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ABSTRACT

This study aimed to develop the seasonal forecast models of Korean dust days over South Korea in the
springtime. Forecast mode was a ternary forecast (below normal, normal, above normal) which was classified
based on the mean and the standard deviation of Korean dust days for a period of 30 years (1981–2010).
In this study, we used three kinds of monthly data: the Korean dust days observed in South Korea, the
National Center for Environmental Prediction in National Center for Atmospheric Research (NCEP/NCAR)
reanalysis data for meteorological factors over source regions of Asian dust, and the large-scale climate
indices offered from the Climate Diagnostic Center and Climate Prediction Center in NOAA. Forecast
guidance consisted of two components; ordinal logistic regression model to generate trinomial distributions,
and conversion algorithm to generate ternary forecast by two thresholds. Forecast guidance was proposed
for each month separately and its predictability was evaluated based on skill scores.
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1. Introduction

Asian dust is a meteorological event in which dust
particles are uplifted into the air by the strong surface
wind in the source regions in the northern China and
Mongolia, and are transported far away and deposited
on the ground. Asian dust events that deposit dust in
South Korea (called Korean dust events) may lead to
severe economic and social damages. According to the
National Institute of Meteorological Research (NIMR)
in the Korea Meteorological Administration (KMA),
the frequency and variation of Asian dust events are
increasing gradually.

The source regions of Asian dust, that affect the
Korean peninsula, cover most of northern China and
Mongolia including the arid and semi-arid area of sand
desert. Zhang et al. (2008) divided the source regions
of Asian which were the main contributors to long-
lived dusts in northern China and Mongolia, into five
regions. Lim and Chun (2006) divided these source re-
gions into three regions (Gobi region, Inner Mongolia,
and the northeast China) and showed that the source

regions of Asian dust that affect the Korean peninsula
are gradually extending eastward. Chun et al. (2006)
also showed that source regions of Asian dust have
been expanding to Northeast China year by year be-
cause of the desertification in Northeast China due to
drought, overgrazing and change of atmospheric circu-
lation. Kurosaki and Mikami (2003) showed that the
Asian dust events increased remarkably in the east-
ern part of the Asian Continent after 2000. Chun and
Lim (2004) concluded that the intensity and occur-
rence of Asian dust have been increased gradually since
2000 and they have started to occur earlier in the year
than before. Tian et al. (2007) examined the relation-
ship between Asian dust frequency observed in Japan
and that in northern China with long-term observa-
tions and the National Center for Environmental Pre-
diction in National Center for Atmospheric Research
(NCEP/NCAR) reanalysis data.

The KMA began to announce the seasonal forecast
of Asian dust events since 2001. Since 2008, objec-
tive models have been utilized for the seasonal forecast
of Korean dust days over South Korea. The forecast
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modeling is changed every year in order to improve
forecast accuracy. Sohn et al. (2009a) applied a prin-
cipal component regression model to the quantitative
forecast and categorical forecast of Korean dust days
(KDD). In this paper, KDD means the spatial aver-
age of monthly Korean dust days observed at 28 sta-
tions in South Korea. However, the skill scores were
low and because the principle components were lin-
ear combinations of several kinds of data, they were
difficult to explain. Sohn et al. (2010) and Park et al.
(2011) considered the large-scale climate indices as ad-
ditional predictors. Their accuracy of forecast is much
improved; however, it was well-fit before the year 2000
but not after 2001.

This study aimed at improving the seasonal fore-
cast model of KDD for each month in the springtime
separately. In this study, we considered three kinds of
data to examine the relationships among dust deposi-
tion, dust emission, and dust transport based on sta-
tistical analysis. The first one was meteorological data
to estimate dust emission. Following the method of
Lim and Chun (2006), we used meteorological factors
which are considered to be important factors for the
occurrence of Asian dust, in our study. As potential
predictors, we used the NCEP/NCAR reanalysis data
(hereafter, referred to as NNR) for ground temper-
ature, rainfall amount, snowfall amount and ground
wind speed. The second one was large-scale climate in-
dices for the dust transport from source regions to the
Korean peninsula. Schwing et al. (2002) and Kim et al.
(2008) indicated that atmospheric and oceanic telecon-
nections govern many climate variations, the cause and
effect relationships between these teleconnections are
not well understood. In those cases, large-scale climate
indices may be useful to explain the relationships. We
examined whether large-scale climate indices can ex-
plain the dust transport from source regions to South
Korea. The third one is the KDD.

In this study, we used a ternary forecast (below
normal, normal and above normal) mode. It is well
known that logistic regression model is useful to gener-
ate multinomial distribution when the target variable
has a categorical value including ordinal scaling data
(Myers et al., 2002). Sohn et al. (2009b) applied a
logistic regression model to the categorical forecast of
heavy snowfall. It is easy to explain the effect of pre-
dictors via odds ratio using this type of model. In this
study, the logistic regression model generated proba-
bility forecast in the form of a trinomial distribution
(p0, p1, p2) where p0 is P (below normal), p1 is P (nor-
mal) and p2 is P (above normal). The trinomial dis-
tribution was converted into a ternary forecast using
thresholds.

Forecast guidance consists of the estimated ordinal

logistic regression model and the conversion algorithm
to generate categorical forecast. The predictability of
forecast guidance is evaluated by assessment measures
called skill scores. Which can be of various types (von
Storch and Zwiers, 1999; Sohn and Park, 2008). In
this study, skill scores for the binary case and ternary
case were used to assess the forecast guidance and find
the optimal guidance.

In section 2, three kinds of data are presented and
analyzed. Temporal variations in KDD and NNR are
examined. In section 3, the potential predictors are
selected based on correlation analysis between KDD
and predictors. Skill scores are introduced and fore-
cast strategy and guidance are explained. The forecast
guidance is proposed for each month separately and
the results are summarized in section 4.

2. Data

2.1 Korean dust days

For this study, we used KDD over South Korea
for a period of 30 years (1981–2010). Table 1 shows
the 30-year mean of KDD for each month, from which
it is clear that KDD mainly occurred (about 85%) in
the springtime. Our study focused on KDD in the
springtime. Figure 1 illustrates time series plots of
KDD for three month (March–May). It is evident that
the change patterns of KDD were different from each
other. And the three KDD series were not significantly
correlated. It led us to develop the forecast guidance
for each month separately.

The interdecadal variations in KDD series given in
Table 2, showed that the mean levels (0.44, 0.99, and
3.74) of KDD increased in March. As shown in Fig. 1,
KDD increased remarkably after the middle of 1990s,
and its significant slope was 0.145 days per year. The

Table 1. 30-year mean of KDD and occurrence share for
each month (units: d).

Month 30-year mean Occurrence share (%)

Jan 0.20 3.3
Feb 0.14 2.3
Mar 1.72 28.6
Apr 2.35 39.1
May 1.01 16.8
Jun 0.00 0.0
Jul 0.00 0.0
Aug 0.00 0.0
Sep 0.01 0.2
Oct 0.11 1.8
Nov 0.22 3.7
Dec 0.25 4.2
Total 6.01 100.0
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Fig. 1. Time series plots of Korean dust days over South Korea for March (dot), April
(square) and May (circle).

Table 2. Inter-decadal variation of KDD: (M and STD are the 10-year mean and standard deviation, respectively; units:
d).

Period

Trend1981–1990 1991–2000 2001–2010

Month M STD M STD M STD Slope p-value

Mar 0.44 0.73 0.99 1.73 3.74 2.73 0.14 0.002
Apr 1.39 1.05 2.94 3.33 2.72 2.44 0.06 0.343
May 1.05 2.02 0.97 1.63 1.00 1.26 −0.03 0.314

Table 3. Classification rules and frequency table of KDD for each month (M and STD are the 30-year mean and standard
deviation, respectively; units: d).

Month M STD M − 0.5STD M + 0.5STD Below normal Normal Above normal

Mar 1.72 2.36 0.54 2.90 6 7 7
Apr 2.35 2.74 0.98 3.72 9 3 8
May 1.01 1.61 0.21 1.82 10 6 4

mean levels (1.39, 2.94, and 2.72) of KDD increased
further in April in the 1990s and slightly decreased
in the 2000s. However, almost no change occurred in
the mean level (1.05, 0.97, and 1.00) of KDD in May.
The changes in standard deviation were similar to the
corresponding mean levels.

The target value in this study was a ternary fore-
cast which was classified following the classification
rules in Table 3, for each month in the springtime sep-
arately. KDD said to be below normal if KDD is less
than (M −0.5×STD), above normal if greater than (M
+ 0.5×STD), and normal if otherwise, where M and
STD are the 30-year mean and 30-year standard devi-
ation respectively.

2.2 Meteorological factors in source regions

According to Lim and Chun (2006), source re-
gions of Asian dust that affected the Korean penin-
sula in the springtime, are divided into three source
regions (Fig. 2). The three regions are located in dry
arid region (A, Gobi region: 35◦–45◦N, 100◦–110◦E),
semi-arid region (B, Inner Mongolia region: 40◦–45◦N,
110◦–120◦E), and cultivated region (C, the northeast
part of China: 40◦–50◦N, 120◦–125◦E).

The regional mean of NNR for monthly mean
of ground temperature, monthly rainfall amount,
monthly snowfall amount and monthly mean of ground
wind speed over three source regions for a period of 30
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Fig. 2. Three source regions of Asian dust.

Fig. 3. 30-year means of NNR in three regions (A, B and C) for each factor and month.

years (1980–2009) were used as potential predictors.
Figure 3 shows the 30-year means of NNR in three
regions for each month. Ground temperatures in the
three regions were similar to each other. Rainfall and
snowfall amount in C were more than those in A and
B, while the ground wind speed in B was higher than
that in the others.

Table 4 shows the mean interdecadal variation in

anomaly data of NNR. The ground temperature was
found to have an increasing trend in all regions. Rain-
fall and snowfall amount showed a decreasing trend in
all regions. Although the ground wind speed appeared
to be decreasing in all regions, it did not show any sig-
nificant trend. NNR indicated that all regions became
drier and warmer, which might have increased floating
dusts over the source regions; we considered these four
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Table 4. Inter-decadal variation in anomaly data of NCEP/NCAR reanalysis data.

Factors

Period Region Temperature Rainfall Snowfall Wind speed

1980–1989 A −0.279 −0.006 2.019 0.558
B −0.376 0.052 3.550 0.478
C −0.409 0.133 4.553 0.036

1990–1999 A 0.359 0.011 1.279 −1.096
B 0.195 0.096 2.784 −0.872
C 0.073 0.140 4.132 −0.013

2000–2009 A −0.080 −0.005 −3.298 0.539
B 0.181 −0.148 −6.334 0.395
C 0.336 −0.273 −8.684 −0.022

Table 5. Large-scale climate indices (Kim et al., 2008).

Abbr. Full name with key reference

AO Arctic Oscillation (Thompson and Wallace, 1998)
GML Global Mean Land Ocean Temperature Index (Hansen et al., 1999)
MEI Multivariate ENSO Index (Rasmusson and Carpenter, 1982)
NOI Northern Oscillation Index (Schwing et al., 2002)
ONI Oceanic Nino Index
PDO Pacific Decadal Oscillation Index (Zhang et al. 1997)
PNA Pacific/North American Pattern (Wallace and Gutzler, 1981)
SOI Southern Oscillation Index (Rasmusson and Carpenter, 1982)

WPO West Pacific Oscillation (Barnston and Livezey, 1987)

factors as predictors for KDD.

2.3 Large-scale climate indices

We also used nine climate indices (AO, GML, MEI,
NOI, ONI, PDO, PNA, SOI, and WPO; see in Table 5)
as additional predictors. They were obtained from the
Climate Diagnostic Center (CDC) and Climate Pre-
diction Center (CPC) in National Oceanic and At-
mospheric Administration (NOAA) and updated on
a monthly basis. The AO is an index of the pressure
gradient between the polar and subpolar regions of the
Northern Hemisphere. The GML is the global mean
land/ocean temperature index. The MEI is calculated
as the first principal component of six observed vari-
ables fields (SLP, zonal and meridional components
of the surface wind, SST, SAT, total cloudiness frac-
tion of the sky) over the tropical Pacific. The NOI is
an index of climate variability based on the difference
in SLP anomalies at the North Pacific High and near
Darwin. The ONI is a three-month running mean of
SST anomalies in the Niño3.4 region (5◦N–5◦S, 120◦–
170◦W) based on the 1971–2000 base period. The
PDO is the first principal component of monthly SST
anomalies in the North Pacific Ocean. The PNA is an
index derived from the formula of Wallace and Gut-
zler (1981) using 500-hPa geopotential height values.
The SOI is an index of climate variability based on

the difference in SLP anomalies at Tahiti and Dar-
win. The WPO identified through the application of a
principal-component analysis involves changes to the
wind pattern in the northwestern and north-central
North Pacific.

3. Methodology

3.1 Selection of predictors

In NIMR (2011), forecast models were estimated
using 30-year data (1981–2010), which were well-fit to
the data before 2001, but did not show a good fit af-
ter 2001; this was because the patterns of KDD series
changed after the middle of 1990s as shown in Fig. 1.
To improve predictability, we decided to use 20-year
data (1991–2010) for forecast model and 30-year data
for classification rules.

As potential predictors, we use 12-month data
(January-December in the previous year) of each factor
because the KMA usually announces seasonal forecast
for KDD in the springtime in February. The set of
potential predictors contained as so many as 252 vari-
ables (3 regions×12 months×4 factors + 12 months×9
indices). To simplify the process, at first, we selected
the secondary potential predictors (Table 6) among
252 variables, which were significantly correlated with
KDD. Predictors were named by three components
(region, factor, and month). For example, AT7 means
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Table 6. Significant NNR factors and climate indices based on correlation analysis.

Month Data period NCEP/NCAR reanalysis data Climate indices

Mar Jan to Dec AT7, BT7, CT7, AR3, BR1, BR7, CR1, CR9, AO3, MEI3, NOI7, ONI4,
AS10, AS12, BS12, CS12, BWS10 PDO9, PNA7, SOI4, WPO5

Apr Feb to Jan AT5, AT10, CT7, BR5, AS3, CWS6 GML7, MEI7, NOI10, PNA9, SOI6, SOI7
May Mar to Feb CT4, AR12, AS3, AWS7, AWS11, BWS4, BWS7, AO5, NOI11, SOI5

CWS1, CWS7

Table 7. 3×3 cross table: values in parenthesis are weights and nij means the frequency that forecasted category is j
when observed category is i.

Observation

Forecast

Below normal Normal Above normal Total

Below normal n00 (1.0) n01 (0.5) n02 (0.0) n0.

Normal n10 (0.5) n11 (1.0) n12 (0.5) n1.

Above normal n20 (0.0) n21 (0.5) n22 (1.0) n2.

Total n.0 n.1 n.2 N

the monthly mean of ground temperature over Region
A in July in the previous year and AO3 means the
Arctic oscillation index in March in the previous year.

3.2 Assessment of forecast models

The ternary forecast was assessed based on a 3×3
contingency table (see Table 7). We considered the
thresholds that had good skill scores for both binary
forecast and ternary forecast, since the above normal
case was more serious than the normal or the below
normal case. In this study, binary forecast was gen-
erated from ternary forecast in order to satisfy the
concordance between two forecasts with merging the
normal and the below normal cases into the normal
cases.

In the binary forecast, we considered three skill
scores based on a 2×2 contingency table. They
were the hit rate (HR2), the probability of detection
(POD2) and the false alarm rate (FAR2), and were
computed by the following equations using the nota-
tion in Table 8.

HR2 = (n00 + n01 + n10 + n11 + n22)/N ,

POD2 = n22/(n20 + n21 + n22) ,

FAR2 = n02/(n02 + n12 + n22) ,

where N is the number of total cases, HR2 is the exact
forecast rate, POD2 is the conditional probability that
above normal is forecasted given that above normal is
observed, and FAR2 is the conditional probability that
above normal is not observed given that above normal
is forecasted. It is natural that the higher the values
for HR2 and POD2 and the lower value for FAR2, the
better the outcomes.

For the assessment of ternary forecast, we com-
pute skill scores based on the 3×3 contingency table.
Burrows (1991) assigned weights to the multicategor-
ical forecast cases, so that a forecast that is different
from the predictand in one category would be a bet-
ter forecast than a forecast which is different in two
categories, and so on. Following Burrows’ procedure,
we also used weights in Table 7, and computed the hit
rate (HR3) and the weighted hit rate (wHR3) defined
by the following equationsusing thenotation in Table 7.

HR3 = (n00 + n11 + n22)/N ,

wHR3 = (n00 + 0.5n01 + 0.5n10 + n11 +
0.5n12 + 0.5n21 + n22)/N .

It is natural that the higher the values for HR3 and
wHR3, the better the outcomes. Note that HR3 is the
hit rate in a 3×3 table whereas HR2 is the hit rate in

Table 8. 2×2 cross table with merging of below normal and normal to normal (nij means the frequency that forecasted
category is j when observed category is i).

Forecast

Observation Normal Above normal Total

Normal n00 + n01 + n10 + n11 (negative correction) n02 + n12 (false alarm) n0. + n1.

Above normal n20 + n21 (miss) n22 (hit) n2.

Total n.0 + n.1 n.2 N
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Table 9. 3×3 cross tables and skill scores of the maximum probability method and the threshold method for March.

Forecast

Maximum prob. method Threshold method

Observation Below normal Normal Above normal Below Normal Normal Above normal Total

Below normal 5 1 0 6 0 0 6
Normal 1 5 1 1 4 2 7

Above normal 0 2 5 0 0 7 7
Total 6 8 6 7 4 9 20

a 2×2 table.
To check the generalization ability of forecast guid-

ance, we performed a leave-one-out cross-validation.
The results of model validation were examined by the
above skill scores on the basis of the 3×3 contingency
table.

3.3 Forecast guidance

Ternary forecast was generated by a two-step pro-
cess as follows. At first, an ordinal logistic regression
model was utilized to generate trinomial distribution
(p0, p1, p2) using the following equations.

e0 = exp(b0 + X); e1 = exp(b1 + X) ;
p0 = e0/(1 + e0); p1 = e1/(1 + e1)− p0 ;

p2 = 1− p0 − p1 ;

where b0 and b1 are constants, and X is a linear com-
bination of final predictors.

Second, the generated trinomial distribution was
converted into a ternary forecast. To generate a
ternary forecast, we usually selected the category with
the highest probability in the generated trinomial dis-
tribution. However, the threshold method might be
better than the maximum probability method. For
example, the skill scores of the maximum probabil-
ity method were HR2 = 0.85, POD2 = 0.71, FAR2
= 0.17, HR3 = 0.75, wHR3 = 0.87, whereas those of
the threshold method are HR2 = 0.90, POD2 = 1.00,
FAR2 = 0.22, HR3 = 0.85 and wHR3 = 0.93 (Table
9). In this study, the threshold method was preferred
to the maximum probability method. Two thresholds,
T1 and T2, were used. A conversion of trinomial dis-
tribution (p0, p1, p2) to a ternary forecast (0 = below
normal, 1 = normal, 2 = above normal) were made
using the followings:

IF p0 > T1 THEN
forecast = 0 ;

ELSE IF p1/(p1 + p2) > T2 THEN
forecast = 1 ;

ELSE forecast = 2 ;

Varying two thresholds from 0 to 1 independently,

the above skill scores were computed for each pair
of two thresholds and compared so as to determine
the optimal thresholds. The proposed forecast guid-
ance consisted of the estimated logistic regression
model and the conversion algorithm using two opti-
mal thresholds.

4. Results

We developed the statistical forecast guidance on
ternary KDD in the springtime for each month sepa-
rately. A three-grade ordinal logistic regression model
was applied to generate a trinomial distribution us-
ing the final predictors given in Table 6. The opti-
mal thresholds were determined based on skill scores.
Some results were obtained in the following way.

First, the variable selection was performed by
Fisher’s scoring method offered by the statistical pack-
age called SAS. The final predictors, selected at the
significance level 0.05, were the following: BS12, NOI7,
and SOI4 for March; CT7, BR5, and NOI1 for April;
and CT4, AR12, and AWS11 for May.

Second, the optimal thresholds were determined
based on skill scores, which were 0.3 and 0.65 for
March; 0.2 and 0.6 for April; and 05 and 0.5 for May.

Third, forecast guidance generated a binary fore-
cast and a ternary forecast together. The proposed
guidance for March was as follows:

x = 0.1223×BS12 − 1.8894×NOI7 − 1.918×SOI4 ;
e0 = exp(−8.5420 + x); e1 = exp(−3.7485 + x) ;
p0 = e0 / (1 + e0); p1 = e1 / (1 + e1)-p0 ;
p2 = 1− p0 − p1 .

IF p0 > 0.3 THEN
Ternary forecast=0 ;

ELSE IF p1/(p1 + p2) > 0.65 THEN
Ternary forecast =1 ;

ELSE Ternary forecast =2 ;
IF Ternary forecast=0 OR Ternary forecast=1

THEN Binary forecast=1 ;
ELSE Binary forecast=2 .
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Table 10. Contingency tables for binary forecast using whole data (1: normal, 2: above normal).

Forecast

March April May

Observation 1 2 Total 1 2 Total 1 2 Total

1 11 2 13 10 2 12 16 0 16
2 0 7 7 0 8 8 0 4 4

Total 11 9 20 10 10 20 16 4 20

Table 11. Contingency tables for cross validation of binary forecast (1: normal, 2: above normal).

Forecast

March April May

Observation 1 2 Total 1 2 Total 1 2 Total

1 12 1 13 11 1 12 16 0 16
2 2 5 7 0 8 8 0 4 4

Total 14 6 20 11 9 20 16 4 20

Table 12. Contingency tables for ternary forecast using whole data (0: below normal, 1: normal, 2: above normal).

Forecast

March April May

Observation 0 1 2 Total 0 1 2 Total 0 1 2 Total

0 6 0 0 6 9 0 0 9 9 1 0 10
1 1 4 2 7 1 0 2 3 1 5 0 6
2 0 0 7 7 0 0 8 8 0 0 4 4

Total 7 4 9 20 10 0 10 20 10 6 4 20

Table 13. Contingency tables for cross validation of ternary forecast (0: below normal, 1: normal, 2: above normal).

Forecast

March April May

Observation 0 1 2 Total 0 1 2 Total 0 1 2 Total

0 5 1 0 6 9 0 0 9 9 1 0 10
1 1 5 1 7 1 1 1 3 1 5 0 6
2 0 2 5 7 0 2 6 8 0 0 4 4

Total 6 8 6 20 6 8 6 20 10 6 4 20

Table 14. Prediction results for the years 2011 and 2012.

Year

2011 2012

Month Dust days Actual Forecast Dust days Actual Forecast

March 2.5 above normal 0.3 below normal
April 0.3 below below 0.0 below below
May 5.7 above above 0.0 below normal
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The proposed guidance for April was as follows:

x = −3.5088×CT7 −11.1385×BR5 +
2.2744×NOI10 ;

e0 = exp(85.8864+ x); e1 = exp(88.0663+ x) ;
p0 = e0 / (1 + e0); p1 = e1 / (1 + e1)− p0 .

p2 = 1− p0 − p1 ;
IF p0 > 0.2 THEN

Ternary forecast=0 ;

ELSE IF p1/(p1 + p2) > 0.6 THEN
Ternary forecast =1 ;

ELSE Ternary forecast =2 ;
IFTernary forecast=0OR Ternary forecast=1THEN

Binary forecast=1 ;
ELSE Binary forecast=2 .

The proposed guidance for May was as follows:

x = 0.9213×CT4+41.0877×AR12−1.9697×AWS11 ;
e0 = exp(x); e1 = exp(4.176 + x) ;
p0 = e0 / (1 + e0); p1 = e1 / (1 + e1)− p0 ;
p2 = 1 − p0 − p1 ;
IF p0 > 0.5 THEN Ternary forecast=0 ;
ELSE IF p1/(p1 + p2) > 0. 5 THEN

Ternary forecast =1 ;
ELSE Ternary forecast =2 ;
IFTernary forecast=0ORTernary forecast=1THEN

Binary forecast=1 ;
ELSE Binary forecast=2 ;

Forth, the results of binary forecast were summa-
rized in 2×2 contingency tables (Table 10). According
to contingency tables, the computed skill scores were
as follows: HR2 = 0.9, POD2 = 1.0, FAR2 = 0.22
for March; HR2 = 0.9, POD2 = 1.0, FAR2 = 0.2 for
April; and HR2 = 1.0, POD2 = 1.0, FAR2 = 0.22 for
May. Table 11 shows the results of cross-validation for
binary forecast as follows; HR2 = 0.85, POD2 = 0.71,
FAR2 = 0.16 for March; HR2 = 0.85, POD2 = 0.75,
FAR2 = 0.14 for April; and HR2 = 1.0, POD2 = 1.0,
FAR2 = 0.22 for May. These scores indicate that each
forecast guidance may be reliable and useful.

Fifth, the results of ternary forecast were summa-
rized in the 3×3 contingency tables (Table 12). Based
on cross tables, the computed skill scores were as fol-
lows: HR3 = 0.85, wHR3 = 0.93 for March; HR3 =
0.85, wHR3 = 0.93 for April; and HR3 = 0.9, wHR3
= 0.95 for May. Table 13 shows the results of cross-
validation for ternary forecast and their skill scores

were as follows: HR3 = 0.75, wHR3 = 0.88 for March;
HR3 = 0.8, wHR3 = 0.9 for April; and HR3 = 0.9,
wHR3 = 0.95 for May. These scores indicate that the
proposed forecast guidance may be reliable.

Sixth, we applied the proposed models to forecast
KDD in the years 2011 and 2012. The results are
summarized in Table 14. In 2011, the actual category
and forecasted category of KDD were (normal, above
normal), (below normal, below normal) and (above
normal, above normal) for March, April, and May, re-
spectively. The rate of correct forecast was 67%. In
2012, they are (below normal, normal), (below normal,
below normal) and (below normal, normal) for March,
April and May respectively. Unfortunately, the rate
of correct forecast was only 33% in this case. In April
and May 2012, North Pacific high enlarged unusually
to the Korean peninsula, which might have suppressed
dust transport to South Korea.

5. Concluding remarks

To develop a separate ternary forecast of KDD for
each month in the springtime, we considered the fol-
lowing strategy. First, we used 20-year data (1991–
2010). Second, various skill scores (HR2, POD2,
FAR2, HR3, and wHR3) were considered for the as-
sessment of binary and ternary forecasts. Third, we
used two thresholds to generate categorical forecast.
Fourth, we propose the forecast guidance, which can
be used to generate both the binary and the ternary
forecasts together, in order to satisfy the concordance
between two modes for each month.

The skill scores of proposed forecast guidance were
found to be better than before. HR3 scores were 0.85
for March, 0.85 for April and 0.9 for May. We recom-
mend that binary forecast might be more useful than
ternary forecast because above normal cases are more
important than normal and below normal cases.

In the future, we will investigate the relationships
among large-scale climate indices in order to find how
they affect Asian dust events.
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