (CP-AO and CP-A almost overlap with each
other); uncoupled scheme: As-O (see Table 1). The observational time
steps for the atmosphere and ocean are 10 and 40 steps, respectively.
The RMSE was calculated as the average of the RMSEs at all the
analysis steps.

role than the oceanic observation for the coupled state.
It is interesting that the atmospheric observation is
even more important than the oceanic observation it-
self for the ocean state. The critical importance of
the atmospheric observation here can be understood,
partly, from the dynamic nature of the mid-latitude
coupled system. The SST variability is forced by syn-
optic atmospheric variability, which is often considered
as stochastic noise at the slow ocean (and climate) time
scale (Frankignoul and Hasselmann, 1977). This dom-
inant role of atmospheric forcing on SST was shown
clearly in the lagged correlation between SST and air
temperature (Fig. A1f), where the maximum correla-
tion (∼0.6) occurred when air temperature led SST
(by ∼80 steps). Therefore, as synoptic atmospheric
forcing improved, the ocean state also improved.

3.1 The role of synoptic atmospheric forcing

We now further explore the role of synoptic atmo-
spheric observation on the coupled assimilation. As at-
mospheric observation becomes less frequent, we spec-
ulate that the effect of atmospheric observation on the
coupled, in particularly the oceanic, state, will be re-
duced. Less frequent atmospheric observation should
increase the analysis error in both CP-A and CP-AO
and, furthermore, the error will increase faster in CP-A
than in CP-AO because the latter is constrained by the
ocean observation. This speculation was confirmed by
two sets of assimilation experiments in CP-A and CP-
AO, in which the atmospheric observational steps were

increased from 10 to 640 steps systematically (while
ocean observation remained fixed at 40 steps). Fig-
ure 6 shows the RMSE ratio between the CP-A and
CP-AO experiments as a function of the atmospheric
assimilation steps. Since ocean variability was forced
by the entire history of the atmospheric forcing, as a
measure of the error of the atmospheric forcing, the
RMSEs here accumulated over both analysis and fore-
cast stepse. Overall, as the steps of atmospheric obser-
vation increased, the RMSE ratio tended to increase
for the ocean (Fig. 6a) and air temperature (Fig. 6b),
indicating a faster increase of RMSE in CP-A than in
CP-AO. Therefore, ocean observations become more
important for the ocean and air temperature as atmo-
spheric observations become less frequent. [The ratio
of RMSEs for wind remained ∼1 (not shown) because
of the lack of oceanic impact on wind]. As shown in
Fig. 6b, the RMSE ratio for air temperature increased
from 1 (at step 10) to 1.15 (at step 640) (the slight
decreases at steps 20 and 80 were likely caused by
sampling error). Therefore, the RMSE of air temper-
ature increased slightly faster in CP-A than in CP-
AO, reflecting the weak impact of SSTon air temper-
ature (Fig. 6b). The faster error growth in the atmo-
spheric forcing then led to a faster error growth in the
ocean in CP-A than in CP-AO, and the RMSE ratios
for oceanic variables eventually increased far beyond
1 for large atmospheric observational steps (Fig. 6a).
Indeed, in the limit of very large atmospheric observa-
tional steps, the RMSE of oceanic variability in CP-A

eThe variation of the RMSE ratio also remained similar for the analysis RMSEs (not shown).
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Fig. 6. The ratio of RMSE (accumulated for all time
steps) between CP-A and CP-AO as a function of the
time steps of atmospheric observation in the mid-latitude
system. (a) SST and thermocline depth; (b) air temper-
ature. The oceanic observation time step was fixed at
40 steps. (The ratio of RMSE in the analysis steps were
similar).

saturated towards the control [∼60% of control at step
640 (not shown)] because the CP-A scheme then used
virtually no observations in the atmosphere and ocean;
the RMSE of oceanic variability in CP-AO, however,
saturated towards that of CP-O [about 5%–10% of the
control at step 640 (not shown)], because CP-AO then
still used full oceanic observations (every 40 steps).
Since the RMSE of the ocean was much larger in CP-
A than in CP-O, the RMSE ratio between CP-A and
CP-AO grew very large in the ocean, especially for h.

In spite of this overall increase trend of the RMSE

ratio, it is important to note that the RMSE ratio re-
mained close to ∼1 for air temperature (Fig. 6b) and
the ocean (Fig. 6a) for a sufficiently high frequency of
atmospheric observations, notably at steps 10, 20 and
even 40. This occurred because atmospheric observa-
tion was so frequent that the forecast error had not
grown significantly in the atmosphere. Therefore, the
error of the atmospheric forcing was not much larger
in CP-A than in CP-AO (as seen in the RMSE ratio of
air temperature in Fig. 6b). The atmospheric forcing
was therefore sufficiently accurate in CP-A such that
the addition of oceanic observations in CP-AO did not
improve the ocean state significantly (Fig. 6a). This
argument also implies that the critical frequency of at-
mospheric observation should be significantly shorter
than the saturation time of forecast error, or crudely
the persistence time. The atmospheric decorrelation
time was less than ∼40 steps for wind (Figs. A1c–e),
and less than ∼150 steps for air temperature (using
a cut off correlation of ∼0.2). Therefore, the criti-
cal frequency beyond which the RMSE ratio increased
above 1 should be shorter than ∼40–150 steps, con-
sistent with the ∼40 steps in Fig. 6a. In short, if at-
mospheric observation is sufficiently shorter than its
persistence time, it is able to improve the atmospheric
forcing and, in turn, the oceanic variability, signifi-
cantly, in the coupled system.

3.2 Coupled vs. uncoupled assimilation
schemes

Table 1 shows a comparison of the fully coupled
scheme against an uncoupled assimilation scheme, As-
O. The As-O scheme assimilated both atmospheric and
oceanic observations, but separately in a two-tier ap-
proach. First, the atmospheric observation was assim-
ilated in the atmosphere model forced by the SST ob-
servation (specifically, the SST forcing at each step was
derived from the SSTs at the observational steps using
a linear interpolation). Second, the atmospheric forc-
ing (at analysis and forecast steps) was used to force
the ocean model in its assimilation of oceanic observa-
tions. The atmospheric analysis here was equivalent
to the standard atmospheric reanalysis product. For
the oceanic state, the As-O scheme was equivalent to
an ocean data assimilation forced by an atmospheric
reanalysis product. In a sense, As-O was similar to
many previous works on the initialization of the ocean
state for climate predictions in coupled climate mod-
els (e.g. Cane et al., 1986; Latif et al., 1993; Rosati et
al., 1997) although the assimilation schemes in those
studies were not ensemble filters. A comparison of
the RMSEs in As-O and CP-AO (Fig. 5) shows that,
even with the same atmospheric and oceanic observa-
tions, the RMSE was significantly higher in As-O than
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in CP-AO, especially for the ocean. The improved
analysis in CP-AO over As-O was due in part to the
improvement of the SST forcing (to the atmosphere)
through the coupled dynamics. Indeed, the RMSE
of the SST analysis in CP-AO was reduced from the
observational error (∼0.1, Fig. 5) (which was the er-
ror for the SST forcing in As-O) to less than 5% of
the observational error (<0.005, Fig. 5). Relative to
As-O, the improved SST forcing CP-AO also improved
the atmosphere dynamically, which then improved the
ocean dynamically. Indeed, even with the additional
assimilation of oceanic observations, the analysis of
As-O was significantly poorer than that in the coupled
scheme (CP-A) for the ocean state and air tempera-
ture (Fig. 5), even though the latter only assimilated
the atmospheric observation. This is consistent with
the critical importance of synoptic atmospheric obser-
vations, as demonstrated in Fig. 6.

To further evaluate the role of atmospheric sur-
face forcing, we performed another uncoupled oceanic
assimilation (not shown) that was the same as As-O
except that the atmospheric forcing was replaced by
that in CP-AO at every time step. The RMSE in
the ocean was then reduced by about half of that in
As-O (due to the improved atmospheric forcing), but
the RMSE still remained significantly higher than in
CP-AO, even though both ocean assimilations used
the same atmospheric forcing. This implies that the
improved surface atmospheric forcing through the cou-
pled dynamics was not the only cause for the improved
assimilation in the coupled scheme (CP-AO) over the
uncoupled scheme (As-O).

3.3 The role of coupled background covariance

In principle, ocean–atmosphere coupling affects the
coupled data assimilation not only through the cou-
pled dynamics, but also through the coupled covari-
ance in the filter analysis. To further explore the dif-
ference between the coupled and uncoupled schemes,
especially the role of the ocean–atmosphere interac-
tion through the coupled covariance, we further com-
pared the fully coupled scheme (CP-AO) with another
coupled scheme: the dynamically coupled scheme CP-
ABOB (Table 1). In CP-ABOB, atmospheric and
oceanic observations are assimilated as in CP-AO ex-
cept that the background covariance matrices for the
atmosphere and ocean only use the sub-matrices for
each component separately. Specifically, denoting the
transposes for atmospheric and oceanic variables as
A = [x1, x2, x3, Ta]

T and O = [T, h]T, respectively,
the background covariance matrix is

B =

[
BAA BAO

BAO BOO

]
, (6)

in CP-AO, but

BABOB =

[
BAA 0

0 BOO

]
, (7)

in CP-ABOB. Here, BAA = 〈A,A〉 , BOO =
〈O,O〉 , BAO = 〈A,O〉.

A comparison of CP-ABOB and CP-AO (Fig. 7)
showed that the RMSEs were comparable for the at-
mosphere, but significantly greater in CP-ABOB than
CP-AO for the ocean. Therefore, atmospheric obser-
vations can improve the ocean significantly in the fully
coupled scheme (CP-AO) directly through the coupled
covariance. Furthermore, this improvement was shown
to be caused completely by the impact of the atmo-
spheric observation on the ocean. This was shown
in two additional partially coupled experiments, CP-
A2OB and CP-O2AB, which respectively used the cou-
pling covariance BAO on the ocean and atmosphere,
with the corresponding background covariance matri-
ces

BA2OB =

[
BAA 0

BAO BOO

]
,

BO2AB =

[
BAA BAO

0 BOO

]
. (8)

Figure 7 shows almost the same RMSEs in CP-A2OB
and the fully coupled CP-AO, but almost the same
RMSEs in CP-O2AB and the dynamically coupled
CP-ABOB. Therefore, for the mid-latitude system, the

Fig. 7. Analysis RMSE (normalized by the standard de-
viation of the control run) for As-O (circles), CP-AO
(solid dots), CP-ABOB (crosses), CP-A2OB (triangles)
and CP-O2AB (plus signs) in the mid-latitude coupled
system for h, T , x2 and Ta. An ensemble of 80 members
was performed with the ensemble mean represented by
the marks and the ensemble spread (standard deviation)
by the bars above and below each mark. The observa-
tional time steps for the atmosphere and ocean were 10
and 40 steps, respectively.
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impact of the coupled covariance on the coupled anal-
ysis was due to the atmospheric impact on ocean, with
little oceanic impact on the atmosphere.

It is also interesting to compare CP-ABOB with
the uncoupled As-O scheme. Figure 7 shows that the
RMSE was smaller in CP-ABOB than in As-O for
air temperature, thermocline and SST. The error re-
duction in air temperature confirms that atmospheric
observations improved the atmosphere state more in
the coupled model than in the uncoupled atmospheric
model, because the SST forcing was improved over the
observation (used in As-O) by the coupled dynamics
in the coupled model. For the ocean state, we may
attribute the reduced RMSE from CP-ABOB to CP-
AO to the coupled covariance, and from As-O to CP-
ABOB to the improvement of atmospheric forcing in
the coupled model.

In short, high frequency synoptic atmospheric ob-
servation improves the coupled state significantly be-
cause of its improvement on the atmospheric analysis
and, in turn, the surface forcing to the ocean. The fully
coupled assimilation (CP-AO) improves the ocean sig-
nificantly over the uncoupled scheme (As-O) for two
reasons: the coupled dynamics improves the atmo-
spheric forcing by improving the SST forcing to the at-
mosphere (from As-O to CP-ABOB), and the coupled
background covariance allows the atmospheric obser-
vation to improve the ocean state through the analysis
directly.

4. Coupled assimilation in the tropical system

In this section we briefly discuss the tropical sys-
tem, in comparison with the mid-latitude system.
We show that the major conclusions in the mid-
latitude system still hold qualitatively in the tropi-
cal system: the fully coupled scheme gives the opti-
mal coupled state, and high frequency synoptic at-
mospheric observations can improve the ocean state
significantly. Quantitatively, however, the stronger
ocean–atmosphere coupling in the tropics renders syn-
optic atmospheric observation less important than in
the mid-latitude system, while oceanic observations
become more important.

As in the mid-latitude system (Fig. 5), the normal-
ized RMSEs in CP-AO, CP-A and CP-O (Table 1)
were minimum in CP-AO, and almost the same in CP-
A and CP-AO. Therefore, CP-AO was found to be the
optimal scheme, and synoptic atmospheric observation
played a dominant role. Meanwhile, the assimilation
of the ocean observation in CP-O reduced the RMSEs
by half compared with the mid-latitude system for the
ocean (h and T , ∼0.01, ∼0.045 in Fig. 8, vs. ∼0.02
and ∼0.09 in Fig. 5) and air temperature (∼0.35 vs.

Fig. 8. The same as Fig. 5, but for the tropical system.

∼0.65, off the scale in Figs. 8 and Fig. 5), owing to the
stronger ocean–atmosphere coupling and the weaker
weather noise forcing in the tropical system. Indeed,
the stronger ocean–atmosphere coupling can be seen
in the much larger correlation between SST and air
temperature in the tropical system (∼0.9, Fig. A2b
and f) than in the mid-latitude system (∼0.4, Fig. A1b
and f). The weaker weather noise forcing can also be
seen in the lagged cross-correlation, which peaked al-
most simultaneously in the tropical system (Fig. A2f),
rather than when the air temperature led SST in the
mid-latitude system (Fig. A1f). The increased role of
oceanic observations in the tropical system can also
be seen in the RMSE ratio between CP-A and CP-AO
in Fig. 9. Although qualitatively similar to the mid-
latitude system (Fig. 7), an increase of atmospheric ob-
servational steps increased the RMSE more in CP-A
than in CP-AO; quantitatively, the RMSE ratio in-
creased significantly beyond 1 for the ocean (Fig. 9a)
and air temperature (Fig. 9b) at 20 steps, while it re-
mained close to 1 even up until ∼40 steps in the mid-
latitude system.

Coupling also improved the estimation, as in the
mid-latitude system. The RMSE was reduced from
the uncoupled As-O to the coupled CP-AO (Fig. 8),
similar to the mid-latitude system (Fig. 5). Quantita-
tively, the RMSE was reduced tenfold in the tropical
system (0.06 in As-O to 0.007 in CP-AO), but only by
half in the mid-latitude system (from 0.022 to 0.013),
because of a greater role of ocean–atmosphere coupling
in the tropical system. The coupled covariance also im-
proved the estimation (Fig. 10), as in the mid-latitude
system (Fig. 7), when comparing the fully coupled CP-
AO with the dynamically coupled CP-ABOB. Quan-
titatively, however, the improvement was much less
than in the tropics, as the RMSE in CP-ABOB was
not much greater than in CP-AO for air temperature
and the ocean (Fig. 10). Therefore, unlike in the mid-
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Fig. 9. The same as Fig. 6, but for the tropical system.
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Fig. 10. The same as Fig. 7, but for the tropical system.

latitude system, where the coupled covariance was
found to be the major mechanism improving the cou-
pled over the uncoupled schemes, the improvement of
the atmospheric forcing is the major mechanism im-

proving the coupled assimilation in the tropics. This
is consistent with a stronger ocean–atmosphere cou-
pling and, in turn, a stronger feedback of SST on air
temperature in the tropical system.

5. Summary and discussion

We studied several coupled schemes of EAKF in
a simple coupled ocean–atmosphere model in the per-
fect model scenario, with a focus on the role of ocean–
atmosphere interaction in the assimilation. Our study
confirms that the optimal assimilation scheme is the
fully coupled data assimilation scheme that assimilates
observations in both the atmosphere and ocean and
that employs the coupled covariance matrix. It was
further found that the assimilation of synoptic atmo-
spheric variability is critical for the improvement of
not only the atmospheric state, but also the oceanic
state, especially in the mid-latitude system, where
oceanic variability is driven predominantly by weather
noise. Furthermore, atmospheric observation can also
improve the oceanic state through the coupled covari-
ance, especially in the mid-latitude system. Rela-
tive to the mid-latitude system, the tropical system
is influenced more by oceanic dynamics and ocean–
atmosphere interaction. Therefore, the assimilation of
oceanic observation becomes more important. This
study suggests that the analysis of the coupled cli-
mate state variables are best derived in the fully cou-
pled model using both the atmospheric and oceanic
observations. Furthermore, synoptic atmospheric ob-
servations are critical for the improvement of the cou-
pled analysis. Finally, coupled covariance between
the ocean and atmosphere should also be employed
to achieve the best analysis.

The importance of synoptic atmospheric observa-
tion for improving the ocean state has important im-
plications for climate predictions. Although the mem-
ory of the climate system lies in the ocean, synop-
tic atmospheric observations can significantly improve
the ocean initial state and, in turn, climate predic-
tion of slow oceanic variables. Therefore, synoptic
atmospheric observation alone is able to improve the
coupled initial state in a balanced way (in both at-
mosphere and ocean), which will help in improving
climate prediction. We performed ensemble climate
prediction experiments initialized by the coupled state
of different assimilation schemes. Since each of our
schemes (Table 1) improves the coupled state in both
the atmosphere and ocean in a balanced way, it also
improves the climate prediction of slow ocean state.
For example, the RMSE was smaller in CP-AO than
As-O in both the ocean and air temperature (Figs. 5
and 8), which in turn was smaller than those in CP-O;
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Fig. 11. Forecast RMSE in the mid-latitude system for h (left) and T (right) initialized in
PO (dashed line) and CP-AO (solid line) schemes.

accordingly, the climate prediction of T and h dete-
riorated from CP-AO to As-O, and finally to CP-O
(not shown). One extreme example of an unbalanced
initial condition is the perfect ocean experiment (PO),
as used in some early studies of experimental decadal
climate predictions (Collins, 2002). In PO, the ocean
initial condition is the truth, while the atmosphere ini-
tial state is selected randomly from the control. A
comparison of the climate prediction (Fig. 11) shows
that the prediction of the ocean state eventually be-
comes much worse in PO than in CP-AO after a very
short lead time when the ocean is almost perfect in
PO. This occurs because the very large initial error in
the atmosphere in PO quickly drives the ocean away
from the truth.

It is interesting that the major conclusions of our
conceptual model study seem to be consistent with
previous studies in more realistic models. The im-
portance of the atmospheric observations has been
recognized even in the early stage of ENSO predic-
tion, where less advanced assimilation schemes such
as nudging are used for initialization (e.g. Cane et
al., 1986; Latif et al., 1993). These studies found that
a better forecast is achieved using the initial ocean
state that is forced by the observed surface wind, and
the addition of further oceanic observation may not
improve climate prediction significantly. Our conclu-
sion that the assimilation in the coupled scheme (e.g.
CP-A) improves the coupled state over the uncoupled
assimilation (e.g. As-O) also appears to be consistent
with Chen et al. (1995). They found that their ENSO
prediction was improved if the initialization was ob-
tained by assimilating the observed surface wind in
the coupled mode, instead of forcing the ocean in the
ocean-alone mode. The importance of synoptic wind
for improving climate prediction is consistent with the
EAKF study in an OAGCM (Zhang et al., 2008). This
study showed that ENSO forecasting is improved us-
ing the EAKF in the coupled model compared with
the ocean-alone 3DVAR assimilation.

Further studies are needed, especially in more re-

alistic models. One surprising result in our model is
the overwhelming importance of synoptic atmospheric
observation, such that the assimilation of synoptic at-
mospheric observation alone (CP-A) improves the cou-
pled state almost the same as assimilating additional
oceanic observations (CP-AO). Similarly, the assimi-
lation of oceanic observation has little impact on the
atmosphere, even the air temperature, as shown in
CP-O. Previous studies with more realistic models, in-
cluding OAGCMs, have shown that the assimilation
of oceanic observations in the coupled model can in-
deed improve the atmospheric state, especially in the
tropics (Ji et al., 1995; Rosati et al., 1997; Luo et al.,
2005; Fuji et al., 2009). The overwhelming role of syn-
optic atmospheric observation in our study could be
related to the lack of dynamic ocean–atmosphere feed-
backs in our idealized model, especially in the tropics.
In a more realistic tropical system, the (zonal) wind
anomaly is significantly correlated with SST, because
of the strong dynamic response of the atmosphere to
the tropical SST anomaly (Gill, 1980; Lindzen and
Nigam, 1987). This zonal wind effect is absent in our
tropical system, which only simulates the meridional
wind (Fig. 4a) and therefore lacks the dynamic ocean–
atmosphere feedback.
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APPENDIX A

Lagged Cross-correlations among
Model Variables

To help us understand the nature of the covari-
ance among different model variables, and in turn the
ensemble filter analysis, the lagged cross-correlations
among different model variables are shown for the mid-
latitude system in Fig. A1 and for the tropical system
in Fig. A2. See the text for discussion.
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Fig. A1. Lagged correlations among all model variables in the mid-latitude system. Each panel repre-
sents the pivotal variable that was used for lagged correlation with itself (auto-correlation) and five other
variables (cross-correlations). The positive lead step was for this pivotal variable leading other variables.
Each variable is represented by the same color: blue for h; green for T ; red for x1; cyan for x2; purple for
x3; and yellow for Ta. For example, in panel (b), the auto-correlation of T is in blue, the cross-correlation
between T and h, x1, x2, x3 and Ta are in blue, red, cyan, purple and yellow, respectively.

Fig. A2. The same as Fig. A1, but for the tropical system.
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