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ABSTRACT

Using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) implemented at the
Korea Meteorological Administration (KMA), the effect of doubling the ensemble size on the performance of
ensemble prediction in the warm season was evaluated. Because a finite ensemble size causes sampling error
in the full forecast probability distribution function (PDF), ensemble size is closely related to the efficiency of
the ensemble prediction system. Prediction capability according to doubling the ensemble size was evaluated
by increasing the number of ensembles from 24 to 48 in MOGREPS implemented at the KMA. The initial
analysis perturbations generated by the Ensemble Transform Kalman Filter (ETKF) were integrated for 10
days from 22 May to 23 June 2009. Several statistical verification scores were used to measure the accuracy,
reliability, and resolution of ensemble probabilistic forecasts for 24 and 48 ensemble member forecasts. Even
though the results were not significant, the accuracy of ensemble prediction improved slightly as ensemble
size increased, especially for longer forecast times in the Northern Hemisphere. While increasing the number
of ensemble members resulted in a slight improvement in resolution as forecast time increased, inconsistent
results were obtained for the scores assessing the reliability of ensemble prediction. The overall performance
of ensemble prediction in terms of accuracy, resolution, and reliability increased slightly with ensemble size,
especially for longer forecast times.
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1. Introduction

The atmosphere is a chaotic system; therefore,
small errors in initial conditions can grow fast and
eventually hinder the skill of forecasts (Lorenz, 1963).
The imperfection of the numerical model is associated
with model error (i.e. imperfect physical parameteri-
zations of subgrid-scale motions and insufficient model
resolution) and initial condition uncertainties. These
two types of uncertainties limit the predictability of
a deterministic forecast, so it is necessary to consider
the information associated with both uncertainties. If
we have a perfect model and know the probability dis-
tribution of initial uncertainties, the temporal evolu-

tion of uncertainties described by a probability den-
sity function (PDF) can be estimated by the Liou-
ville equation (Ehrendorfer, 1994a, b). However, this
approach is not feasible in current numerical weather
prediction systems due to the enormous computational
resources that would be required and our lack of knowl-
edge about uncertainty sources.

Ensemble prediction was devised to quantify the
statistical sample of forecast uncertainties that are rep-
resented by a spread of finite ensembles. Different ini-
tial conditions drawn from the probability distribu-
tion of initial states are integrated through a numeri-
cal forecast model to estimate the uncertainties of the
future state of the atmosphere. However, the limited
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size of ensemble members—in the order of O(101–102)
in a typical operational ensemble prediction system
(EPS)—causes potential problems in representing the
statistics of the model state in the order of O(107).
The finite size of the ensemble introduces sampling er-
ror that is roughly inversely proportional to the size
N of the ensemble (specifically, N−1/2) (Casella and
Berger, 1990). This sampling error will lead to in-
breeding or underestimation of the forecast error co-
variance (Ehrendorfer, 2007). As the ensemble size is
small in most operational EPSs, physically meaning-
less correlations between state components that are far
from each other increases in the forecast error covari-
ance. In other words, long-range spurious correlations
develop (Anderson, 2001). In addition, fewer mem-
bers than the degrees of freedom of the forecast model
cannot approximate the full space composed of model
states and there is rank deficiency in estimating the
forecast error covariance.

Even though it may be feasible to increase the num-
ber of ensemble members in operational EPSs with im-
provements in computational resources, it is necessary
to determine whether the impact of a larger ensemble
is significantly effective enough to warrant the addi-
tional computations that need to be performed in the
operational EPS. Therefore, several studies have in-
vestigated the impacts of ensemble size on the per-
formance of the EPS. Using the EPS of the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) that uses the dominant singular vectors
(SV) of the model to produce initial perturbations,
Buizza and Palmer (1998) and Mullen and Buizza
(2002) showed that the benefits of increasing ensem-
ble size from 10 to about 30 are significant, but further
increases in ensemble size decrease the impacts of an
increased ensemble size. It is necessary to increase
the ensemble size to predict rare phenomena, but the
impact of increasing ensemble size is smaller if ensem-
ble forecasts are first post-processed (i.e. calibrated
using climatological observations) (Wilks, 2002). At-
ger (1999) showed that increasing ensemble size im-
proves ensemble spread, but the effect on the accuracy
of the ensemble mean is not significant in the ECMWF
EPS system. Using version 3 of the Community Cli-
mate Model (CCM3), Wang and Bishop (2003) com-
pared the performance of 8- and 16-member ensembles
generated by the Ensemble Transform Kalman Filter
(ETKF) method and showed that a larger ensemble
size improves the estimate of analysis error variance
and reduces spurious long-distance correlations.

Even though the abovementioned studies inves-
tigated the effect of ensemble size using specific
EPSs, it has not been investigated in the Met Of-
fice Global and Regional Ensemble Prediction System

(MOGREPS). The effect of ensemble size on the per-
formance of ensemble prediction may be different in
different EPSs with different specific configurations
(i.e. different ensemble generation methods, mod-
els etc.). Further, because the Korea Meteorologi-
cal Administration (KMA) has implemented the Uni-
fied Model (UM) and related pre-/post-processing sys-
tem imported from the United Kingdom Meteorolog-
ical Office (UKMO) operationally since 2011, it was
necessary to investigate the effect of doubling ensem-
ble size on operational ensemble prediction using MO-
GREPS implemented at the KMA (hereafter KMA
MOGREPS). The results of doubling ensemble size
would be used to determine which member size is ap-
propriate for better sampling of initial perturbations
for the EPS at the KMA. Therefore, in this study,
the effect of doubling ensemble size on the perfor-
mance of ensemble prediction was evaluated in KMA
MOGREPS. Because the operational ensemble size of
KMA MOGREPS is 24, the effect of doubling the en-
semble size from 24 to 48 was evaluated. Section 2
describes KMA MOGREPS, including the perturba-
tion method used to generate the initial conditions of
the ensembles, inflation, experimental design, and the
various verification methods used in the study. In sec-
tion 3, the EPS performance of both the 24- and 48-
ensemble-size experiments are compared and the effect
of inflation on both experiments discussed. Finally, in
section 4, a summary and discussion are provided.

2. Methodology

2.1 The MOGREPS system

MOGREPS comprises global and regional ensem-
ble systems (Bowler et al., 2008). Because the global
component of MOGREPS is used in this study, only
the global component of the system is discussed. The
global component of MOGREPS has 24 ensemble
members (23 perturbed members and one unperturbed
control member) with a horizontal resolution of around
40 km and 50 vertical levels (N320L50). The initial
perturbations are generated by local ETKF (Bowler et
al., 2009). The 23 initial perturbations are added to
the analysis that is derived from the four-dimensional
variational data assimilation (4DVAR) system of the
UM, and these are then integrated forward for 10 days
using a deterministic forecast model (UM) with the
same resolution. Model uncertainties in MOGREPS
are addressed by stochastic-physics schemes consist-
ing of “random parameters” and “stochastic convec-
tive vorticity” schemes (Bowler et al., 2008). The vari-
ables used in MOGREPS are the horizontal compo-
nents of wind (u′ and v′), potential temperature (θ′),
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exner pressure (π′), and specific humidity (q′) pertur-
bations. KMA MOGREPS, used in this study, is ba-
sically the same as the original MOGREPS.

The overall performance of MOGREPS relative to
other EPSs was shown in Park et al. (2008) which
compared the performance of eight centers’ EPSs us-
ing THORPEX Interactive Grand Global Ensemble
(TIGGE) data. In terms of the RMSE of the ensem-
ble mean forecast, the ECMWF was the best, followed
by the UKMO and Japan Meteorological Agency
(JMA). The difference between the ensemble spread
and RMSE of the ensemble mean forecast, a measure
of reliability, showed that the ECMWF, the Meteo-
rological Service of Canada (MSC), and the UKMO
ensembles were superior than other EPSs. For proba-
bilistic prediction, the ECMWF ensemble showed the
highest ranked probability skill score (RPSS), followed
by the other four centers [MSC, UKMO, JMA and
NCEP (National Centers for Environmental Predic-
tion)].

2.2 Generating initial perturbations

2.2.1 Local ETKF
ETKF is a family of ensemble square root filters

(Tippett et al., 2003) that can be used to calculate
the initial analysis perturbations from forecast pertur-
bations without updating the ensemble mean fields.
The initial analysis perturbations Xa can be written
as

Xa = XfTΠΠΠ , (1)

where Xf is a matrix that has forecast perturbations as
its components, T is a transform matrix that combines
Xf to Xa linearly, and ΠΠΠ is a matrix consisting of in-
flation factors. The two perturbation matrices Xf and
Xa are the square root vectors of the forecast and anal-
ysis covariance matrices, respectively, with the same
rank as the covariance matrices. More details of ETKF
formulation are given by Wang and Bishop (2003) and
Bowler et al. (2008).

The resulting initial analysis perturbations normal-
ized by the square root of observation error are orthog-
onal to each other in the observational space (Wang
and Bishop, 2003) and can approximate the uncer-
tainty of the states by reflecting both the forecast error
statistics and observational information.

All observations used in the 4DVAR data assimila-
tion system of the UM are used to calculate the trans-
form matrix in MOGREPS. The observations used
in calculating the initial perturbations are the con-
ventional observations collected for the KMA’s opera-
tional data assimilation system. For the period consid-
ered in this study, these observations were taken from
the Met Office because the assimilation system of the
KMA UM was under trial operation at that time.

Ensemble-based data assimilation systems use the
covariance localization to decrease long-range spuri-
ous correlations that occur due to limited ensemble
size. In MOGREPS, the localization of ETKF is real-
ized by dividing the globe into 92 centers of approxi-
mately equal distance; ETKF is then calculated using
the observations within the specific radius of influence
from each center and this improves the spread of en-
semble forecasts as a function of latitude (Bowler et
al., 2009). For vertical localization in ETKF, the 50
vertical levels are divided into four bands that cover
the PBL, troposphere, the stratosphere up to about
45 km altitude, and the stratosphere from 45 km to 60
km altitude. Transform matrices and inflation factors
are calculated for four bands using the observations in
corresponding levels.

2.2.2 Inflation factor
When the ensemble size is much smaller than the

degrees of freedom of the model state, the total anal-
ysis error covariance is underestimated because the
forecast error covariances are not fully estimated by
the ensemble members. To remedy this problem, MO-
GREPS uses the inflation factor ΠΠΠ , by the elements
of which transformed forecast perturbations are in-
creased. The inflation factor is defined as

ΠΠΠ n = ΠΠΠ n−1

√
trace(dndT

n )− trace(R)
trace(H(Xf,n)H(Xf,n)T)

, (2)

where the subscript n represents the time step, dn =
yn −H(xf,n) is an innovation vector (i.e. differences
between observations yn and the 12-h ensemble-mean
forecast xf,n in observational space verified at obser-
vation time), and H represents the observational op-
erator.

The inflation factor ensures that the sum of the
ensemble 12-h forecast spread matches the sum of the
error variation of the ensemble-mean 12-h forecast in
the observational space over the target region for cy-
cle n (Bowler et al., 2008, 2009). In practice, three
steps are generally required to implement the infla-
tion factor in MOGREPS. First, using Eq. (2), infla-
tion factors for two categories are calculated using ra-
diosonde and Advanced TIROS (Television Infrared
Observation Satellites) Operational Vertical Sounder
system (ATOVS) observations respectively, with 12-
h ensemble forecasts. Second, the inflation factors of
the two categories are combined to give only one in-
flation factor that is applied to transformed pertur-
bations. Third, to prevent the initial analysis pertur-
bations from being too large, the square root of the
sum of the squares of the transform matrix elements
(hereafter the magnitude of the transform matrix) and
the magnitude of inflation factor elements are com-
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pared. It is expected that the magnitude of the initial
analysis perturbations will be smaller than that of the
forecast perturbations, because in relation to the data
assimilation scheme, the uncertainty of analysis error
is estimated by correcting the forecast error with opti-
mally weighted observational error information. If the
magnitude of inflation factor elements derived from
the second step is larger than the magnitude of the
transform matrix that decreases the magnitude of the
forecast perturbations, the inverse of the magnitude
of the transform matrix is substituted for the inflation
factor element. In this way, the initial analysis per-
turbations have a similar magnitude to the forecast
perturbations instead of being too large. The above-
mentioned three steps are described in the Appendix
in more detail.

2.3 Experimental design

The experiments using 24 and 48 (47 perturbed
forecasts and one unperturbed control forecast) en-
semble members are referred to as M24 and M48, re-
spectively. For a fair comparison, the configurations
of both experiments, including the algorithm to con-
struct the ETKF, were the same except for the ran-
domly modulated parameters used in the stochastic
physics scheme. The 10-day forecasts of M24 and M48
were implemented and compared for the one-month
period from 22 May to 23 June 2009, using the CRAY
X1E supercomputer of the KMA. To perform 10-day
ensemble forecasts, 24 processors were dedicated per
one ensemble member, and almost 10 terabytes of data
were stored for both the M24 and M48 experiments.

Due to the limitation of computational resources and
storage, it took about 60 days to complete the M48
and M24 experiments.

The initial perturbation generation and 10-day en-
semble forecast processes are shown in Fig. 1. The
KMA analysis with the same resolution as MOGREPS
was used as the verification reference and the verifica-
tion was done for the 500-hPa height variable over the
latitudinal region of 20◦–90◦N in the Northern Hemi-
sphere (NH) and 20◦–90◦S in the Southern Hemisphere
(SH). The verification results over the tropical region
(20◦S–20◦N) are not shown because the results were
similar to those obtained over the SH region. The veri-
fication for the 850-hPa temperature also shows similar
results as that for the 500-hPa height. Even though
the global ensemble runs twice a day at 0000 and 1200
UTC, only the ensemble forecasts at 0000 UTC were
used in this study due to limited computational re-
sources and storage space.

2.4 Verification methods

The assessment of ensemble prediction is related
to the verification of ensemble-based probabilistic fore-
casts, because ensemble prediction is implemented pri-
marily to evaluate the probabilistic forecast (Atger,
2004). Ensemble prediction can be verified consider-
ing two statistical aspects: reliability and resolution
(Leutbecher and Palmer, 2008). Reliability implies
statistical consistency between the ensemble forecast
and observations. Sampling error due to finite en-
semble size in realistic systems decreases reliability
(Richardson, 2001). Although reliability is a critical

Fig. 1. A schematic diagram showing the initial perturbation generation using ETKF
and 10-day ensemble forecast processes.
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aspect of probabilistic forecasts, it is not a sufficient
condition for a high-quality ensemble prediction. A
system that always forecasts the climatological proba-
bility of the atmospheric state is perfectly reliable, but
it is not useful for weather forecasting. Therefore, an
additional property of probabilistic forecasts, referred
to as resolution, should also be considered. Resolution
is the degree to which ensemble forecasts separate the
different observed events. In other words, resolution
measures the variability of the frequency of observed
events when the given forecast varies.

To verify the reliability and resolution of an ensem-
ble prediction, it is appropriate to use a suite of ver-
ification measures and to understand the results con-
sidering the emphases different scores have, because
the different verification methods inform different as-
pects of the ensemble forecast (Wei et al., 2008). The
necessary verification scores and diagrams to assess
the quality of ensemble prediction are probabilistic
skill scores (such as the Brier score, Brier skill score,
ranked probability score, and ranked probability skill
score), reliability diagrams, relative operating charac-
teristic (ROC) curves, and rank histograms (Hamill
et al., 2000). The Brier Score (BS), reliability dia-
gram, and ROC curves are for probability forecasts of
dichotomous events. Conversely, the Ranked Proba-
bility Score (RPS) is for probability forecasts of con-
tinuous variables treated as categorical forecasts. BS
and RPS measure the degree of reliability and resolu-
tion of probability forecasts, but RPS is the average
of the BS for the priori defined thresholds (Candille
and Talagrand, 2005). Reliability diagrams are condi-
tioned on the forecast and divide the reliability from
the resolution (Hacker et al., 2011). ROC curves only
measure the resolution and often provide similar re-
sults with the resolution term of the BS qualitatively.
In terms of reliability, additional measures such as the
rank histogram and relation between ensemble mean
error and spread, can describe more detailed charac-
teristics and causes of reliability of the probabilistic
forecast rather than the reliability diagram or the reli-
ability term of the BS (Jolliffe and Stephenson, 2003).

2.4.1 Brier Score
The BS measures the mean squared error of the

probability forecast of the occurrence of a dichotomous
event as follows (Wilks, 2006):

BS =
1
M

M∑

k=1

(zk − ok)2 , (3)

where zk indicates the forecast probability, k denotes
an index of M forecast event pairs, and the observa-
tional probability ok is defined as ok=0 if the event
does not occur and ok=1 if the event does occur.

The BS can be decomposed into reliability and resolu-
tion components (Murphy, 1973). While the reliability
term of the BS will be small if the forecast system has
good reliability, the resolution term will be large if the
forecast sorts events well. The skill score of BS [the
Brier Skill Score (BSS)] is positively oriented; that is,
a forecast of good quality has a score of one (Wilks,
2006). For reference probabilistic forecasts, we used
the NCEP–NCAR 40-Year Reanalysis (Kalnay et al.,
1996).

2.4.2 Ranked Probability Score
The RPS is equivalent to the BS, but it measures

the accuracy of probability forecasts when there are
multiple probability categories (Epstein, 1969; Mur-
phy, 1971) as follows:

RPS =
1
M

M∑

k=1




J∑
c=1




c∑

j=1

zj −
c∑

j=1

oj




2



k

, (4)

where c is any number of J categories over which to
distribute the probability.

The skill score of the RPS [Ranked Probability
Skill Score (RPSS)] is computed from the climato-
logical probabilities and is positively oriented. The
reference climatological data were calculated by using
NCEP–NCAR 40-Year Reanalysis data (Kalnay et al.,
1996).

2.4.3 Rank histograms
Rank histograms of an ensemble prediction mea-

sure how well the spread of the ensemble forecast re-
flects the observed probability distribution (Anderson,
1996; Talagrand et al., 1997). If the forecast is per-
fectly reliable and has the correct spread, an observa-
tion is equally likely to be placed in any quantile of
the distribution estimated by the ensemble prediction,
and the histogram would be flat (Wilks, 2006).

The reliabilities of different ensemble sizes in terms
of a rank histogram can be compared by evaluating
the score defined by Candille and Talagrand (2005) to
measure the degree of flatness of a rank histogram. If
the number of verification samples is M , the deviation
of the rank histogram from flatness is measured as

∆ =
N+1∑

k=1

(sk − M

N + 1
)
2

, (5)

where sk is the number of elements in the kth interval
of the rank histogram, and M/(N+1) represents the
expectation of sk when the verifications are expected
to be equally placed at each interval in a reliable sys-
tem. The ratio defined as

δ =
∆

MN/(N + 1)
, (6)
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is used to measure the reliability of two experiments,
where the denominator, MN/(N + 1), is the expecta-
tion of ∆. The ratio δ would approach one in the case
of a perfectly reliable system (Candille and Talagrand,
2005).

In the rank histogram, the number of outliers is
also calculated, as in Arribas et al. (2005). The num-
ber of outliers is a useful diagnostic tool to assess the
reliability of an EPS and is defined as the number of
occasions that the verifying analysis lies outside the
ensemble range. The number of outliers is calculated
by counting the verifying analysis that is larger than
the largest ensemble and smaller than the smallest
ensemble in the histogram. If the EPS is perfectly
reliable, the expected number of outliers is equal to
2/(N + 1) for one verifying sample.

2.4.4 Reliability diagrams
A reliability diagram compares the predicted prob-

abilities of dichotomous events with their observed fre-
quencies (Wilks, 2006). The conditional distribution
of observations given each allowable value of the fore-
cast against the forecast probability is plotted. The
reliability and resolution components of the BS can be
measured graphically using reliability diagrams.

2.4.5 Relative Operating Characteristic curves
A ROC curve is based on signal detection theory

(Stanski et al., 1989) and it measures the resolution of
probabilistic forecasts; that is, the ability of the fore-
cast to discriminate dichotomous events (Wilks, 2006).

3. Results

3.1 The ensemble-mean skill and spread

The ensemble-mean skill is an overall measure of
ensemble performance. It is known that the ensemble-
mean forecast is more accurate than that of individual
ensemble members due to the filtering of unpredictable
scales of motion in the ensemble mean (Leith, 1974).
However, the benefit of the ensemble mean is limited
when the flow regime of the forecast changes (Palmer,
1993), and the ensemble mean does not measure the
degree of uncertainty associated with ensemble predic-
tion directly. Forecast uncertainties can be measured
by the ensemble spread, which represents the differ-
ences among the members in an ensemble forecast.
Further, ensemble spread is considered to be a predic-
tor of ensemble-mean skill, especially when the varia-
tion in the spread is extreme (Whitaker and Loughe,
1998).

Figure 2a shows the ensemble spread and the
RMSE of the ensemble mean for the 500-hPa height
variable in the NH region. The ensemble spreads for
M24 and M48 were both smaller than their corres-

Fig. 2. The average spread (closed circles) and RMSE
(open circles) of the ensemble mean forecast at a 500-
hPa height for M24 (solid) and M48 (dotted) in the (a)
NH region and (b) SH region.

ponding RMSEs in the NH region after short fore-
cast times, which implies that the ensemble spread was
not large enough to cover uncertainties. The average
RMSE of the ensemble mean of M48 was lower than
that of M24 for most forecast times, but not much
different at the 90% confidence level, in terms of the
T 2 test (Wilks, 2006). Conversely, the M48 ensemble
produced a slightly lower spread than M24 until the
4-day forecast at the 90% confidence level. While the
spread of M48 grew faster than M24 during the first
four days, the growth rates of the spreads for M24 and
M48 were almost the same after four days.

The small spread difference between the two en-
semble size experiments in this study contradicts the
results reported in previous studies. In perfect or re-
alistic forecast system experiments, an increase in en-
semble size makes the average ensemble spread larger
to be consistent with the average error of the ensemble
mean because of better sampling and improved distri-
bution (Buizza et al., 1998; Atger, 1999; Leutbecher
and Palmer, 2008). The reason for the discordant re-
sults between our study and previous studies with re-
gard to ensemble spread may be the inflation factors
that were applied to the transform matrices in ETKF.
For short forecast times (during the first 1.5 days),
the magnitude of the ensemble spread was larger than
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the RMSE of the ensemble mean for M24, while the
magnitude of the ensemble spread and RMSE of the
ensemble mean were almost the same for M48. As a
result, the spread skill score, which is the ratio of the
error of the ensemble forecast to the ensemble spread,
was 0.874 for M24 and 0.965 for M48 for the one-day
forecast. Because the inflation factor reflects the re-
lationship between the ensemble spread and ensemble
mean forecast according to Eq. (2), the inflation fac-
tor of M48 was expected to be greater than that of
M24. However, the inflation factor of M48 calculated
from Eq. (2) was very large compared to the magni-
tude of the transform matrix, so it was substituted
by the inverse of the magnitude of the transform ma-
trix, as described in section 2.2.2 and the Appendix,
to prevent the amplitude of the initial perturbations of
M48 from being too large. Consequently, the average
inflation factor elements of M24 was about 1.6 times
larger than that of M48 in this study, which resulted
in the ensemble spread of M48 being smaller than that
of M24 for short forecast times (i.e. 1–3 days).

The ensemble spread and RMSE of the ensemble
mean for the 500-hPa height variable in the SH region
are shown in Fig. 2b. The RMSEs of the ensemble
means of M24 and M48 were not much different at
the 90% confidence level. As Atger (1999) discussed,
this result indicates that an increase in ensemble size
has little effect on the ensemble mean. The ensem-
ble spread of M48 was lower than that of M24 during
the first six days at the 90% confidence level. Simi-
lar to the results in the NH region, M48 had larger
inflation elements on average than M24 according to
Eq. (2), but the inflation factor of M48 applied to the
transform matrix was smaller than that of M24 due to
the inner algorithm of MOGREPS, which limits the
effect of increasing the number of ensemble members
on the spread. While the ensemble spreads of the two
experiments showed similar growth rates for the first
five days, the ensemble spread of M48 grew faster than
that of M24 after five days.

3.2 BS and RPSS

Figure 3a shows the BSS in the NH region. For the
first four days, M24 was slightly better than M48, but
after four days M48 showed better performance than
M24. The resolution component of the BS, which is
typically one order of magnitude larger than the re-
liability component of the BS, shows that M48 had
slightly better performance than M24 during the en-
tire forecast period (Fig. 3b). However, the differences
of BSS and the resolution component of BS between
M24 and M48 were very small in terms of the 90% con-
fidence level. In contrast, the reliability component of
the BS shows that M24 performed better than M48

Fig. 3. (a) BSS, (b) resolution, and (c) reliability com-
ponents of BSS for M24 (solid) and M48 (dotted) in the
NH region.

for most of the forecast period at the 90% confidence
level (Fig. 3c).

In the SH region, the BSS of M48 was slightly bet-
ter than that of M24 for the first four days (Fig. 4a).
Even though M24 was better than M48 for the first five
to six forecast days, M48 showed better performance
with relatively larger differences as the forecast time
increased to more than six days. M48 had a better res-
olution component of the BS than M24 for the entire
forecast period (Fig. 4b). However, the BSS and reso-
lution component of BS were not much different at the
90% confidence level, similar to the results in the NH
region shown in Fig. 3. In contrast, the reliability com-
ponent of the BS in the SH region was worse for M48
than for M24 at the 90% confidence level (Fig. 4c).

Overall, increasing the ensemble size had different
effects on the reliability and resolution components of
the BS. As Atger (1999) showed, ensemble spread is di-
rectly related to the reliability of the BS. In our study,
it was difficult to identify the effect of increasing en-
semble size on reliability because the inflation factor



1294 EFFECT OF DOUBLING ENSEMBLE SIZE ON ENSEMBLE PREDICTION AT KMA VOL. 30

Fig. 4. The same as Fig. 3, but for the SH region.

calculation algorithm in MOGREPS forced the en-
semble spread of M48 to decrease. The results of
the present study indicate that increasing the ensem-
ble size from 24 to 48 may not improve reliability if
the spread is not maintained properly. The resolution
component of the BS improved slightly when the en-
semble size was increased from 24 to 48, even though
it was not significant, because the resolution of the BS
is determined not by the average amplitude of the en-
semble spread, but by the daily variation in ensemble
spread, which was improved by increasing the ensem-
ble size, as mentioned in Atger (1999). There is an-
other factor to be considered in assessing the reliability
and resolution of the BS in terms of ensemble size. As
already discussed by Candille and Talagrand (2004),
the results in this subsection show that the effect of
ensemble size on the reliability of the BS is affected
by the number of verification samples; that is, increas-
ing the ensemble size without increasing the sample
number improves resolution, but decreases reliability.

Figure 5 shows the RPSS in the NH and SH region.

Fig. 5. RPSS for M24 (solid) and M48 (dotted) in the
(a) NH region and (b) SH region.

In both the NH and SH regions, M48 and M24 were
not very different at the 90% confidence level.

3.3 Rank histograms

Figure 6 shows the rank histograms for M24 and
M48 for days 1, 5, and 10 in the NH region. For the
entire forecast period, M24 and M48 showed similar
rank histogram patterns in the NH region. At day
1, there were overforecasting biases; that is, the ver-
ifications were put too frequently on the side of the
smallest ensemble forecasts. These unconditional bi-
ases for short forecast times decrease statistical consis-
tency and reliability between ensemble members and
verification. M48 showed a relatively more flat his-
togram than M24. As forecast times lengthened, the
rank histograms of both ensemble sizes became flat-
ter and adopted a U-shape, which indicates underdis-
persion of the ensemble forecast. Each ensemble was
similar, so verifications tended to reside at both ends
of the ensemble members, which caused the number
of outliers over the largest ensemble forecast, as well
as the smallest ensemble forecast, to increase in both
experiments. Figure 7 shows the time evolution of the
number of outliers in the NH region. The outliers of
M24 and M48 grew very fast during the first two days.
This is because the ensemble spread, which was arti-
ficially amplified by the inflation factor at the initial
time, did not increase as fast as the error of the en-
semble mean forecast. After two days, M48 had less
outliers than M24, which reflects that the directions
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Fig. 6. Rank histograms of M24 (solid) and M48 (dot-
ted) for 1-, 5-, and 10-day forecasts in the NH region.
The abscissa at the top is for M24, and the abscissa at
the bottom is for M48.

Fig. 7. Average number of outliers (%) of M24 (solid)
and M48 (dotted) in the NH region.

Fig. 8. The same as Fig. 6, but for the SH region.

spanning the subspace of the initial condition uncer-
tainty were augmented by increasing the ensemble size
in this system, as described by Buizza et al. (1998).

In contrast, the SH region showed an underfore-
casting bias rather than the overforecasting bias seen
in the NH region for M48 for a short forecast period
(day 1) (Fig. 8). The rank histogram of M24 had a
dome shape at day 1, indicating overdispersion of the
ensemble forecast. Because the ensemble spread of
M24 modified by the inflation factor was too large
(Fig. 2b), the verification was likely located not at ex-
treme members, but around the center of ensemble
members. As a result, M48 showed a relatively flatter
histogram than M24. As the forecast time increased,
the rank histograms of both experiments became flat-
ter, and showed underforecasting biases. Figure 9
shows the time evolution of the number of outliers in
the SH region. Up until day 3, the growth rates of out-
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Fig. 9. The same as Fig. 7, but for the SH region.

liers for both ensemble size experiments were very
large, and M48 had more outliers than M24, because
the ensemble spread of M48 was more underdispersed
than that of M24 during these forecast times. After
day 4, the outliers of M24 and M48 began to decrease,
and M48 had fewer outliers than M24. As forecast
time increased, the number of outliers in M48 de-
creased faster than that in M24.

Figure 10a shows the time evolution of the ratio δ
in Eq. (6) derived from the full rank histogram in the
NH region. M48 had better reliability than M24 for
the entire forecast period, even though the scores that
measure how far the systems are away from reliability
were greater than one. On day 1, the ratio of M48 was

Fig. 10. The ratio δ derived from (a) the rank histogram
of full elements and (b) the rank histogram excluding el-
ements in the two extreme ranks of the NH region (M24,
solid; M48, dotted).

the smallest and significantly different from that of
M24. For up to four days, M48 showed faster growth
than M24. After four days, the ratios of both experi-
ments showed similar growth rates. To assess the reli-
ability without the outliers that were significant in the
rank histograms as the forecast time increased, the
time evolution of the ratio δ without the outliers was
plotted and is shown in Fig. 10b. The ratio of M48
showed better reliability than that of M24 for most
of the forecast times. In particular, M24 had a large
value for the one-day forecast, which was consistent
with the larger overforecasting bias of M24 than M48.
While the ratio of M48 was almost constant for the
entire forecast period, the ratio of M24 tended to in-
crease after three days. The smaller outliers of M48
than M24 in Fig. 7 suggest that an increase in ensem-
ble size reduces the degree of underdispersion of the
ensemble forecast and improves reliability in the NH
region.

The ratio δ in the SH region is shown in Fig. 11a.
On day 1, M48 showed much better reliability than
M24. However, M24 was better than M48 for days
2–7 because M48 rapidly increased after the first day.
After seven days, M48 mostly showed better reliabil-
ity than M24. Figure 11b shows the ratio δ calculated
without outliers. A comparison of the ratio in the NH
region (Fig. 10b) reveals a decreasing tendency to ap-
proach one in both M24 and M48. M48 showed better
reliability than M24 for most forecast times. For the
first three days, the ratio δ of M48 was significantly

Fig. 11. The same as Fig. 10, but for the SH region.
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Fig. 12. Reliability diagram (left panel) and sharpness diagram (right panel) for 1-, 5-, and
10-day forecasts in the NH region. The bold solid line represents M24, the bold dotted line
M48, and the thin solid line indicates the 1:1 line of the reliability diagram.

smaller than that of M24; after this period, the ratio
of M48 and M24 became similar.

3.4 Reliability diagrams

The reliability diagram for the 500-hPa height in
the NH region is shown in Fig. 12. On day 1, the re-
liability diagram indicates that both M24 and M48
showed good reliability and resolution (lower panel of
Fig. 12). The reliability curve of M48 was closer to the

45◦ line than that of M24, which indicates that M48
was more reliable than M24. However, the resolution
of M24 measured by calculating the mean square dif-
ference of the reliability curve to the sample climatol-
ogy in relation to the resolution component of BS was
better than that of M48 (0.42137 for M24 and 0.40993
for M48). The sharpness diagram shows that the ex-
treme probability was too extreme in both M24 and
M48.
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Fig. 13. The same as Fig. 12, but for the SH region.

At day 5, the reliabilities of rare events were good,
but the unconditional biases of overforecasting over
higher forecast probabilities resulted in deterioration
of the reliability of both M24 and M48 (middle panel
of Fig. 12). The reliability of M24 was better than
that of M48, but the difference was negligible. How-
ever, M48 showed better resolution than M24 (3.6883
for M24 and 3.7062 for M48).

The upper panel of Fig. 12 shows the reliability di-
agram for day 10. The reliability curves of both ex-
periments have slopes lower than the 45◦ line for all

forecast probabilities, and the reliability as well as res-
olution of M24 and M48 are much degraded. On aver-
age, M48 shows better reliability and resolution than
M24, but the two curves are almost the same. The
sharpness diagram for day 10 shows that probabilities
in the middle of the range are used more frequently
than those at short forecast times. As the forecast
time increases, more constant forecasts are performed
with a loss of sharpness.

The properties of the reliability and sharpness di-
agrams of both M24 and M48 in the SH region are
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similar to those for the NH region. On day 1, both
M24 and M48 show relatively good reliability and res-
olution, with M48 showing better reliability than M24
(lower panel of Fig. 13). As the forecast time increases,
unconditional overforecasting biases occur, which de-
crease the reliability and resolution ability, with few
differences in the diagrams of M24 and M48 (middle
and upper panels of Fig. 13). M24 had better resolu-
tion than M48 for days 5 and 10, but the resolution of
M48 was better than that of M24 for all other forecast
times (not shown).

3.5 ROC area

Figure 14 shows the area under the ROC curve,
which measures the degree of resolution in probabilis-
tic forecasts. In the NH region, M24 had better resolu-
tion than M48 until day 4; after four days, M48 showed
better resolution than M24 (Fig. 14a). The ROC area
in the SH region showed that both ensemble sizes had
very similar resolution abilities until day 7. After seven
days, M48 showed better resolution than M24, but the
difference between M48 and M24 was not significant.
In contrast to the numerical difference of ROC area
between M24 and M48, they were not much different
at the 90% level in the both the NH and SH region
during all forecast times.

The results from the ROC areas were similar to
those observed for the resolution component of the BS.
While the calculation of ROC is based on signal detec-
tion theory using the conditional distribution of the

Fig. 14. Average ROC area of M24 (solid) and M48 (dot-
ted) for the (a) NH and (b) SH regions.

forecast probability given the observations by consid-
ering all probability thresholds over zero to one, the
calculation of the BS assesses the relative accuracy of
probabilistic forecasts using the conditional distribu-
tion of observations given for each forecast (Stanski
et al., 1989). Although these two verification meth-
ods have different underlying assumptions, the similar
verification results obtained in this study indicate the
consistency of these methods for assessing the resolu-
tion ability of probabilistic forecasts.

4. Summary and discussion

The main purpose of ensemble prediction is to esti-
mate the probability distribution of forecast uncertain-
ties by conducting multiple predictions from slightly
different initial conditions. The effect of doubling en-
semble size on the performance of ensemble predic-
tion was investigated in terms of probabilistic fore-
casts using MOGREPS implemented at the KMA for
one month from 22 May to 23 June 2009. The initial
ensemble perturbations generated by the ETKF tech-
nique were increased from 24 to 48 members, and then
integrated for 10 days.

The performance of probabilistic forecasts is as-
sessed by considering the statistical reliability and res-
olution of the ensemble forecasts as well as the accu-
racy of the forecasts. Because different verification
scores are based on different characteristics of prob-
abilistic forecasts, various verification scores are in-
terpreted together. Different scores sometimes show
inconsistent results for probabilistic forecasts due to
the different perspectives and arithmetical approaches
underlying the various verification methods.

The accuracy of ensemble prediction was measured
by the RMSE of the ensemble mean forecast, the BSS,
and the RPSS. The results showed that the accuracy
improved slightly, but was not significant at the 90%
confidence level, when the ensemble size was increased
from 24 to 48, especially for longer length forecasts
in the NH region. In contrast, in the SH region, the
impact of ensemble size on accuracy did not show con-
sistent results and the differences in scores between the
two ensemble size configurations was negligible. These
results were similar to those reported by Buizza et al.
(1998), which indicated that increasing the ensemble
size from 30 to 51 had little impact on accuracy in the
ECMWF EPS.

The reliability of ensemble prediction was assessed
using the reliability component of the BS, rank his-
tograms with outliers, and reliability diagrams. The
reliability component of the BS showed that increasing
ensemble size had a negative effect on reliability, be-
cause the ensemble spread of the forecasts with larger
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ensemble sizes was decreased by the inflation factor
in MOGREPS. However, the rank histogram results
showed that increasing ensemble size improved relia-
bility as forecast time lengthened due to the better re-
lationship between the ensemble spread and the RMSE
of the ensemble mean forecast with increasing ensem-
ble size. The reliability diagrams also showed that re-
liability was improved by increasing the ensemble size
for both short and long forecast times. Although each
verification method yields different results, an increase
in ensemble size is expected to have a positive effect
on reliability considering not only the increase in con-
sistency between ensemble spread and error ensemble
forecast, but also the critical condition of sample size,
which is related to model resolution and the verifica-
tion period. The ROC area and resolution compo-
nent of the BS were used to measure the resolution of
MOGPRES. Even though the results were not signif-
icant, these scores indicated the relative advantage of
increasing ensemble size, especially for longer forecast
times.

Even though the inflation factor calculation algo-
rithm in MOGREPS hindered the growth of spread of
M48 and caused contradictory results in the spreads of
M48 and M24 compared to previous studies, increasing
ensemble size had slight advantages overall, especially
for longer forecast times. However, the advantage of
doubling ensemble size may be limited by the inflation
factor calculation algorithm in MOGREPS. In future
work, the inflation factor calculation algorithm in MO-
GREPS will be modified to incorporate the issues re-
vealed by this study while maintaining its operational
efficiency.
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APPENDIX

The Three Steps to Calculate the

Inflation Factor in MOGREPS

The inflation factor calculation is originally based
on the innovation statistic described in Eq. (2). How-
ever, additional post processes are necessary to real-
ize the basic idea of calculating the inflation factor in
MOGREPS. The three steps to calculate the inflation

factor referred to in section 2.2.2 are discussed with
mathematical expressions as follows.
Step 1

According to the Eq. (2), ΠΠΠ n,i at each localization
region is calculated using sonde and ATOVS observa-
tions.

ΠΠΠ n,i = ΠΠΠ n−1,i ◦ In−1,i , (A1)

where n represents the time step, i denotes the index
for each observation category, ◦ denotes multiplication
between vector elements which results in vector, and
I denotes the inflation ratio as,

In,i =

√
trace(dn,id

T
n,i)− trace(R)

trace(HP f,n,iHT)
. (A2)

Step 2
To obtain the inflation factor that is finally used

to scale the transformed perturbations, ΠΠΠ n,i for two
observation categories should be combined by consid-
ering the minimum discrepancy between the resulting
inflation factors and ΠΠΠ n,i. If ΠΠΠ n is the combined in-
flation factor, it will minimize the

2∑

i=1

(ΠΠΠ n/ΠΠΠ n,i − 1)2 . (A3)

To obtain optimal ΠΠΠ n, we differentiate Eq. (A3)
with respect to ΠΠΠ n, and get the following equation

2∑

i=1

(2ΠΠΠ n/ΠΠΠ 2
n,i − 2/ΠΠΠ n,i) = 0 . (A4)

From Eq. (A4), we can get the solution, ΠΠΠ n (here-
after called the “combined inflation factor”)

ΠΠΠ n =
2∑

i=1

(1/ΠΠΠ n,i)/
2∑

i=1

(
1/ΠΠΠ 2

n,i

)
. (A5)

Step 3
Sometimes, the elements of the inflation factor

have too large magnitudes and result in excessively
large initial ensemble perturbations. The last proce-
dure is the safety check to obtain the new inflation
factors without excessive inflation. First, we derive
“RawScale” S that measures how the magnitude of
forecast perturbations is rescaled into the magnitude
of initial perturbations by the transform matrix in
ETKF as

Sn =

√√√√√
N∑
p,q

Tn(p, q)2

N
− 1 , (A6)

where p and q are the indexes for the elements of trans-
form matrix.

Second, “ScalingFactor” F is obtaind by

Fn = Sn ◦ΠΠΠ n (A7)
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which measures the relative magnitudes of Sn and
“combined inflation”, ΠΠΠ n, obtained in Step 2. As ex-
plained in Section 2.2.2, “ScalingFactor” is expected
to be less than one because the uncertainty of initial
perturbations are less than that of forecast perturba-
tions by optimally weighted observational error infor-
mation through ETKF. Therefore, the final inflation
factor ΠΠΠ f,n is determined by

ΠΠΠ f,n = ΠΠΠ n ◦min(1.0, 1.2/Fn) , (A8)

where min(a, b) is a function that chooses the smaller
one between a and b. The constant, 1.2, is the prede-
fined limit for Fn. Equation (A8) implies that if the
magnitude of inflation factor elements is larger than
the magnitude of the transform matrix that decreases
the magnitude of the forecast perturbations, the in-
verse of the magnitude of the transform matrix (i.e.
RawScale) is substituted for the inflation factor. Oth-
erwise, the inflation factor calculated in Step 2 is de-
termined as the final inflation factor.
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