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ABSTRACT

Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a
track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density
from June to October. This model is the first approach to target seasonal TC track clusters covering the
entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using
a simple statistical method that can be applied at weather operation centers. In this note, we describe the
procedure of the track-pattern-based model with brief technical background to provide practical information
on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP
TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted
using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments.
Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven
clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal
forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure
described in this note. Work continues on establishing an automatic system for this model at the NTC.
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Introduction

area caused by landfalling (and/or approaching) TCs.

One of the major functions of the meteorological
agencies responsible for forecasting tropical cyclones
(TCs) around the world is to issue accurate and infor-
mative seasonal cyclone predictions. It has become
necessary to develop a seasonal TC prediction sys-
tem that ensures high predictability, in order to min-
imize the social and economic damage to the target

*Corresponding author: Joo-Hong KIM, jhkim004@gmail.com

Various seasonal prediction models of TC activity have
been developed using statistical methods, based on
the empirical relationship between observed TC ac-
tivity and pre-seasonal large-scale fields (e.g. Gray
et al., 1992; Chan et al., 1998; Chu and Zhao, 2007,
Kim et al., 2010; Zhao et al., 2010b). Parallel to the
statistical methods, the dynamic approach of detect-
ing and tracking simulated TCs in high-resolution nu-
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merical models has shown substantial recent progress,
along with increasing computational power Vitart et
al., 2007; Camargo and Barnston, 2009; Zhao et al.,
2010a). Thus far, these two approaches have been
widely applied to existing predictive models of seasonal
TC activity, with particular emphasis on the frequency
of seasonal TCs.

Recently, a track-pattern-based model that targets
seasonal (June through October, JJASO hereafter) TC
activity in the western North Pacific (WNP) was de-
veloped at Seoul National University of Korea (Kim et
al., 2012a). Methodologically, this model is classified
as a statistical-dynamical approach. Development of
the statistical-dynamical model is the topic of several
recent studies Wang et al., 2009; Vecchi et al., 2011).
The hybrid approach has the potential to improve pre-
dictions in that it combines the respective advantages
of both statistical and dynamic approaches. The key
idea of this model is to separately predict seasonal TC
counts for a finite number of track clusters, and build
up a forecast map of track density of TCs by com-
bining all track clusters over the entire basin. The
track-pattern-based model therefore has unique merit
in providing predictions for the spatial TC track den-
sity anomaly in the WNP.

The track-pattern-based model was implemented
at the National Typhoon Center (NTC) of the Ko-
rean Meteorological Administration, and its first ex-
perimental forecast for the TC season of 2010 was
found to be successful (Kim et al., 2012b). Subse-
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quently, there has been continuous demand to provide
technical guidelines for the track-pattern-based model.
Separately from such requests, it is further necessary
to reintroduce the model via this technical note, be-
cause several revisions were made for the input data
from the the National Centers for Environmental Pre-
diction (NCEP) Climate Forecast System (CFS) fore-
casts and the method of incorporating the predictors
into the statistical model, which differ from the ear-
lier version described in Kim et al. (2012a, b). In
addition, these revisions permit the model to operate
automatically in quasi-real-time. To efficiently oper-
ate this seasonal TC forecast system, it is essential
for users (e.g. TC forecasters) to have knowledge of
the model structure and the capability to handle the
model code or process autonomously. As such, this
note will assist TC forecasters who wish to run and
modify the model.

This note is organized as follows. Section 2 pro-
vides an overview of the hierarchical model structure
and forecast flow chart. Section 3 describes the model
pre-processing, which involves the clustering technique
and the preparation of dynamic forecast datasets. Sec-
tion 4 introduces the core of the hybrid statistical—
dynamical prediction module. Section 5 details the
post-processing for combining the model predictions
and observed track clusters. Section 6 introduces
two examples of TC forecast in 2010 and 2011.
Finally, section 7 summarizes the content of this
note.

Track-pattern-based Model

Pre-process

Hybrid Statistical- Dynamical
Prediction Module

Post-process

Preparation of

Pattern Classification Dynamical Forecast

Predictor Selection

Statistical Prediction ST 1

Datasets Forecast Map
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Fig. 1. Hierarchical structure of the track-pattern-based model.
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2. Overview: hierarchical model structure
and forecast flow chart

To begin this technical note, this section de-
scribes the hierarchical structure of the forecast sys-
tem and the forecast flow chart. Figure 1 depicts
the hierarchical structure of the track-pattern-based
model. The model sub-programs can be classified into
pre-processing, hybrid statistical-dynamical predic-
tion module, and post-processing. The pre-processing
includes programs for the pattern classification of TC
tracks by a fuzzy clustering algorithm and scripts to
download dynamical forecast datasets. The hybrid
statistical-dynamical prediction module can be op-
erated with the input datasets prepared in the pre-
processing. With respect to each cluster, there is a
program that selects the best predictors and statis-

steps of the track-pattern-based model.

tical prediction model based on a Poisson regression
method in the prediction module. The post-processing
comprises the construction of a forecast map through
a bias correction and combining technique.

The forecast flow chart of the track-pattern-based
model is shown in Fig. 2. The flow is a step-by-step op-
eration of the three modules described in Fig. 1. First,
TC track clusters are obtained through a fuzzy clus-
tering technique to objectively divide the WNP basin
into multiple forecast areas according to individual
track clusters (Kim et al., 2011). Second, the hybrid
statistical-dynamical model was developed to predict
seasonal T'C counts per track cluster, which is based on
the relationship between observed TC counts in each
cluster and forecasted large-scale environments from
the NCEP CFS. Third, we construct the final forecast
map of the basin-wide TC track density by merging
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the resultant track densities of all clusters. The track
density of each cluster is obtained by weighting the cli-
matological track density of the cluster by the forecast
TC counts. In the following sections, these three steps
are described with technical instructions to facilitate
the model operation by users.

3. Pre-processing

3.1 Fuzzy clustering of TC tracks (Step 1)

3.1.1 Description

Step 1 involves pattern classification of TC tracks
over the WNP to provide the basis of the track-
pattern-based model (Fig.2). This step implies that
the model is set to focus on forecasting TC track den-
sity (i.e. the frequency of the TC pathway) based on
the finite number of clusters of TC tracks. There have
been several approaches to clustering TC tracks: a
mixture Gaussian model (Camargo et al., 2007; Chu
et al., 2010b); a k-means clustering by mass moments
(Nakamura et al., 2009), and a fuzzy c-means cluster-
ing (Kim et al., 2011). Among these methods, this
model adopts the fuzzy c-means clustering algorithm.
The fuzzy clustering can yield more reliable classifi-
cation for fuzzy objects such as TC tracks that have
varying shapes and geographical pathways. Kim et
al. (2011) applied the fuzzy clustering method to 855
historical WNP TC tracks during JJASO seasons from
1965 to 2006, producing seven representative TC track
clusters. The present model was developed from these
seven track clusters.

Figure 3 illustrates a flow chart of the fuzzy cluster-
ing procedure to establish the seven TC track clusters.
At first, an interpolation algorithm was used along
the track, which retained the original track shape as
much as possible, and all TCs of various observa-
tional durations are converted to have 21 uniform lon-
gitude/latitude points (i.e. 20 line segments) at regu-
lar intervals. Twenty-one points are used with simple
consideration of the mean lifetime of TCs (~ five days)
and the observational interval of four times daily (Kim
et al., 2011). All interpolated TC positions are then
transposed to one-column vectors (xg, k =1,...,855),
thereby providing a suitable format for the fuzzy clus-
tering algorithm. Omnce the input data are prepared,
the fuzzy clustering algorithm computes the cluster
centers (¢;) and membership coefficients (u;1) of each
TC track to all clusters. Here, the membership co-
efficient (range 0-1) represents the strength of mem-
bership of the kth TC (i.e. x) to the ith cluster;
the cluster center (¢;) denotes the mean TC track of
the ith cluster, which is the membership coefficient-
weighted average of all TC tracks for the ith cluster.
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These parameters depend on each other, and so they
can be obtained through an iterative method. The it-
eration is continued until the c-means functional (J)
is minimized under two constraints: the membership
coefficients should be greater than 0; and their sum
for a certain cluster must be equal to 1 [see Kim et
al., 2011 for details]. The result of the fuzzy clustering
algorithm is the seven cluster centers and the member-
ship coefficients of all TC tracks to the seven clusters.
To clearly divide the TC tracks into seven mutually
exclusive clusters, each is allocated to a cluster where
the TC track shows the largest membership coefficient.
Figure 4 shows the tracks and densities of the seven
clusters (C1-C7). Each cluster has inherent charac-
teristics for its shape and statistical properties (Kim
et al., 2011).

Once the basic TC track clusters are determined,
it is not necessary to repeat the clustering procedures
whenever the prediction is issued, since the TC track
clusters are nearly static in a climatological sense (Chu
et al., 2010a; Kim et al., 2011; Kim et al., 2012b). Even
if TC track data are updated every year with new TC
observations, the seven basic TC track clusters can be
conserved by just assigning the new TC tracks to one
of the pre-existing clusters. This is easily achieved by
calculating the seven membership coefficients of a new
TC track relative to the seven existing cluster centers,
and then assigning it to the cluster that shows the
largest membership coefficient (Kim et al., 2012b).

3.1.2  Technical instruction

Users need to prepare historical TC best tracks in
the WNP basin. There are four best track sources for
the target basin: the Regional Specialized Meteorolog-
ical Center, Tokyo (http://www.jma.go.jp/en/ typh);
the Joint Typhoon Warning Center (http://www.
usno.navy.mil/JTWC, Chu et al., 2002); the Shang-
hai Typhoon Institute/China Meteorological Admin-
istration (http://www.typhoon.gov.cn); and the Hong
Kong Observatory (http:// www.hko.gov.hk). The in-
terpolation program reads the six-hourly best track
locations (N) per TC from the first location that
achieved tropical storm (TS) intensity to the last
TS location, and then interpolates them into 21 seg-
ments (M) with equal length (Kim et al., 2011). The
FORTRAN-style pseudocode of the core algorithm of
the track interpolation procedure is provided in the
supplementary material (Fig. S1, available online from
http://www.iapjournals.ac.cn/aas). To test this pro-
gram, users may change the input best track data and
the number of interpolated segments.

The MATLAB “Fuzzy Clustering Toolbox” is used
to perform the fuzzy c-means clustering (Balasko et al.,
2005). The main program incorporates the input data
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Fig. 3. Flow diagram for Step 1.

of interpolated locations of historical TCs and calls
the fuzzy c-means clustering algorithm illustrated in
Fig. 3. An additional routine for measuring cluster va-
lidity determines the optimal cluster number, which is
seven in our case. As all programs are publicly avail-
able, anybody can repeat our clustering analysis with-
out much difficulty.

3.2 Preparation of dynamic forecast datasets
(first part of Step 2)

3.2.1 Description

This model uses NCEP CFS datasets as the dy-
namic component to develop the hybrid statistical—
dynamical process. The NCEP CFS is a fully coupled
global dynamic model to predict monthly-to-seasonal

timescale environments. This model is operated at the
NCEP Climate Prediction Center to provide seasonal
forecasts. The earlier CFS version 1 model (CFSv1)
was recently updated to version 2 (CFSv2) in March
2011 (Saha et al., 2012). Following this upgrade, the
track-pattern-based model, which was originally devel-
oped using CFSv1l, was re-built based on the CFSv2
data. The description of this step is therefore based
on the upgraded CFSv2.

The NCEP CFSv2 provides two types of seasonal
forecast data: one is the “reforecast” for 1982-2010,
and the other is the “real-time operational forecast” in
the current year. To operate the track-pattern-based
model, both datasets are required. The reforecast is
utilized to construct the hybrid statistical-dynamical
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model to predict the TC counts in each cluster, and the
operational forecast data are necessary to issue the sea-
sonal forecast in the current year. CFSv2 yields nine-
month forecasts that consist of four ensembles per day
with different initial conditions at 0000, 0600, 1200,
and 1800 UTC. The reforecast data have nine-month
forecasts issued every five days, beginning from 1 Jan-
uary of every year for the period 1982-2010, whereas
the operational 9-month forecasts in the current year
are issued every day. To construct the track-pattern-
based model, 12 ensemble members of CFSv2 issued
on 26 April and 1 and 6 May are used.

3.2.2  Technical instruction

The CFSv2 datasets can be accessed via the official
website (http://cfs.ncep.noaa.gov/cfsv2/downloads.ht
ml). While the monthly-mean of nine-month refore-
cast runs are archived at the National Climatic Data
Center (http://nomads.ncde.noaa.gov/modeldata/cm
d-mm 9mon), and the most recent operational fore-
cast data are posted on the NCEP web server
(http://nomads.ncep.noaa.gov/pub/data/nccf/com/c
fs/prod/cfs) for seven days after issuing the forecast.

The NCEP CFSv2 data are archived as a Gen-
eral Regularly-distributed Information in Binary form
version 2 (GRIB-2), which is standardized by the
World Meteorological Organization’s Commission for
Basic Systems. It is a mathematically concise for-
mat to efficiently store data, and it is therefore ad-
vantageous to release it online. After downloading
these datasets, they should be converted to 4-byte
binary format to be read by the prediction module.
Among many ways to extract GRIB-2 format to binary
form, users can choose any appropriate method via
the NCEP GRIB-2 use website (http://www.nco.ncep.
noaa.gov/pmb/docs/grib2).

4. The hybrid statistical-dynamical predic-
tion module

As the core of the model, the hybrid statistical—
dynamical prediction module forecasts TC counts for
each track cluster. This method is developed based
on the statistical relation between the observed sea-
sonal TC counts during JJASO and the simultaneous
large-scale environmental fields taken from dynamical
forecasts of a global climate model (Kim et al., 2012a),
which is the optimal choice to maximize predictability,
as well as to develop a physically meaningful forecast
model. In the revised module based on NCEP CFSv2,
the model training period for the statistical prediction
is extended to the year 2010 (i.e. 1982-2010). These
changes in the dynamic forecast data and training pe-
riod have a substantial influence on the selected pre-
dictors and their critical regions, and hindcast skills
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for all clusters. This section will introduce the major
changes in the updated model version.

4.1 Predictor selection (second part of Step 2)
4.1.1 Description

The selection of appropriate predictors is a crucial
factor in yielding better prediction performance of the
track-pattern-based model. In this model, the predic-
tors are selected by the following four rules.

(1) The predictor candidates are sea surface tem-
perature (SST), 200-hPa zonal wind (U200), verti-
cal wind shear (VWS), and 850-hPa relative vorticity
(VOR). These environmental parameters are known
to affect the TC genesis and tracks (e.g. Gray, 1968;
Wang and Chan, 2002; Kim et al., 2005), and have
been widely utilized in previous models to assess sea-
sonal TC activity (e.g. Chan et al., 1998; Kim et al.,
2010; Chu et al., 2010a).

(2) Critical regions are determined for each pre-
dictor and each cluster by considering correlation pat-
terns between the observed TC counts and the large-
scale environments during JJASO. Correlation analy-
sis is performed for the 12-member ensemble mean of
NCEP CFSv2 reforecasts as well as the observed envi-
ronments of the NCEP reanalysis data. The two cor-
relation maps are compared in order to identify statis-
tically significant and physically reasonable regions for
candidate predictors of each cluster (boxes in Figs.5
and 6). The predictor candidates without a defini-
tive critical region are omitted from the predictor set.
If there are multiple significant regions in a cluster,
the cross-validation tests are performed by changing
the critical region, by which the set of critical regions
showing the better hindcast skill is determined.

(3) Once the critical regions are selected, final pre-
dictors are obtained with respect to each member of
the NCEP CFSv2 ensemble forecasts. For each en-
semble member, the spatial average of candidate pre-
dictor variables within their individual critical regions
is calculated using only the grid points for which the
correlation coefficient is significant at the 95% confi-
dence level, and where the sign of the correlation is
the same as that determined from the correlation pat-
terns for the ensemble mean (as shown in Figs.5 and
6). Tt is noted that the significant grid points used to
construct final predictors are all different between the
12 ensemble members. For instance, grid points with
a significant negative correlation inside a rectangular
area are chosen to form the final SST predictor of C2,
because negative correlations prevail in the critical do-
main (Fig. 5¢).

(4) The cross-validation tests are also performed
to find the optimal combination of predictors showing
the better hindcast skill. In addition, a variance infla-
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tion factor (VIF) (Davis et al., 1986) is examined for
each ensemble predictor set to avoid multicollinearity
among the predictors. If a predictor has a VIF greater
than 10, the predictor is dropped from the final predic-
tor set in order to ensure the stability of the regression-
based forecast model (e.g. Davis et al., 1986; O’Brien,
2007; Villarini et al., 2011). The final best predictor
sets and their critical regions are shown in Figs. 5 and
6.

Figures 5 and 6 show the critical regions selected
for each cluster using the described selection method.
Those figures also illustrate the correlation maps be-
tween the TC counts in each cluster and the ensemble

mean of the NCEP CFSv2 reforecasts for JJASO sea-
sons of 1982-2010 (upper box in each panel), as well as
those between the TC counts in each cluster and the
NCEP reanalysis data (bottom box in each panel). For
C1, the VWS and VOR are chosen as the final predic-
tors, and their critical regions are determined, whereby
the best hindcast skill is achieved (Figs. ba and b). Al-
though the SST is discarded from the predictor set due
to the multicollinearity, the overall large-scale pattern
associated with C1 reflects developing La Nina. In
contrast, C2 is strongly related with El Nino, in which
the SST, VWS, and VOR are selected as the final pre-
dictors (Figs.5c—e). Next, C3 uses the SST, U200,



1268 TECHNICAL NOTE ON A TRACK-PATTERN-BASED SEASONAL TC FORECAST MODEL VOL. 30

C4

NCEP Q-

308 ~

80E 120E 160E 160W 120W 80W 80E 120E 160E 160W 120W 80W

(d) UZOO

Cs5

30N 1

CFS of
30S

Ceé

30N
NCEP eof

30s 1.

80E 120E 160E 160W 120W 80W 80E 120E 160E 160W 120W 80W

(h) SST

30N W

CFS et
305

C7

30N

NCEP Eof.
30S

i /. L 73
BOE 120E 16OE 160W 120W BOW GOE 120E 16OE 160W 120W BOW BOE 120E 160E 160W 120W BOW

Fig. 6. The same as Fig. 5, but for C4-C7.



NO. 5

and VOR (Figs. 5f-h). In Kim et al. (2012a), based on
NCEP CFSvl, all the predictor candidates were incor-
porated into a final predictor set for C1-C3, whereas
some candidate predictors are omitted in this updated
version since the changes in the dynamic input data
and the training period significantly affect the hind-
cast results.

Next, the SST and U200 are excluded from the
predictor sets for C4 because they have no significant
correlations with the TC counts of C4. Accordingly,
the VWS and VOR are selected as effective predic-
tors for C4 (Figs.6a, b). In the previous version, the
Ub0 data over the tropics were added to incorporate
the quasi-biennial oscillation (QBO)-relevant predic-
tor for TCs passing offshore southeast of Japan due to
its high correlation with the TC counts in C4 (Ho et
al., 2009). However, the QBO relationship with TC
activity in C4 has weakened recently in both the re-
analysis and reforecast data (Fig. 7). In particular, the
correlation changes the sign rapidly in the mid-2000s
for NCEP CFSv2. The unstable relationship with the
tropical U50 in NCEP CFSv2 leads us to discard the
U50 data as a predictor for C4.

For C5, the VWS is removed from the predictor
sets by the cross-validation test of the predictor com-
bination. As a result, the SST, U200, and VOR are
selected, and their critical regions are determined by
considering the local impact of some predictors on the
TC activity of the cluster (Figs. 6c—e). Meanwhile, the
critical regions of C6 comprise only SST and VOR as
in the previous model version (Figs.6f, g). For the
SST, we select the negatively correlated region over the
Maritime Continent and that east of Taiwan for VOR,
because both the observations and the dynamic fore-
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casts yield statistically significant relationships at the
selected critical region. Lastly, C7 appears to be re-
lated with the La Nina-like SST distribution (Figs. 6h—
j), but it is only significant in NCEP CFSv2. Rather,
the significant correlation with the SST is found in the
tropical Indian Ocean, so the critical region over the
Indian Ocean is selected. The critical regions for the
VWS and VOR are delineated over the significant re-
gions in the tropical North Pacific. Though the signif-
icant correlations for the VWS and VOR are confined
in the eastern Pacific domain in the observation due to
weaker La Nina, we decide to include them since the
inclusion of them improve the hindcast skill.

It is again noted that the final predictor sets are
obtained from each ensemble member of the NCEP
CFSv2 forecasts, although the critical regions are se-
lected using their ensemble means. Therefore, the grid
points used for the final predictor can vary depending
on the correlation maps for the individual CFSv2 en-
semble members, whereas the critical regions are in-
variant. As NCEP CFSv2 reforecasts provide four
ensembles every fifth day, the same ensemble mem-
bers are obtained for the final predictor sets from the
NCEP CFSv2 reforecasts as well as operational fore-
casts. Using these ensemble predictor sets, the hybrid
statistical-dynamical prediction module can provide
ensemble predictions. The ensemble prediction of the
hybrid statistical-dynamical prediction module yields
more accurate forecasts than the use of single predic-
tions (Kim et al., 2012a).

4.1.2 Technical instruction

The predictor selection procedure is not yet auto-
matic, but needs a manual repetition to find a best
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Fig. 7. Eleven-year sliding correlation coefficients between the ob-
served TC counts in C4 and the tropical-mean (10°S-10°N) U50. The
number of years used to calculate the correlation coefficients decreases
for early three (1982, 1983, and 1984) and late three years (2004, 2005,
and 2006) due to the data starting and ending boundaries, respectively.
Dotted line denotes the 95% confidence level.
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predictor set. Once the correlation maps between TC
counts of each cluster and predictor candidate vari-
ables are obtained, critical regions for individual pre-
dictor candidates can be designed by Rule 2 described
above. A somewhat subjective step is involved be-
cause there are mostly multiple regions with statis-
tically significant correlations. It is recommended to
select a single region as wide as possible under the con-
dition that the region includes statistically significant
grids and a same sign with the observed correlation.
Shown in Figs. 5 and 6 are our best choices through a
careful comparison with the observed correlation maps
and further cross-validation tests. However, it should
be noted that our choices can neither fully avoid the
subjectivity, nor be absolute. Users may explore bet-
ter critical regions by resizing (or changing) regions.
After finishing the selection of critical regions for in-
dividual predictor candidate variables, the predictors
are made by area-averaging over the grid points where
the correlations are statistically significant at the 95%
confidence level. The flow of the predictor selection
program, in which all user-chosen options are listed
and an example of how to set namelist input param-
eters in a case selecting 12 ensemble members on 26
April, 1 May, and 6 May are illustrated in the sup-
plementary material (Fig.S2, available online from
http://www.iapjournals.ac.cn/aas).

With the selection of predictors and observed TC
counts, users are ready to compute coefficients of the
Poisson regression model. The Poisson regression
model will be described in the next subsection. Be-
fore freezing model coefficients for the forecast mode,
users are advised to cross-validate various combina-
tions of predictors through hindcasts. For example,
if there are four candidate variables (e.g. SST, U200,
VWS, and VOR), it is possible to get 15 combinations
of the predictor set (i.e. 4C1 + 4C2+ 4C5+ 4Cy, where
C' is a combination). With respect to each predictor
set, all historical years are hindcast by jackknife cross-
validation (Wilks, 2006), and then the predictability is
assessed by calculating the hindcast correlation with
the observed TC counts. In addition, a VIF Davis
et al., 1986 is calculated for each predictor, which is
necessary to know whether the predictors selected are
largely independent. It is recommended to choose the
predictor set which shows the highest hindcast corre-
lation with the observed TC counts and has relatively
low VIF's for all predictors.

4.2 Statistical prediction of TC counts for
each cluster (third part of Step 2)
4.2.1  Description

Poisson regression is employed as a statistical pre-
diction method for the TC counts of track clusters.

TECHNICAL NOTE ON A TRACK-PATTERN-BASED SEASONAL TC FORECAST MODEL

VOL. 30

This method was shown to be appropriate when the
dependent variable is a non-negative integer and in-
dividual events being counted are rare, such as the
TC counts, and has therefore been widely utilized to
predict seasonal TC counts (Elsner and Schmertmann,
1993; McDonell and Holbrook, 2004; Chu and Zhao,
2007; Kim et al., 2010).

The Poisson regression equation can be simply ex-
pressed as a log-linear regression form:

!
" 21 Bjz;+Po
y=e= : (1)

where ¥ is the predicted value (i.e. the expectation of
TC counts); ! is the number of predictors; and [y is
the regression constant. Further, z; are the predictors
(e.g. SST, VWS, U200, VOR, and U50); and f; the
regression coeflicients. The regression coefficients and
constant can be obtained by maximum likelihood es-
timation (Wilks, 2006) using the observed TC counts
in the seven clusters in addition to the predictor sets
from the NCEP CF'S reforecast for the training period
(1982-2010). Once the regression coefficients and con-
stant are calculated for each cluster, the TC counts for
the target forecasting season is calculated using the
predictor obtained from the NCEP CFS operational
forecast.

4.2.2 Technical instruction

The Poisson regression is realized by the gen-
eralized linear model regression from the MATLAB
“Statistics Toolbox” (MathWorks, 2010). To process
input data for the generalized linear model regression
function, simple main and sub-programs are devel-
oped. The main program reads the predictors and
observed TC counts for the training period, while the
sub-program incorporates them into the generalized
linear model regression function to get the coefficients
of the Poisson regression model. Users just need to
type the right input data filenames of the predictors
and observed TC counts, and then run the main pro-
gram to get the forecast TC counts for the seven clus-
ters.

5. Post-processing: construction of the fore-
cast map of track density (Step 3)

5.1 Description

The post-processing (Step 3) of the track-pattern-
based model constructs the final forecast map of the
total TC track density and its anomaly from the cli-
matology. This step consists of two procedures: one
is the production of the forecast map by combining
the climatological TC track densities (shown in Fig. 3)
with predicted seasonal TC frequencies; the other is
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the production of the final forecast map through bias
corrections of the mean and variation. Since the pro-
cedures in the post-processing have not been modified
from the early model described by Kim et al. (2012a),
this note only deals with the essential techniques that
help users to obtain the final product of the model, i.e.
the forecast map of the TC track density in the WNP.

The first procedure is expressed by the equation:

7 7
> NeiPoi Y NeiP
P = i=1 i=1

7 NTotal
E Nci
=1

where ﬁ, Pc;, and Ng; are the predicted track density,
climatological track density, and predicted TC counts
[i.e. ¢ in Eq.(1)], respectively, and ¢ denotes the in-
dex for the ith track cluster. This equation represents
a simple weighted average of predicted track densities
for the seven clusters, where the weighting coefficient
is the predicted TC counts of each cluster.

The second procedure is devised to correct poten-
tial biases in the mean and variation, which are in-
herent in the prediction using the climatology. In
the track-pattern-based model, these biases originate
from the use of the climatological track density. We
adopt a guideline for bias correction [Eq.(3)] from Saha
(2008) when applying the climatological data to real-
time forecasts as

Omodel

PBC‘; <F)Mm()dd> Oobs + Hobs (3>
where JBBC is the bias-corrected track density, fmodel
and pops denote the model-hindcast and observed cli-
matology, respectively, and opmodel and oops are the
model-hindcast and observed standard deviation, re-
spectively.

Via the aforementioned steps, we can produce the
forecast map of the total TC track density. Given this
total spatial distribution, the anomaly forecast map

is easily drawn by subtracting the climatological TC
track density.

5.2 Technical instruction

The post-processing does not include any sophis-
ticated work. The map construction procedure [i.e.
Eq. (2)] is formulated with a FORTRAN code, which
reads the climatological TC track density and the fore-
cast TC counts for each cluster. Finally, the bias cor-
rection [Eq. (3)] is applied before visualizing the final
forecast map.
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6. Examples: TC seasonal forecasts in 2010

and 2011

In the three sections above, we described updated
technical details of the three main processes of the
track-pattern-based model. In this section, the pro-
cedures for producing the final forecast map and the
forecast verification step are presented in a more easily
understandable way, with a schematic flow diagram,
using actual step-by-step forecast maps for the two
most recent years, i.e. 2010 and 2011 (Fig. 8). In prac-
tice, the method of forecast and verification for those
years is the same. In Fig. 8, the upper box illustrates
the combining technique in Step 3, as formulated in
Eq. (2). It is noted that combining the seven predicted
TC counts with the climatological TC track densities
over the seven clusters is essential to forecasting the
spatial distribution of TC activity. Next, the step-by-
step forecast processes for 2010 and 2011 are shown
in Fig. 8, which better illustrates Step 3 of the model.
Figure 8 also shows the verification stage of the sea-
sonal forecast following the TC season.

For the 2010 TC season, Kim et al. (2012b) re-
viewed the forecast that was produced in May 2010
from the previous version of the model based on
CFSv1. The 2010 forecast was evaluated as being suc-
cessful, because the model predicted the above-normal
TC migration near Korea and Japan, as well as the
below-normal basin-wide seasonal TC counts in the
WNP (Kim et al., 2012b). The successful forecast in
2010 was attributed to the superior performance of the
track-pattern-based model in constructing the anoma-
lous track density during ENSO events (Kim et al.,
2012a, b) as well as the accurate dynamic forecast of
La Nina development by CFSv1. In this note, the 2010
TC season is predicted again by the updated CFSv2
model, as shown in the panels on the left side of Fig. 8.
If the spatial pattern of the forecast is compared with
that of the observation, the 2010 forecast by the up-
dated model appears better than that of the earlier
version [compare with Fig.6a in Kim et al. (2012b)].
The greater similarity with the observed data in 2010
implies that the updated CFSv2 model shows better
performance than the earlier version with CFSv1; the
hindcast accuracy of TC counts (i.e. the correlation
between the observed and predicted TC counts) for
each cluster is slightly improved in the updated version
(Table 1); that is, the statistics (e.g. correlation coef-
ficients, RMSEs, and mean squared skill scores) that
can be used to measure the reliability of the model
forecast (Wilks, 2006) are generally better in the ma-
jority of the patterns.

As illustrated on the right side of the flow chart,
the forecast map for the 2011 TC season was assessed
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Forecast Production and Verification
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(Examples: 2010 and 2011)
Combining Technique (Eq. 2)
_4
A0 A0 N Nes®) Neg(0) Ne,(1)
NTOYLI/ NTmul Nl'alal Total Nlm‘al Nlm‘a/
=2010 ]
Forecast
Total Track Density
(Before Bias Correction)
'I Bias Correction (Eq. 3) I Somomm o >¢
Forecast
Total Track Density
(After Bias Correction)
Subtraction
ete
Forecast Final Forecast
Production Total Track Densi.ty
. (After Bias Correction)
in May &
Anomalous Track Density
E c.)recast Observed
Verification Total Track Density
after &
Season Anomalous Track Density

Fig. 8. Illustration of the step-by-step processes of constructing the final forecast map before the T'C season, and
the forecast verification step after the TC season, for the 2010 and 2011 TC seasons. Contours for the total track
density start from 5 with an interval of 5.
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Table 1. Correlation coefficients (COR), RMSEs, and mean square skill scores (MSSS) between the observed TC counts
and the ensemble mean of hindcasts for the period 1982-2010 for CFSv1l and CFSv2.

COR RMSE MSSS

Pattern CFSv1 CFSv2 CFSvl CFSv2 CFSvl CFSv2
c1 0.75 0.81 1.30 1.31 0.54 0.53
C2 0.74 0.85 1.44 1.12 0.53 0.72
C3 0.72 0.77 1.21 1.17 0.51 0.58
c4 0.81 0.83 0.85 1.02 0.63 0.64
C5 0.74 0.84 0.96 0.87 0.51 0.61
C6 0.77 0.77 1.28 1.26 0.50 0.53
c7 0.71 0.78 111 0.96 0.49 0.59

to be unsuccessful because the observed track density
was too complex to be reconstructed by this model,
based on the finite number of climatological track clus-
ters. Results from this year demonstrate the limita-
tions of statistical-dynamical predictions of TC counts
and construction of forecast maps based on a finite
number of climatological track clusters. To mitigate
anxiety arising from a potential forecasting failure, fu-
ture studies should seek to devise a fail-safe method
(i.e. ensemble model output statistics, Bayesian ap-
proach) within a probabilistic forecasting framework.

7. Summary

This note describes the technical procedures of the
track-pattern-based model that has been developed to
predict seasonal (JJASO) TC track density over the
WNP. This model provides the spatial distribution of
seasonal TC tracks covering the entire WNP basin by
separately predicting the representative TC track clus-
ters and combining them into one TC-density map.
The model shows improved predictive capacity com-
pared with previous models that predict TC counts as
a single number over the vast WNP basin, or within
limited areas of the basin. We believe that the present
model represents a significant advance in the develop-
ment of seasonal TC forecasting.

The track-pattern-based model is built on seven
track clusters, classified using a fuzzy c-means algo-
rithm. TC counts associated with the seven clusters
are predicted using a hybrid statistical-dynamical ap-
proach, based on the statistical relationship between
the observed TC activity and the forecast fields of
large-scale environments from NCEP CFSv2. The
NCEP CFSv2 operational 9-month forecasts are pro-
vided every fifth day from 1 January, allowing the
predictions for JJASO to be made from February on-
wards, and to be continuously updated until late May.
After the forecasts are completed for the seven clus-
ters, a prediction map of seasonal TC track density
is constructed by weighted average of track densities

over the seven clusters [Eq. (2)]. This TC density map
then undergoes bias correction [Eq. (3)] before the final
forecast is issued.

Recently, dynamic forecasting of seasonal TC ac-
tivity was attempted using a high-resolution dynamic
model that can retrieve the TC trajectory (e.g. Chen
and Lin, 2011). However, to date, such dynamic fore-
casts have been limited to basin-wide TC counts due to
the limited ability to forecast seasonal TC tracks. In
comparison, the track-pattern-based model proposed
here was developed to forecast the distribution of sea-
sonal TC tracks over the WNP (Kim et al., 2012a,
b) without requiring a high-resolution dynamic model.
Moreover, this proposed model can be operated at
lower cost than high-resolution dynamic models. As
a result, this track-pattern-based model will provide a
good alternative prediction technique until more reli-
able dynamic prediction models for seasonal TC tracks
are developed and implemented.
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