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ABSTRACT

Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the
Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled
climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (SImulation COde for POLythermal Ice Sheets)
driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5)
to estimate the GrIS contribution to global SLR. Based on theoutputs of the 20 models, it is estimated that the GrIS will
contribute 0–16 (0–27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5)
scenarios. The projected SLR increases further to 7–22 (7–33) cm with 2×basal sliding included. In response to the results
of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with
2×basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty
in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluationand
the selective use of model outputs.
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1. Introduction

Global sea level rise (SLR) is one of the major soci-
etal and economic risks in response to global warming, as
much of the global population and infrastructure resides in
low-lying coastal areas. For the period 2003–08, the mass
loss of the Greenland ice sheet (GrIS) contributed 0.60–0.67
mm yr−1 to global SLR (Sørensen et al., 2011; van den
Broeke et al., 2011), which was approximately three times
larger than the period 1993–2003 (Bindoff et al., 2007).
Other estimates (e.g., Zwally et al., 2011) also confirm the
recently accelerated mass loss of the GrIS. Additionally, an
enhanced freshwater input into the North Atlantic from the
GrIS melting could perturb the thermohaline circulation and
consequently influence the global climate. Thus, it is impor-
tant to project global sea level change due to GrIS mass loss
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through out the 21st century.
According to the IPCC Fourth Assessment Report (AR4),

global sea level will rise by 1–12 cm by 2100 due to the de-
crease of the GrIS surface mass balance (SMB) (Meehl et al.,
2007b). However, the contribution from rapid ice flow was
specifically excluded in the IPCC AR4 projections. Offline
ice sheet modeling has proved a useful method for project-
ing future sea level (Huybrechts et al., 2004; Graversen et al.,
2011; Greve et al., 2011), as it considers both the influence of
SMB and ice flow changes over the ice sheet. However, the
reliability of future sea level projections using ice sheetmod-
eling depends on the input climate conditions provided by
global climate models. If a model lacks skill in reproducing
present-day climate, the corresponding projections may lack
reliability (Franco et al., 2011). Previous studies have shown
that climate models in the third phase of the Coupled Model
Intercomparison Project (CMIP3) (Meehl et al., 2007a) vary
considerably in their ability to reproduce the modern climate
over Greenland (Walsh et al., 2008; Franco et al., 2011), anda
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major part of the uncertainty in projecting future SLR is thus
attributed to the spread among climate models (Graversen et
al., 2011).

The latest model outputs (phase five of the project;
CMIP5) (Taylor et al., 2012) have recently become available
to the research community. However, no study has assessed
the skill of CMIP5 models in reproducing surface climate
conditions over Greenland, and global SLR due to GrIS mass
loss has not yet been simulated using these state-of-the-art
models. In the present paper, using offline ice sheet model-
ing and a critical evaluation of modeled Greenland climate,
we produce new estimates of global sea level projections for
the 21st century under the new emissions scenarios of the
Representative Concentration Pathways (RCPs) 4.5 and 8.5
(Moss et al., 2010; Meinshausen et al., 2011).

2. Methodology

2.1. Data

The monthly surface air temperature (SAT) and precip-
itation from the 20th century and future projection simula-
tions of 20 CMIP5 models (Table 1) are used in this study.
The data used to validate the models were derived from the
ERA-interim reanalysis for the period 1979–2005 (Dee et
al., 2011). It has been proven that the ERA-interim pre-
cipitation over Greenland is better than the European Cen-
tre for Medium-Range Weather Forecasts (namely ERA-
40) and the National Centers for Environmental Prediction
(NCEP)/National Center for Atmospheric Research (NCAR)

reanalysis (Chen et al., 2011). To facilitate the model–model
intercomparison and model–observation validation, all the
CMIP5 model outputs were interpolated onto a resolution of
1.5◦×1.5◦ (ERA-interim grid).

2.2. Evaluation and validation methods

Since the monthly SAT and annual mean precipitation
are the main climatic forcings required by the ice sheet
model for future projections, we evaluate the simulated sum-
mer (June–July–August) SAT, winter (December–January–
February) SAT and annual mean precipitation over Greenland
against the ERA-interim reanalysis in terms of climatological
mean and temporal evolution. Here, the temporal evolution
includes two aspects: (1) the interannual variability, which is
defined as the interannual standard deviation of the simulated
field for the period 1979–2005 at each grid point and (2) the
linear trend, which is defined as the linear trends of the sim-
ulated field for the period 1979–2005 at each grid point.

A Taylor diagram (Taylor, 2001) is employed to evaluate
how well CMIP5 models simulate an observed climate field.
In a Taylor diagram, the observed field is represented by a
point (identified as “REF”) at unit distance from the origin
on thex-axis. The standard deviation of the modeled field
is the radial distance from the origin. The centered RMSE
is the distance to the observed point. The azimuthal position
gives the correlation coefficient. The centered RMSE and the
modeled standard deviation are normalized by the observed
standard deviation.

We define a weighted skill scoreSw to rank the model

Table 1. CMIP5 models used in this study. More information about the CMIP5 models can be found at http://cmip-pcmdi.llnl.gov/cmip5/.

Model Model name Modeling center (or group)

1 BCC-CSM1.1 Beijing Climate Center, China MeteorologicalAdministration
2 CanESM2 Canadian Centre for Climate Modelling and Analysis
3 CCSM4 National Center for Atmospheric Research
4 CNRM-CM5 Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees

en Calcul Scientifique
5 CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organization in collaboration with the Queensland

Climate Change Centre of Excellence
6 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory
7 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory
8 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory
9 GISS-E2-R NASA Goddard Institute for Space Studies
10 HadGEM2-CC Met Office Hadley Centre
11 HadGEM2-ES Met Office Hadley Centre
12 INMCM4 Institute for Numerical Mathematics
13 IPSL-CM5A-LR L’Institut Pierre-Simon Laplace
14 IPSL-CM5A-MR L’Institut Pierre-Simon Laplace
15 MIROC5 Atmosphere and Ocean Research Institute (University of Tokyo), National Institute for Environmental

Studies, and the Japan Agency for Marine-Earth Science and Technology
16 MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute

(University of Tokyo), and the National Institute for Environmental Studies17 MIROC-ESM-CHEM
18 MPI-ESM-LR Max Planck Institute for Meteorology
19 MRI-CGCM3 Meteorological Research Institute
20 NorESM1-M Norwegian Climate Centre
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performance over Greenland following Taylor (2001):

S=
4(1+R)4

(δ +1/δ )2(1+R0)4 ; (1)

Sw =
3

∑
i=1

αi

3

∑
j=1

β jSi, j . (2)

In Eq. (1),R0 is the maximum correlation attainable (R0 =
0.995);R is the correlation coefficient between the simulated
and observed field; andδ is the standardized standard varia-
tion of the simulated field. In Eq. (2),Si, j is the skill score
calculated according to Eq. (1);β is the weight coefficient
of skill score for the climatological mean (j = 1), interannual
variability ( j = 2) and linear trend (j = 3); andα is the weight
coefficient of skill score for summer SAT (i = 1), winter SAT
(i = 2) and annual mean precipitation (i = 3).

2.3. Ice sheet model

SICOPOLIS (SImulation COde for POLythermal Ice
Sheets) is a 3D, thermodynamically coupled ice sheet model
based on the shallow ice approximation (SIA). It solves the
polythermal ice sheet equations and utilizes the rheology of
an incompressible, heat-conducting, power-law fluid to de-
scribe ice flow (Greve, 1997a, b). SICOPOLIS has been
benchmarked in a number of international ice sheet model-
ing intercomparison projects and is widely used to simulate
the temporal evolution of ice sheet mass balance in response
to external forcing.

In this study, SICOPOLIS was run at a horizontal resolu-
tion of 20×20 km in a domain covering the entire land area
of Greenland and the surrounding ocean. The present ge-
ometry was provided by the Sea-level Response to Ice Sheet
Evolution project (http://websrv.cs.umt.edu/isis/index.php/
SeaRISEAssessment). The present-day temperature and pre-
cipitation over Greenland (i.e., the control climatology)were
based on Fausto et al. (2009) and Ettema et al. (2009), re-
spectively. The geothermal heat flux (Shapiro and Ritzwoller,
2004) was provided to the model as a spatially varying field
and was fixed in all simulations. SMB was estimated by
the positive degree-day (PDD) method (Reeh, 1991) with
the semi-analytical solution (Calov and Greve, 2005). The
elastic-lithosphere-relaxing-asthenosphereapproach was em-
ployed to estimate the isostatic adjustment due to the ice load.
Basal sliding was described by a Weertman-type sliding law
in which sub-melt sliding is allowed (Greve, 2005). More in-

formation concerning SICOPOLIS is given by Greve (1995,
1997a, 1997b).

3. Experimental design

3.1. Paleoclimate spin-up

For ice sheet modeling, it is crucial to start a model run
from accurate initial conditions because small errors in the
initial state could systematically affect the projectionsfor ice
sheets and the corresponding sea level forecasts for the near
future (Arthern and Gudmundsson, 2010). However, it is
very difficult to reproduce the observed GrIS geometry with-
out heavy tuning (Greve et al., 2011). Following Greve and
Herzfeld (2013), we performed paleoclimate spin-up through
the last glacial cycle with the GrIS topography fixed over time
in order to obtain a modeled present-day GrIS close enough
to observations [see Greve and Herzfeld (2013) for details].

3.2. Future projection experiments

3.2.1. Climatic forcing

Climate changes (monthly SAT and annual mean precip-
itation) for the 20th and 21st centuries (1951–2100) were de-
rived from 20th century simulations of 20 CMIP5 models for
the period 1951–2005 and future projection simulations un-
der RCP 4.5 and RCP 8.5 scenarios beyond 2005. In order to
reduce systematic errors in the global climate models (Huy-
brechts et al., 2004), the simulated climatic changes were
considered in the anomaly mode. In other words, we sub-
tracted the climatological mean over the period 1951–1980
from the simulated climate changes. These anomalies were
then interpolated onto the SICOPOLIS grid, before being
added to the control climatology used by the ice sheet model
to create the climate forcing for the period 1951–2100.

3.2.2. Experiments

To estimate GrIS changes in the 20th and 21st centuries
(1951–2100), the following experiments were performed. In
the control run (EXPcnt), the ice sheet model was integrated
for 150 years with the climate forcing fixed at present. In
EXPrcp45and EXPrcp85, the ice sheet model ran for the period
1951–2100, with climatic forcing derived from the 20 CMIP5
models and their ensemble mean under RCP 4.5 and RCP 8.5
scenarios, respectively (see section 3.2.1). In EXPrcp452B and
EXPrcp852B, the climatic forcing was the same as in EXPrcp45

Table 2. Experimental design.

Climatic forcing Basal sliding coefficient (m yr−1Pa−1) Number of runs Integration period

EXPcnt Modern 11.2 1 /
EXPrcp45 RCP 4.5a 11.2 21 1951−2100
EXPrcp85 RCP 8.5a 11.2 21 1951−2100
EXPrcp452B RCP 4.5a 22.4b 21 1951−2100
EXPrcp852B RCP 8.5a 22.4b 21 1951−2100

aClimatic anomalies derived from the 20 CMIP5 models and their ensemble mean.
bFor the period 2006–2100.
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and EXPrcp85, but with 2× basal sliding (implemented by
doubling the value of the sliding parameter) over the period
2006–2100 to consider the possible influence of enhanced
basal sliding in the future (Greve and Herzfeld, 2013). In
total, we carried out 85 experiments (Table 2).

4. Results

4.1. CMIP5 model performance over Greenland

Figure 1 displays the degree of correspondence of each
model with the ERA-interim reanalysis in depicting the mod-
ern climate over Greenland. A “perfect” model would reside
in the “REF” point in theδ , R-plane of the Taylor diagram.
It is shown that the CMIP5 models perform well in repro-
ducing the spatial pattern of climatological mean (Figs. 1a–
c), exhibiting high spatial correlation coefficients (R > 0.8)
and relatively small RMSE. Furthermore, the models dif-
fer with each other primarily in the modeled standard de-
viation, especially for summer SAT (Fig. 1a). In contrast,
the CMIP5 models perform worse and vary more widely in
simulating the interannual variability and linear trend for the
period 1979–2005 (Figs. 1d–f). For example, seven out of
20 CMIP5 models show negative correlation in simulating
the linear trend of annual mean precipitation. Besides, the
CMIP5 model performance also varies with the evaluated
variables. For example, model 9 performs best in simulat-
ing the linear trend of annual mean precipitation over Green-
land (R= 0.76), but shows lower skill in simulating the linear
trend of summer SAT (R= 0.16).

The multimodel ensemble mean (MEM) performs better
in simulating the climatology mean of SAT and precipitation
relative to most of the individual CMIP5 models (Figs. 1a–c),
showing quite high spatial correlation coefficients (R> 0.95).
In simulating the interannual variability and linear trend, the
MEM also exhibits higher correlation coefficients than indi-
vidual models (Figs. 1d–f). However, the MEM tends to
greatly underestimate the amplitude of variation, which could
be attributed to the fact that the MEM performs like a smooth
function and hence reduces the variance of temporal evolu-
tion.

4.2. Model rankings

The aforementioned results indicate a substantial spread
in CMIP5 model performance over Greenland, leading to
great difficulty in setting up a criterion for optimal model se-
lection. With the aim of selecting the most suitable model
outputs for ice sheet modeling, we ranked the CMIP5 models

based on their abilities in simulating summer SAT (ice sheet
models are generally more sensitive to temperature changes
than precipitation changes, and ablation mainly occurs in the
summer season over GrIS). As part of the process, we as-
sumed that the CMIP5 model capabilities to depict the cli-
matological mean and temporal evolution are equally impor-
tant (C1 in Table 3). According to the calculated skill scores,
the top three models are GFDL-CM3, CSIRO-Mk3-6-0 and
GISS-E2-R (Fig. 2).

To investigate the sensitivity of these top-performing
models to the model-selection criterion, we defined another
two criteria under which the model capabilities in reproduc-
ing winter SAT and annual mean precipitation over Green-
land were also considered (Table 3). Based on the model-
selection criterion C2 (C3), the skill scores showed that
the top three models are GISS-E2-R, MPI-ESM-LR and
MIROC5 (GISS-E2-R, MPI-ESM-LR and CCSM4) (Fig. 2).

4.3. Sea-level changes in the 21st century

Figure 3 shows the estimated global SLR due to GrIS
mass loss in the 21st century under RCP 4.5 and RCP 8.5
scenarios. According to the results, which are based on the
outputs of the 20 CMIP5 models, global sea level will rise
by approximately 0–16 cm by 2100 under the RCP 4.5 sce-
nario and 0–27 cm under the RCP 8.5 scenario. The upper
and lower bounds are associated with GFDL-CM3 and the
INMCM4, respectively. In response to the MEM result, the
ice sheet model projects a global SLR of approximately 3
cm and 7 cm under the RCP 4.5 and RCP 8.5 scenarios, re-
spectively. Considering the possible influence of enhanced
basal sliding in the future, global SLR by 2100 increases to
7–22 (7–33) cm under the RCP 4.5 (RCP 8.5) scenario; the
ice sheet model driven by the MEM result estimates a global
SLR of 10 (13) cm. The large ranges of projected sea level
change simply reflect inter-model differences in response to
the same RCP scenario. In addition, the uncertainty range
of sea level projections is much larger than that reported in
IPCC AR4 (Meehl et al., 2007b) and other projections based
on IPCC AR4 model outputs (e.g., Graversen et al., 2011).

To narrow the range of uncertainty in projected SLR
caused by the large spread in climate projections, one can de-
cide to only trust the results of the ice sheet model driven by
the model outputs of those CMIP5 models judged to be more
reliable. Based on the outputs of the top three models in sim-
ulating summer SAT (i.e., C1), GrIS mass loss contributes
4–16 cm and 7–27 cm (10–22 cm and 13–33 cm with 2×

basal sliding) to global SLR by 2100 under the RCP 4.5 and

Table 3. Criteria for model selection.

Coefficients in Eq.(2) Notes

Criterion 1 (C1) α1 = 1,α2 = α3 = 0;βi = 1/3 Summer SAT is assumed to be the most important variable for GrIS mass
balance.

Criterion 2 (C2) α1 = 0.5,α2 = 0.2,α3 = 0.3;βi = 1/3 Summer SAT is relatively more important and the influences of winter SAT
and precipitation are also considered.

Criterion 3 (C3) α1 = α2 = α3 = 1/3;βi = 1/3 Summer SAT, winter SAT and annual mean precipitation are assumed to be
equally important.
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(a) (d)

(b)

(c)

(e)

(f)

climatological mean

interannual variability
linear trend

Fig. 1. Taylor diagram for displaying the spatial pattern statistics of the CMIP5 models in simulating the climatological
mean (purple), interannual variability (blue) and linear trend (red) of (a, d) the summer SAT, (b, e) winter SAT and (c,
f) annual mean precipitation. The numbers represent the CMIP5 models listed in Table 1 and number 21 represents the
MEM. The standard deviation of the modeled field is the radialdistance from the origin; the RMSE is the distance to the
observed point (“REF”); the azimuthal position gives the correlation coefficient. Note that any model with a negative
correlation coefficient or standard variation larger than 1.65 is not shown.

RCP 8.5 scenarios, respectively (Fig. 4). Compared to the
results based on the outputs of the full 20 CMIP5 models, the
uncertainty range of sea level projections is subsequentlyre-

duced. Based on the outputs of those models selected accord-
ing to criteria C2 and C3, the uncertainty range of sea level
projections is approximately 3–6 cm, which is much smaller
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Fig. 2. Skill scores of CMIP5 models in simulating modern climate over Greenland based on different model-selection
criteria (Table 3). The top three models are highlighted with the corresponding dark color.
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Fig. 3. Simulated ice volume changes of the GrIS (sea level equivalent, cm) in the 21st century (2006–2100) relative to
1986–2005 without/with 2×basal sliding under the RCP 4.5 (a, b) and RCP 8.5 (c, d) scenarios in the future projection
experiments, which have been subtracted from the control run to remove unrelated post-initialization adjustments. The
thick black line represents the MEM.
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than that based on the non-selective approach (Fig. 4). These
results indicate that, although different criteria could lead to
different model rankings, and hence different top-performing
models being selected, such a selective approach in terms of
model outputs is a possible method for reducing the level of
uncertainty in sea level projections.

5. Discussion and conclusions

In this paper we have presented new estimates of the con-
tribution of GrIS to 21st century SLR based on the latest
CMIP5 model outputs. In addition, our results have revealed
a large spread in climate projections simulated by CMIP5
models, which then leads to great uncertainty in terms of
future sea level projection. However, with an evaluation of
models and subsequent selection of the relatively more re-
liable model outputs, we have shown that the range of un-
certainty in future sea level projection can be narrowed to a
certain degree.

There are, however, limitations to be considered. The
ranking process utilized in this study was targeted at the forc-
ing of an ice sheet model, and hence contained arbitrary el-
ements. If we aim to select an optimal subset of models
for regional dynamical downscaling, the emphasis should be
placed upon the model’s capability to simulate atmospheric
circulation (Franco et al., 2011). Furthermore, the projected
SLR depends on the number of top-performing models se-
lected. We hope our approach may stimulate improvements
or a comprehensive and fully objective criterion for optimal
model selection. Besides, the simple MEM (i.e., arithmetic
average) may not be appropriate taking into account the wide
spread in CMIP5 model performance. Thus, the use of model
weighting could be a useful option in the calculation of MEM
(Xu et al., 2010).

Equally, the uncertainty in sea level projection arising

from the ice sheet model should also be considered. Be-
cause of the limitations of SIA (Calov et al., 2010) and the
PDD scheme (Bougamont et al., 2007), SICOPOLIS can-
not reproduce the fast-flowing ice streams and outlet glaciers
very well, nor can it accurately simulate the ablation over
the GrIS. These errors can affect the simulation of present-
day ice calving and melting rates and hence influence pro-
jected sea level change. Bindschadler et al. (2013) high-
lighted the uncertainty in sea level projection from seven ice
sheet models driven by a single climate forcing; they found
that GrIS mass loss will contribute approximately 5–66 cm
to global SLR by 2100 under a climate scenario approxima-
tion to RCP 8.5, which is comparable to the uncertainty range
(7-33 cm) caused by the spread in climate projection in our
study. Seddik et al. (2012) pointed out that, compared to an
ice sheet model based on SIA, including more physics in the
model projects a larger dynamical mass loss of the ice sheet
in the 21st century. Furthermore, a high-order/full-stokes ice
sheet model can reproduce the observed ice stream and outlet
glaciers over the GrIS well and hence produce more reliable
future projections (Price et al., 2011; Gillet-Chaulet et al.,
2012).

Additionally, the effect of ocean temperature change on
the GrIS (e.g., Holland et al., 2008) was not considered in our
study, as few ice sheet models incorporate an ocean compo-
nent enabling full ocean–ice interaction. However, the accel-
eration of outlet glaciers in Greenland (Joughin et al., 2010;
Moon et al., 2012), which is responsible for a substantial in-
crease in ice discharge, could be largely attributed to ocean
warming (Bindschadler, 2006). Besides, Winkelmann and
Levermann (2012) indicated that by including an annual in-
cursion of warm ocean water, the solid ice discharge of the
GrIS by 2100 could be up to 42 cm. Thus, ignoring the ef-
fect of ocean temperature change on the GrIS could lead to an
underestimation of projected SLR. To provide more reliable
sea level projection, a new generation of ice sheet models is
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required, in which rapid ice flow, the SMB and the effect of
the ocean should all be better represented.
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