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ABSTRACT

The initial value error and the imperfect numerical model are usually considered as error sources of
numerical weather prediction (NWP). By using past multi-time observations and model output, this study
proposes a method to estimate imperfect numerical model error. This method can be inversely estimated
through expressing the model error as a Lagrange interpolation polynomial, while the coefficients of polyno-
mial are determined by past model performance. However, for practical application in the full NWP model,
it is necessary to determine the following criteria: (1) the length of past data sufficient for estimation of
the model errors, (2) a proper method of estimating the term “model integration with the exact solution”
when solving the inverse problem, and (3) the extent to which this scheme is sensitive to the observational
errors. In this study, such issues are resolved using a simple linear model, and an advection–diffusion model
is applied to discuss the sensitivity of the method to an artificial error source. The results indicate that the
forecast errors can be largely reduced using the proposed method if the proper length of past data is chosen.
To address the three problems, it is determined that (1) a few data limited by the order of the corrector can
be used, (2) trapezoidal approximation can be employed to estimate the “term” in this study; however, a
more accurate method should be explored for an operational NWP model, and (3) the correction is sensitive
to observational error.
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1. Introduction

Numerical weather prediction (NWP) has become
the key of weather forecasting since it was initiated
by Richardson (1922) and was accurately determined
with a simplified model by Charney et al. (1950). The
development of computer technology has increased
the capability of weather simulation, and forecast-
ing by the NWP model has been improved dramat-
ically. However, total avoidance of errors in numeri-
cal weather forecasting appears to be impossible due
to errors in the initial conditions because of the ob-
servational error and imperfect data assimilation, in
addition to model deficiencies due to model discretiza-
tion and approximate physical processes. Efforts to

improve assimilation, model dynamics, and sub-grid
scale processes have lessened these two types of error.
However, unresolved phenomena and model errors per-
sist regardless of parameterization accuracy and grid
resolution. Although it is reasonable to consider the
NWP as an initial-value problem from the perspec-
tives of mathematics and physics, huge amounts of
past data may only be applied if the NWP is con-
sidered as an inverse problem. Therefore, a method
of using such past observations in the NWP system is
worth exploring. This study develops an online algo-
rithm to correct model forecast errors by reasonable
application of past data.

For the purpose of enhancing the availability of
model forecasts, various approaches of forecast error
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correction have been offered and can be classified as
offline and online bias correction. With model output
statistics (MOS), known as one popular offline cor-
rection method (Glahn and Lowry, 1972; Carter et
al., 1989), statistical relationships between the model
output and observations are calculated over a multi-
year historical period. Because this method requires a
lengthy training period for obtaining stable statistics,
expensive computer resources are needed. Moreover,
frequent updating of the operational models creates in-
valid statistics. To overcome these challenges, two ad-
ditional methods have been presented on the basis of
a time series shorter than one month for model output
and observation. The first is the running-mean correc-
tion method (Eckel and Mass, 2005; Hacker and Rife,
2007), which assumes that the forecast error within
one day can be linearly estimated using a time series
of model output and observation with lags of 24 h.
The other is based on the Kalman filter (KF), which
is similar to the first method although recent errors
are weighted more than past errors (Delle Monache et
al., 2006; McCollor and Stull, 2008; Delle Monache et
al., 2011). Limitations of this method are that sudden
changes in forecast error caused by rapid transitions
from one weather regime to another not likely pre-
dicted (Delle Monache et al., 2011), and it is an offline
rather than online corrector. Offline bias correction
has no dynamic effect on the forecast. The online cor-
rection is conducted at every time step of the model
integration to retard error growth, and internal and
external errors are permitted to interact nonlinearly
throughout the integration. Nudging, or Newtonian
relaxation, is a simple method used to reduce the sys-
tematic errors by adding artificial sources and sinks
(24-h error divided by one day) as constant nudging
terms to the model tendencies at each time step (Hoke
and Anthes, 1976; Saha, 1992; DelSole et al., 2008).
Leith (1978) proposed a statistical method in which
model bias and systematic errors are assumed to be
linearly dependent on flow anomalies. Although this
method is simple and adjustable, it is valid only for
linear models and is subject to sampling errors and
expensive computation. By using a nonlinear quasi-
geostrophic model, DelSole and Hou (1999) modified
Leith’s scheme and examined its availability for prac-
tical applications. They determined that the modified
Leith scheme improved the forecasting skill to a large
extent. In addition, Danforth et al. (2007) divided
the 6-h total model error into model bias, periodic,
and nonperiodic components. They further corrected
these three types of errors by using various methods
including nudging, obtained by time averaging the er-
rors over several years; diurnal correction, based on the
leading empirical orthogonal functions (EOFs) of the

analysis; and the state-dependent correction, which
was simplified from Leith’s scheme, respectively. The
effectiveness of this approach has been tested by two
different types of models including quasi-geostrophic
and primitive equation models.

The above methods are based on the traditional
concept of NWP, which is considered as an initial-value
and forward problem. That is, the forecasts of the
traditional NWP depend on the initial value and the
model. If the NWP is considered as an inverse prob-
lem, however, the past data including observations and
previously determined model performance can be uti-
lized. Hence, the NWP as an inverse problem can
treat numerical weather forecasting both dynamically
and statistically. Gu (1958) offered this concept and
successfully applied it for reconstructing global three-
dimensional data by using a quasi-geostrophic model
and observations over land. At that time, no observa-
tions over oceans had been reported, and no inhabi-
tants were known to be in the area. Chou (1974) ex-
panded on Gu’s (1958) concept, and further proposed
that NWP could be considered as an inverse prob-
lem also because the past data should be utilized in
conducting the NWP. Since that time, several studies
have been conducted to establish the theoretical foun-
dation NWP and to explore possible applications (Qiu
and Chou, 1989; Huang and Wang, 1992; Cao, 1993;
Gu, 1998). However, these studies focused on the de-
velopment of a dispersion model (Huang and Wang,
1992) or a self-memorization model (Cao, 1993; Gu,
1998) to utilize past data; no research explored the
application to operational NWP models. The basic
concept of treating the NWP as the inverse problem
is to estimate forecast error due to model imperfec-
tions by solving the inverse problem. Chou and his
colleagues proposed two approaches for such estima-
tion that include an analog scheme (Bao et al., 2004;
Ren and Chou, 2005, 2006, 2007), and an extrapola-
tion scheme (Da, 2011). The former utilizes analog in-
formation diagnosed from past observations and model
outputs, while the latter is an optimization problem
for constructing an object function by using the re-
cent observations and model outputs as constraints to
estimate forecast error. Compared with the forward
NWP model, the extrapolation scheme could have a
more precise solution because it continuously observes
model trajectory, which was demonstrated by Chou
(1974). Da (2011) proposed an algorithm that consid-
ered that the model errors due to model deficiencies
can be expressed as a Lagrange interpolation polyno-
mial, while the coefficients of this polynomial can be
obtained by solving the above-mentioned optimization
problem. Da’s (2011) approach could have high poten-
tial in practical NWP because utilization of the short
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length of past data is possible in this algorithm. How-
ever, his study presented only a theoretical framework
and did not investigate the details of practical applica-
tion in operational NWP. Thus, three main problems
remain. The first is that Da’s (2011) work did not
explain how to choose the length of past data accord-
ing to various scales of errors, although this point is
very important for practical application. The second
is that Da (2011) gave an approximate approach to
obtain the solution of the so-called “model integration
with exact solution” in the inverse problem and did
not discuss the possibility for full NWP model appli-
cation. The third is that Da (2011) did not consider
the possible effect of errors existent in the past data,
which is inevitable for observation and assimilation.

Therefore, the following three factors must be de-
termined for practical application in an operational
NWP model: (1) a sufficient length of time series of
past data for proper estimation of the model errors,
(2) a method by which the term “model integration
with the exact solution” is estimated when solving the
inverse problem, and (3) the extent to which this ap-
proach is sensitive to the observational errors.

These issues are examined in the present study. In
this paper, section 2 describes the approach, and sec-
tion 3 gives idealized experiments for analyzing the
three factors. On the basis of the results, we fur-
ther examine the approach in section 4 by using a
one-dimensional nonlinear advection–diffusion model.
Section 5 presents our conclusions.

2. The approach

Generally, the NWP model can be written as the
following initial problem:

∂ψ

∂t
= M(ψ) , (1a)

ψ(t)|t=0 = ψ0 , (1b)

where ψ(t) is the vector form of state variables includ-
ing wind, temperature, moisture, and pressure; M is
the model operator; and Eq. (1b) is the initial condi-
tion. For brevity, the following discussion will focus on
one state variable of the model equation at the space-
discretized point:

∂ψ

∂t
= M(ψ) , (2a)

ψ(t)|t=0 = ψ0 . (2b)

Usually, Eq. (2a) is an approximation to the actual
atmosphere due to the discretization and model pa-
rameterizations. If we denote the error of model as
ς(t) and assume n times of data ψ−1, ψ−2, . . . ψ−n as

exact solutions in the past with time interval δ, we
have the following equations:

∂ψ

∂t
= M(ψ) + ς(t) , (3a)

ψ(0) = ψ0 , (3b0)

ψ(−δ) = ψ−1 , (3b1)

ψ(−2δ) = ψ−2 , (3b2)

. . . . . .

ψ(−nδ) = ψ−n . (3bn)

Here, ψ becomes the exact solution of the atmo-
sphere rather than the prognostic variable of Eq. (2a).

Suppose that H−( 2k−1
2 ) (k = 0, 1, . . . , n ) is an er-

ror factor at the midpoint interval between −kδ and
−(k − 1)δ. ς(t) can be expressed as a Lagrange inter-
polation polynomial from −nδ to δ according to Da’s
(2011):

ς(t) =
n∑

k=0

l− 2k−1
2

(t)H− 2k−1
2

, (4)

l− 2k−1
2

=
n∏

i=0,i 6=k

t +
2i− 1

2
δ

−2k − 1
2

δ +
2i− 1

2
δ

(5)

k = 0, 1, 2, . . ., n .

It is noted that H 1
2

is the error factor at the mid-
point of the model forward integration period δ; there-
fore, the Lagrange interpolation polynomial can be
used to correct forecast error at half or one “future”
time interval. From Eqs. (4) and (5), n + 1 are un-
known factors H 1

2
, H− 1

2
, . . . , H−( 2n−1

2 ) in determining
the coefficients of the Lagrange interpolation polyno-
mial. The inverse problem constructed by Eq. (3a) and
Eqs. (3b0)–(3bn) can be solved by integrating Eq. (3a)
for each interval δ. Thus, n equations correspond to n
intervals but n+1 unknown factors. Therefore, the in-
verse problem is underdetermined. An additional hy-
pothesis is necessary for closing the problem and will
be discussed subsequently.

To integrate Eq. (3a) from −kδ to −(k − 1)δ(k =
0, 1, . . . , n), the left-hand-side (lhs) of Eq. (3a) be-
comes ψ−(k−1) − ψ−k, the second term of right-hand-
side (rhs) of Eq. (3a) is a linear combination of H 1

2
,

H− 1
2
, . . . , H−( 2n−1

2 ), and the first term of rhs of

Eq. (3a) can be written as
∫ −(k−1)δ

−kδ

M(ψ)dt. To re-

call the above assumption of the given past exact solu-

tions in Eqs. (3b0)–(3bn), the term
∫ −(k−1)δ

−kδ

M(ψ)dt

is assumed to be obtained by integration of the model
with the exact solution. By algebraic manipulation,
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H− 1
2
, . . . , H−( 2n−1

2 ) can be expressed by the following
vector formulation:

H = ΛΛΛ−1A−H 1
2
ΛΛΛ−1α , (6)

where

α =

(∫ 0

−δ

l 1
2
(t)dt

∫ −δ

−2δ

l 1
2
(t)dt . . .

∫ −(n−1)δ

−nδ

l 1
2
(t)dt

)T

,

H =
(
H− 1

2
H− 3

2
. . . H− 2n−1

2

)T

,A = (A1A2 . . . An)T ,

Ak = ψ−(k−1)−ψ−k +
∫ −(k−1)δ

−kδ

M(ψ)dt, k = 1, . . ., n ,

ΛΛΛ =




∫ 0

−δ

l− 1
2
(t)dt

∫ 0

−δ

l− 3
2
(t)dt . . .

∫ 0

−δ

l− 2n−1
2

(t)dt

∫ −δ

−2δ

l− 1
2
(t)dt

∫ −δ

−2δ

l− 3
2
(t)dt . . .

∫ −δ

−2δ

l− 2n−1
2

(t)dt

. . . . . . . . . . . .

∫ −(n−1)δ

−nδ

l− 1
2
(t)dt

∫ −(n−1)δ

−nδ

l− 3
2
(t)dt . . .

∫ −(n−1)δ

−nδ

l− 2n−1
2

(t)dt




.

There is only one unknown factor, H 1
2
, in Eq. (6).

Da (2011) defined two types of norms of ς(t) for the
purpose of obtaining H 1

2
. Here, we adopt one of the

definitions:

J(H 1
2
) =

√∫ δ

−nδ

[ς(t)]2.

It is easy to solve H 1
2

by minimizing the norm. The
above approach indicates that by giving the minimized
modification of the model by introducing a correction
term, the model forecast can be kept accurate for the
past given accurate solutions, and the forward forecast
can be improved by minimizing the norm J(H 1

2
). This

approach is equivalent to the original scheme proposed
by Chou, which has been theoretically proved as effec-
tive for improving the model forecast (Chou, 1974).

3. Discussions on practical application

For the purpose of implementing the above ap-
proach into an operational NWP model, three prob-
lems should be investigated and resolved, as mentioned
in the Introduction. Moreover, the computing cost
must be evaluated when implementing the scheme into
operation. In this section, a linear model is designed
to investigate these issues.

3.1 Linear model and experiments

A simple model is first designed to analyze these
questions:

dψ

dt
= C1 sin(ω1t + ϕ1) + C2 cos(ω2t + ϕ2) , (7)

where ψ is a function of time; C1 and C2 are ampli-
tudes; ω1 and ω2 are frequencies; and ϕ1 and ϕ2 are

initial phases. Eq. (7) is assumed to be an accurate
model, while the following is assumed to be an imper-
fect model due to the disregarding of the second term
of Eq. (7):

dψ

dt
= C1 sin(ω1t + ϕ1) . (8)

Generally, the error source term should be very
small. Here, the amplitude of this error term is set as
C1 À C2. The following equation integrates Eq. (7):

ψ(t)−ψ(t00) = −C1

ω1
cos(ω1t+ϕ1)+

C2

ω2
sin(ω2t+ϕ2) .

(9)
With initial time t00 = −nδ and initial condition

ψ(−nδ) = ψ−n, we can obtain the exact values ψ0,
ψ−1, . . . ψ−n for correction and the “future” data for
verification according Eq. (9) . Suppose A = C1/ω1,
B = C2/ω2, and A À B. Integrating Eq. (7) from −kδ
to −(k − 1)δ results in

ψ−kδ − ψ−(k−1)δ = −A{cos[ω1(−kδ) + ϕ1]−
cos[ω1(−k + 1)δ + ϕ1]}+
B{sin[ω2(−kδ) + ϕ2]−
sin[ω2(−k + 1)δ + ϕ2]} , (10)

where the first term of rhs, the so-called “integra-
tion of the model with exact solution” , is denoted as
ΨΨΨk = −A{cos[ω1(−kδ)+ϕ1]−cos[ω1(−k+1)δ +ϕ1]}.
Because this model is simple and analytical, the exact
solution of ΨΨΨk is easily obtained. By using this ide-
alized model, the approach given in section 2 can be
easily tested to discuss the issues.

The most time-consuming part of the scheme is the
computation of the Lagrange interpolation polynomial
at each time step and model grid point. Hence, an
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Table 1. Test descriptions. (n = 2, 5, 10, 20; m = 1, 2, 4, 8, 16).

Test set Test name Tests description

1 NO−m Period of error source T = mδ for past data without observation error

Tn−m
Period of error source T = mδ for n-time past data without observation

error and series of ΨΨΨk of true value

2 Kn−m
Period of error source T = mδ for n-time past data without observation

error and series of ΨΨΨk computed by trapezoidal integration method

3 KEn−m
Period of error source T = mδ for n-time past data with observation error

and series of ΨΨΨk computed by trapezoidal integration method

effective algorithm is crucial for controlling expenses.
Wu and He (2007) expanded a product of n-linear fac-
tors as a simple n-order polynomial:

n∏

i=1

(x + ai) = D0x
n+D1x

n−1 + · · ·+ Dnx0 , (11)

where
D0 = 1,

D1 =
n∑

j=1

aj ,

Dk =
n−k+1∑

j=1

aj




n−i−2∑

i=j+1

Dk−1,i


 , k = 2, 3, . . . n,

and Dk−1,i is the ith term of Dk−1. Let

x = t, a1 = −1
2
δ, . . . aj =

2(j − 1)− 1
2

δ,

aj+1 =
2(j + 1)− 1

2
δ, . . . an =

2n− 1
2

δ,

and

Kk =
n∏

i=0,i 6=k

1

−2k − 1
2

δ +
2i− 1

2
δ

;

Eq. (5) becomes

l− 2k−1
2

= Kk(Dk,0t
n +Dk,1t

n−1 + · · ·+Dk,nt0) . (12)

With Eq. (12), Eq. (4) becomes,

ς(t) =
n∑

k=0

[
n∑

i=0

KiDi,0H− 2(i−1)
2

]
tn−k . (13)

Compared with (4) and (5), it is obvious that (12)
and (13) are easier for computing Lagrange operators
and the Lagrange polynomial. Once the polynomial
coefficients are determined, its integration can be eas-
ily obtained. To add error term (13) at rhs of (8), the
imperfect model with correction is

dψ

dt
= C1 sin(ω1t+ϕ1)+

n∑

k=0

[
n∑

i=0

KiDi,0H− 2(i−1)
2

]
tn−k .

(14)

To investigate the effects of various time scale
model errors and various lengths of time series of
past data, three idealized experiments are designed as
shown in Table 1. Regarding to the length of past data
sufficient for estimation of the model errors, the first
experiment examines the ideal or optimal effect of cor-
rection by using all exact past data and series of ΨΨΨk.
In the second experiment, the term ΨΨΨk, i.e., the so-
called “integration of the model with exact solution”
is estimated by trapezoidal rather than analytical in-
tegration for the purpose of investigating the proper
method of computing this term for practical applica-
tion. The third experiment focuses on the impacts of
observational errors on the effectiveness of the method.
Here, the parameters are given as δ=21 600 s, A=20,
B=0.5, ϕ1 = ϕ2 = 0, ω1 = 2π/(20×24×3600). With
the initial condition ψ(−20δ) = 2 and related ω2 in Ta-
ble 1, the past “observations” and “future” exact solu-
tion used for verification can be obtained from Eq. (9).
With the initial condition ψ(0) =ψ0, the forecast, i.e.,
“future” data, by the imperfect model can be obtained
from (8), and the corrected forecast by using the ap-
proach presented in this paper can be obtained from
Eq. (14). Because it is impossible to determine the an-
alytical expression of the NWP model error sources,
an approximation of ΨΨΨk is used. The tendencies of
points −kδ and −(k−1)δ can be obtained from Eq. (8)
by integrating one step, then the approximate ΨΨΨk can
be computed with the tendencies of the two points by
the trapezoidal integration method. In the second and
third experiments, the trapezoidal integration method
is explored to examine the application for future im-
plementation into an NWP model.

3.2 Results and discussions

In experiment 1, we assumed the error as having
different periods T = mδ to mimic the various types
of NWP model errors. Then, different lengths of past
data were applied to investigate the proper lengths of
past data in correcting the forecast errors with vari-
ous periods. Figure 1 gives non-dimensional analytical
and simulated errors with different periods. As shown
in Figs. 1a and b, errors with a time scale of 1δ or 2δ
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Fig. 1. Performance of error source simulation by various ranks of correctors for the following error
source scales: (a) T = 1δ, (b) T = 2δ, (c) T = 4δ, (d) T = 8δ, (e) T = 16δ, and (f) T = 20δ. The
legends are described in Table 1.

cannot be simulated using the polynomial regardless of
how many times past data were used because the cor-
rector we used could not resolve the high-frequency
error factors. This result indicates that the high-
frequency errors in NWP may not be corrected using
the method presented in this paper. Moreover, Fig. 1f
indicates that a 20-order corrector creates unstable re-
sults simulated both in the beginning and last intervals
of entire simulation period, which implies that a high-
order corrector or excessively long past data may not
be appropriate for correcting the model forecast errors
when this approach is used. Table 2 summarizes the
results with invalid applications, which are denoted as
×. Except for the above two cases, as shown in Figs.

1c, d, and e, 2-order, 5-order or 10-order polynomial
correctors can effectively simulate the error functions
along nearly the entire period with error time scales
of 4δ, 8δ, or 16δ. Deviations can also be found at the
end points corresponding to the interval between the
last point of past data and the first point of “future”
data. Nevertheless, it can be concluded that these
correctors are highly effective at least at half intervals.
Table 2 summarizes the valid applications, which are
denoted as

√
. Overall, the above results indicate that

low-order correctors are suitable for low-frequency er-
ror sources and are unreliable for high-frequency error
sources. This assumption is reasonable because the
interval of the past data sampling is limited, and this
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Table 2. Validity of correctors for various time scales of
error.

T 2-oder 5-order 10-order 20-order

1δ × × × ×
2δ × × × ×
4δ

√ √ √ ×
8δ

√ √ √ ×
16δ

√ √ √ ×

period determines the temporal resolution for resolv-
ing the high-frequency errors. The smallest period of
error that can be easily corrected is approximately 4δ.
Moreover, the vast amount of past data may not im-
prove results because the order of the polynomial de-
pends on the sampling number of past data. Thus, an
excessively high-order corrector, such as an excessive
amount of past data, would cause overshooting or un-
dershooting of error estimation by using polynomials.
Figure 2 presents the 6-h averaged error corresponding
to various periods of errors. It is obvious that 2-order,
5-order, and 10-order correctors effectively reduce fore-
cast errors if the periods of error sources are larger
than 4δ.

In experiment 1, the term ΨΨΨk(k = 1, · · · , n),
“model integration with exact solution”, was analyti-
cally determined. However, this term does not prac-
tically apply to the operational NWP model. In
this paper, we recommend the trapezoidal integration
method for estimating this term. The second experi-
ment was designed to test the validity of this estima-
tion, which is similar to experiment 1 except for the
ΨΨΨk computation. Assuming errors with periods of 4δ,
8δ, and 16δ, Fig. 3 gives the 0–8 h forecast errors. It
was determined that the 0–7 h forecast errors can be

0 4 8 1 2 1 6P e r i o d _ E r r /
 

00 . 10 . 20 . 30 . 4
N on �di mensi onalA ve _E rr N OT 2T 5T 1 0

Fig. 2. 6-h average forecast error. Low-frequency error
sources (T > 4δ) can be corrected by low-rank correctors.
The legends are described in Table 1.

Table 3. Corrector coefficients of sensitivity to trapezoidal
integration and observation error.

Coef. 2-order 5-order 10-order

C2 0.4 10.8 172.0
C1 11.9 48.0 1329.1
C0 6.8 1.4 95.2

reduced using the 2-order, 5-order, and 10-order cor-
rectors for these three types of errors. Moreover,
higher order correctors gave better results for long-
period error sources. The results of this experiment
indicate that the use of trapezoidal integration to es-
timate ΨΨΨk does not significantly influence the error
correction.

The above experiments assumed that no errors
were in the past data. In practical applications, the
past data can only be given using data assimilation
or re-analysis; errors in the past data are inevitable.
To test the influence of such errors on the correction,
random errors were added to the past data. Here, the
amplitudes of random errors were set to approximately
0.1%–1.0% of the past data. This experiment is sim-
ilar to experiment 2 except for the addition of these
random errors. As is evident in Fig. 4, the low-order
correctors such as 2-order and 5-order, gave nearly the
same results as those without random errors shown in
Fig 3. However, the conditions change with the ap-
plication of high-order correctors. Here, the 10-order
corrector appeared to be highly sensitive to the errors
existent in the past data. Table 3 shows the most
sensitive changes of polynomial coefficients after the
random errors were added to the past data. Obvi-
ously, higher orders correspond to increased changes in
polynomial coefficients; those of the 10-order corrector
showed the sharpest changes in this experiment. These
results suggest that attention should be paid when us-
ing higher-order correctors in practical applications.

4. Application to a nonlinear model

On the basis of the linear model, a forecast error
correction method and the issues related to its prac-
tical applications in NWP are discussed in above sec-
tion. It was determined that low-order correctors such
as 2-order or 5-order effectively reduced the forecast
errors with low frequency. However, operational NWP
models are the highly nonlinear systems. Therefore, it
is necessary to test the method and confirm the conclu-
sions drawn in section 3 by using a nonlinear model be-
fore implementation into the full NWP model. A non-
linear advection–diffusion equation is employed here
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Fig. 3. Forecast error corrected by using trapezoidal integration for the following time scales: (a) T = 4δ, (b)
T = 8δ, and (c) T = 16δ. The legends are described in Table 1.
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Fig. 4. Forecast error corrected by with observation error for the following time scales: (a) T = 4δ, (b) T = 8δ, and (c)
T = 16δ. The legends are described in Table 1.

as
∂u

∂t
+ u

∂u

∂x
− σ

∂2u

∂x2
= E(x, t) , (15)

where E(x, t) is the error term; E(x, t) = 0, Eq.(15) is
assumed to be an accurate model. E(x, t) is defined as
E(x, t) = A cos(ωt−2πx/L) to consider the errors with
various frequencies. The diffusion coefficient, error fre-
quency, and amplitude are given as σ = 600 000, ω =
2π/(16×21 600), and A = 2.0E−5, respectively. The
initial value is given as u(x, 0) = 1+cos(2πx/L)(units:
m s−1), and the periodic boundary condition is uti-
lized. Here, the time step is taken as dt = 600 s, the
grid interval dx = 60 000 m, the number of grid points
nx = 21, and L = (nx− 1)dx.

Figure 5 presents the time evolution of averaged u
as well as the absolute error. It is obvious that when
using the 2-order and 5-order correctors, the predicted
u was much closer to the analytical solution than that
when no correction was used. Moreover, the 2-order
corrector gave the better results than the 5-order cor-
rector (Figs. 5b and b). Figure 6 shows a comparison
between the true error E(x, t) = A cos(ωt − 2πx/L)
and those estimated by 2-order and 5-order correctors.

It is interesting to note that both correctors effectively
identified the true error pattern and its evolution prior
to the 20 time step (δ/2), as shown in Figs. 6a and b,
respectively. This result implies that forecast error can
be reduced to a large extent by adding the correctors
for a certain time interval, i.e., (δ/2). Moreover, the 2-
order corrector gave error amplitudes much close to the
true values. The 5-order corrector tended to overesti-
mate the errors, which may be related to the sensitivity
of higher-order scheme to the trapezoidal integration
approximation in the nonlinear model. This result in-
dicates that the order of corrector may be limited by
the nonlinear processes and should thus be considered
when applying to operational NWP models. Moreover,
the estimated errors after the 20 time step, i.e., (δ/2),
changed signs, which indicates that the correctors are
valid only for the forward time interval (δ/2).

Although we give only the results concerning low-
frequency errors in this paper, various scales of errors
have also been tested using this nonlinear model (fig-
ures not shown) with similar results to those obtained
in the linear model experiment. In summary, the 2-
order corrector can reasonably identify errors with low
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Fig. 5. (a) Mean value of u and (b) its absolute error. umt and ume represent the analytical and
predicted solutions of u, respectively. um2 and um5 are mean of predicted u corrected by 2-order and
5-order correctors, respectively. Err0, Err2, and Err5 are mean of absolute error of u uncorrected and
that corrected by 2-order and 5-order correctors, respectively.

Fig. 6. The true error source (E×106) (shading) and simulated error source (E×106) (contours). The hor-
izontal and vertical axes represent spatial grids and time step, respectively. (a) Forecast error by 2-order
corrector; (b) forecast error by 5-order corrector.

frequency and can effectively reduce the forecast er-
ror for a forward time interval of (δ/2). This conclu-
sion has been confirmed by linear and nonlinear model
experiments. Generally, this approach can be easily
tested using other forms of nonlinear equations; how-
ever, it is believed that the same fundamental conclu-
sions would be drawn.

5. Conclusions and discussions

This paper investigated an online approach for cor-
recting NWP forecast errors. The foundation of this
approach was to consider the NWP as an inverse prob-
lem. By using the past observations and model out-
puts, the model forecast errors were assumed to be

a Lagrange polynomial form in which the coefficients
were derived by solving the inverse problem. Theo-
retically, this approach should be easily implemented
into an NWP model with flexible time intervals of past
data. For practical application, however, the follow-
ing key issues required confirmation: (1) the sufficient
length of time series of past data for proper estima-
tion of the model errors, (2) a method by which the
term “model integration with the exact solution” is
estimated when solving the inverse problem, and (3)
the extent to which this approach is sensitive to the
observational errors.

This paper examined these issues by designing two
idealized model experiments that used simple linear
and nonlinear models. The main conclusions are sum-
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marized in the following points:
(1) High-frequency errors cannot be treated by this

approach due to the limited time resolution of past
data. The low-frequency errors can be effectively re-
duced for a certain forward time interval determined
by the time resolution of past data.

(2) A few data limited by the order of corrector
can be used; an excessive amount of past data may not
be valid in correcting the forecast errors. The proper
length of past data depends on the order of correctors.

(3) To solve the inverse problem, the term “model
integration with exact solution” must be determined.
The trapezoidal integration method is proposed and is
proved effective in this study. However, further consid-
eration should be given in the operational NWP mod-
els because the initialization could lead to problems in
obtaining the tendencies of the first model-integrated
time steps.

(4) Although the correction is sensitive to observa-
tional error, random errors existent in the past data do
not significantly affect the efficiency of the low-order
correctors in this study.

The above conclusions were determined on the ba-
sis of a simple one-point sinusoidal model and an
advection–diffusion equation. Because the operational
NWP models are more complicated, however, other
factors should be considered. For example, although
random error and trapezoidal approximation did not
significantly affect low-order correctors of approxi-
mately 2, the random errors caused by assimilation or
by trapezoidal approximation may be quite larger than
those presented in this paper. Therefore, such issues
should be resolved for the future full NWP model ap-
plication. Moreover, determining the manner in which
high-frequency forecast errors are filtered when using
a very low order corrector presented in this paper re-
mains a challenging problem. Its full model applica-
tion will be studied in future work.
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