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ABSTRACT

Almost all climate time series have some degree of nonstationarity due to external forces of the observed
system. Therefore, these external forces should be taken into account when reconstructing the climate dy-
namics. This paper presents a novel technique in predicting nonstationary time series. The main difference
of this new technique from some previous methods is that it incorporates the driving forces in the pre-
diction model. To appraise its effectiveness, three prediction experiments were carried out using the data
generated from some known classical dynamical models and a climate model with multiple external forces.
Experimental results indicate that this technique is able to improve the prediction skill effectively.
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1. Introduction

Recent studies have pointed out the nonstation-
arity character of the climate system. For example,
Tsonis (1996) studied the decadal variation of global
precipitation and noticed that its variance has changed
over the last century, which implies that the precipi-
tation process over this period has not been station-
ary. Also, Trenberth (1990) noted significant changes
in the mean sea level pressure by the end of the 1970s,
which indicated the nonstationary behavior of this sys-
tem. In addition, studies have shown that although
ENSO was depicted as a nonstationary phenomenon,
it could be rectified by incorporating changes in the
mean state (An et al., 2005; Boucharel et al., 2009).
In addition, global warming is the topic of climate
change-related research in the 21st century and sev-
eral studies have focused on this topic (for instance,
Lean and Rind, 2001; Moberg et al., 2005; Scafetta and
West, 2007). Several possible causes of global warm-
ing have been suggested and investigated, including
natural variation (such as volcanic emission and solar
activity) and influences of human activities (such as

greenhouse gases, aerosol radiative effects); however,
irrespective of the cause, the findings related to global
warming have depicted climate process as a nonsta-
tionary phenomenon.

However, according to almost all current theories of
time series prediction, application of the ergodic the-
ory requires the predicted process to be assumed as
stationary, which has become one of the main barriers
in climate prediction theories (Yang et al., 2003). To
ravel out this problem, some studies on predictions of
nonstationary time series have been presented recently
(Hegger et al., 2000; Wang and Yang, 2005; Wan et al.,
2005; Gong et al., 2006; Yang et al., 2010; Song and
Li, 2012; He et al., 2012). The basic idea used in all
these studies was to remove or reduce the nonstation-
arity of the predicted system using some mathematical
techniques, thereby improving the prediction. In fact,
the nonstationarity is generated because of the fact
that the driving forces acting on the observed system
change with time (Manuca and Savit, 1996). Thus,
the most effective way to remove the nonstationarity
may be to incorporate all the driving forces in the re-
constructed dynamical system considering them as the
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state variables of that system. Based on this principle,
we present an algorithm to incorporate driving forces
to predict the nonstationary climate time series.

Following is a brief introduction of the algorithm
for establishing the prediction model. To test its
effectiveness, we carried out several prediction ex-
periments on the given time series generated from
some known classical dynamical systems and a climate
model, which are discussed next. Finally, a brief dis-
cussion is provided.

2. Methods

Some of the basic principles to predict a non-
stationary time series have been presented in a re-
cent paper (Wang et al., 2011), which are presented
here as well for convenience and completeness. Let
us assume that we have a single variable time series
x(t), t = 1, . . . , n from a dynamical system. It is com-
mon practice by now to use this time series and time
delays to reconstruct its phase trajectory:

X(t) = {x(t), x(t− τ), . . . , x(t− (m1 − 1)τ)}t
= 1, . . . ., N , (1)

where m1 is the dimensionality of the embedding
space, τ is the time lag, and N = n − (m1 − 1)τ is
the number of phase points of the reconstructed tra-
jectory, which are required to reconstruct the under-
lying phase trajectory of this dynamical system using
the embedding theorem of Takens (1981). Once this is
done, we can then build a nonlinear prediction model
of the following form:

X(t + P ) = fP (X(t)) , (2)

where f is some appropriate mapping and P the pre-
diction time step. The Takens embedding theorem
is appropriate only for an autonomous dynamical sys-
tem; therefore, we followed the method of Stark (1999)
to embed the driving forces in the same state space for
a nonstationary system.

Now let us consider the case of nonstationary time
series. If the above system is driven by an external
force α(t), t = 1, . . . , n, which is generated by a driv-
ing system and observed at the same time, then, with
the same time lag τ and another embedding dimension
m2 for α(t), one can reconstruct the dynamics of the
system into a m1 + m2 dimensional phase space and
show it as

Y (t) =
{
x(t), x(t− τ), . . . ., x[t− (m1 − 1)τ ];α(t),

α(t− τ), . . . ., α[t− (m2 − 1)τ ]
}
, t = 1,K , (3)

where K = n−[max(m1,m2)−1]τ stands for the num-
ber of phase points on this trajectory. Based on Eq.(3),

we may build a model similar to Eq.(2) to predict the
above process, i.e.

X(t + P ) = fP (X(t);α(t)) , (4)

where the prediction step P , which was considered as 1
in this study, and fP is a desired mapping assumed to
be a quadratic polynomial; now, the task is to find the

cost function η =
N∑

k=1

[
f(xk,αk)− xk+1

]2

, which is

reached its minimum value. For more details, one can
refer to the studies of Farmer and Sidorowich (1987)
and Casdagli (1989).

3. Experiments

We applied the approach referred above to perform
some prediction experiments using several given non-
stationary time series. The first experiment was per-
formed with data from Lorenz system:





dx

dt
= −σx + σy

dy

dt
= r(t)x− y − xz

dz

dt
= xy − bz

, (5)

σ was taken as 10 and b as 8/3 in this model, while
the Rayleigh number Ra(t) was regarded as a time-
varying driving force factor. The Rayleigh number
followed three different functions, increased linearly,
decreased linearly, and U-shape functions, as shown in
Fig. 1. Under the present case, the Rayleigh number
r(t) took values in the range 20–48, which indicated
that the Lorenz system lied in a chaotic regime. Inte-
grating this modified Eq.(5), a phase trajectory with

Fig. 1. Rayleigh values generated three different func-
tions.
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8000 state points could be obtained. Therefore, three
nonstationary time series of the variable x were ob-
tained. In all experiments, the time lag τ was always
taken to be 1, and the embedding dimensions of the
observations {xt} and m1, were taken as 1 and 2, while
those of the driving force {Rat} and m2 as 0 and 1,
respectively. The case of m2 = 0 implies that the driv-
ing forcing was not regarded in the prediction model,
or, in other words, the predictions were based on the
stationarity (hereafter called as “stationary model”);
in contrast, the case of m2 = 1 implies means that the
driving force was taken into account (called as “forc-
ing model”). In the experiments, the first 7200 data
were applied to establish the prediction model, while
the last 800 data were used for prediction and testing.

Figure 2 illustrates the error between prediction
and observation of the variable x for r being the lin-
early increased function; the solid line is for the sta-
tionary model, while the dashed line is for the forcing
model. Figure 3 shows the prediction accuracies pro-

Fig. 2. Error between prediction and observation.

vided by these experiments, which were expressed in
terms of RMSE. In this figure, all the solid lines
present the data for the stationary model, while the
dashed lines for the forcing model. It was noted that
all the prediction errors for the forcing model were
lower than those for the stationary model, indicating
that introducing the driving force into the prediction
model could improve the predictive skill effectively.

The second experiment also used data from the
Lorenz system, but the Rayleigh number r(t) was
given by the logistic map r(t + 1) = µr(t)[1 − r(t)],
where the value of µ was taken as 3.9, which implied
chaotic behavior. We multiplied r(t) by 32 to get
a time series whose values ranged from 3.2 to 29.3,
and assumed this time series to be the time-varying
Rayleigh number to force the Lorenz system. Under
the present case, the modified Lorenz system could
obey the sates varying from state points to chaotic
regimes (see Fig. 4); therefore, one nonstationary time
series was obtained. The data set still consisted of
8000 values of the variable x.

Following the first experiment, out of a total 8000
data, the preceding 7200 data were applied to establish
the predictive model, while the subsequent 800 points
were used to test the prediction. We assumed that m1

took values from 3 to 5 and m2 either 0 or 1 (which
corresponded to the stationary or forcing model). The
experimental results for this case are listed in Table 1
and Fig. 5. From Table 1, it can be seen that: (1) all
RMSE values given by the forcing model were much
lower than those by the stationary one, and (2) the
growth in error rate with prediction steps for the forc-
ing model was lower than that the stationary one.
From these findings it can be concluded that, in com-
parison with the stationary model, the forcing model
had not only a higher prediction accuracy, but also a
better predictability. Figure 5 presents the correlation
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Fig. 3. Dependency of the prediction errors on the leading time step for experiment 1.
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Fig. 4. Projection of the trajectory of Lorenz system in
state plane (x, z) for the given time-varying Rayleigh
number

Table 1. RMSE comparisons of the prediction experi-
ments

m2 εT=1 εT=2 εT=3 εT=4 εT=5 εT=6

0 1.21 1.66 5.52 2.47 5.64 12.22
1 0.58 0.88 0.99 2.29 2.44 2.79

Fig. 5. Predictions of the stationary model and forcing
model in experiment 2; all the results are averaged over
the three appointed values of m1.

coefficients between the actual and prediction values.
It gives values similar to those in Table 1, indicating
that the forcing model excelled the stationary model.

The third experiment was for predicting a non-
stationary climate time series, which involved surro-
gate data of the Northern Hemisphere mean surface

air temperature Ti generated by the Flexible Global
Ocean-Atmosphere-Land-Sea ice model [FGOALS, re-
fer to Zhou et al. (2008) for details]. FGOALS was
driven by reconstructed natural forces (volcanic activ-
ity, denoted by αi, and solar radiation, denoted as γi)
and anthropogenic forces (greenhouse gas, denoted as
βi, and tropospheric aerosols, denoted as λi), data on
which were taken from Crowley (2000) and Ammann
et al. (2007), respectively. All the data were the annual
anomaly values and covered the last 1000 years. Fig-
ure 6 shows their fluctuations in the last millennium;
the red line indicates their trend over the period 1951–
2000 in the time series of {γi}.

It should be noted that the referred four driving
forces were considered synchronously in this experi-
ment. A simple extension of Eqs. (3) and (4) should
be as follows:

y(i) =
{
Ti, Ti−τ , . . . , Ti−(m1−1)τ ;

αi, αi−τ , . . . , αi−(m2−1)τ ;

βi, βi−τ , . . . , βi−(m2−1)τ ;

γi, γi−τ , . . . , γi−(m2−1)τ ;

λi, λi−τ , . . . , λi−(m2−1)τ

}
i=1,2,...,N

, (6)

and
Ti+P = fP (Ti; αi; βi; γi; λi) . (7)

Equations. (6) and (7) allowed us to establish a pre-
diction model involving four driving forces. Following
the above examples, data were divided into two parts:
the preceding 950 points were applied to construct the
predictive model and the following 50 points for test-
ing the prediction accuracy. The Northern Hemisphere
mean surface air temperature was predicted for the pe-
riod 1951–2000. The parameters used for building

Fig. 6. Time series of {αi}, {βi}, {γi}, and {λi}.



NO. 6 WANG ET AL. 1605

Fig. 7. Comparisons between the prediction abilities for the Northern Hemisphere
mean surface air temperature anomaly.

the model were assigned the following values: the time
lag τ was 1, the embedding dimensions of Ti of m1 were
taken from 3 to 7, the embedding dimensions of all the
four driving forces of m2 were set to be either 0 (for
the stationary model) or in the range from 3 to 5 (for
the forcing model).

All results were averaged over the embedding di-
mensions; the prediction results of the Northern Hemi-
sphere mean surface air temperature anomaly with or

without driving forces and observed values are shown
in Fig. 7. We used the correlation coefficients between
observation and prediction and the RMSE to denote
the prediction accuracy, which were found to be 0.57
and 0.19 for the stationary model, and 0.67 and 0.12
for the force model, respectively. This illustrates again
that the introduction of driving forces to prediction
models can yield an obvious improvement in their ac-
curacy.

Fig. 8. Dependencies of prediction errors on the prediction step for using individual forcing.
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In order to investigate the individual influences of
each driving force factor on the prediction, we repeated
the above experiment in four different cases, consider-
ing the solar radiation, volcanic aerosols, greenhouse
gases, and sulfate aerosol forces, corresponding to the
solar radiation model, volcanic aerosol model, green-
house gas model, and sulfate aerosol model, respec-
tively. The results are shown in Fig. 8. From this
figure, it can be noted that in comparison with the
stationary model, all models with any individual forc-
ing incorporated can make improvement in predicting
global temperature, especially the greenhouse gas and
sulfate aerosol models. Note that solar activity was not
particularly active for the forecast time period (1951–
2000) here, as it experienced little variation during
that period, as evident from its trend (red line) in the
time series of solar activity shown in Fig. 6.

Again, we considered the overall influence, as
shown in Fig. 9; as can be seen in the figure, the av-
erage correlation coefficient between observation and
prediction depended on prediction time steps over the
embedding. The solid line represent the result when
no forcing was considered, the broken line is the aver-
age over the embedding and over the four forces acting
individually, and the dash–dot line is the average for
all four forces. Clearly, the position of dash–dot line
above all other lines indicates that the improvement
in predicting global temperature was the result of the
collective behavior of the referred forces and might not
be a result of an individual dominant forcing.

4. Discussion

Because time dependency of driving forces is the
essential cause of nonstationarity, it is necessary to

Fig. 9. Comparison of predictions for situations when no
forcing was considered, individual forcing was considered,
and all forces were considered.

consider its influence on the prediction of time series.
However, due to the lack of a complete theory to pre-
dict nonstationary process, no general and effective
method has yet been developed. One can only choose
from some available techniques to remove its nonsta-
tionarity for resetting it under the framework of sta-
tionary theory. As an attempt to improve the situa-
tion, we proposed a new technique and applied it to
predict several artificial nonstationary time series with
known external forces. The prediction results given by
these experiments showed its effectiveness. In essence,
the main idea of this technique was to consider all
the driving forces as state variables and incorporate
them into the prediction model. Therefore, the re-
constructed system was changed to be an autonomous
system, and thereby, the prediction returned to within
the framework of the stationary theory. For the predic-
tion of nonstationary time series with known driving
forces, this technique can be used.

It should be noted that an assumption was implied
in this technique: each driving force was assumed to
be stationary. Otherwise, it would have been neces-
sary to find the driving forces corresponding to this
technique and incorporate these new increased driving
forces into the prediction model.
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