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ABSTRACT

In order to investigate whether adaptive observations can improve tropical cyclone (TC) intensity forecasts, observing
system simulation experiments (OSSEs) were conducted for 20 TC cases originating in the western North Pacific during the
2010 season according to the conditional nonlinear optimalperturbation (CNOP) sensitivity, using the fifth version ofthe
PSU/NCAR mesoscale model (MM5) and its 3DVAR assimilation system. A new intensity index was defined as the sum of
the number of grid points within an allocated square centered at the corresponding forecast TC central position, that satisfy
constraints associated with the Sea Level Pressure (SLP), near-surface horizontal wind speed, and accumulated convective
precipitation. The higher the index value is, the more intense the TC is.

The impacts of the CNOP sensitivity on the intensity forecast were then estimated. The OSSE results showed that for
15 of the 20 cases there were improvements, with reductions of forecast errors in the range of 0.12%–8.59%, which were
much less than in track forecasts. The indication, therefore, is that the CNOP sensitivity has a generally positive effect on
TC intensity forecasts, but only to a certain degree. We conclude that factors such as the use of a coupled model, or better
initialization of the TC vortex, are more important for an accurate TC intensity forecast.
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1. Introduction

As severe natural disasters, tropical cyclones (TCs) cause
huge human and economic losses every year. Hence, ac-
curate TC forecasts in areas threatened by such storms is
of great importance. Since the beginning of the numerical
weather forecasting era, researchers have considered many
ways to obtain more accurate forecasts of both TC track and
intensity, such as the application of advanced numerical mod-
els, satellite observations, and adaptive observations over the
Atlantic and eastern Pacific (Aberson, 2002, 2003), and west-
ern Pacific (Wu et al., 2005, 2007; Elsberry and Harr, 2008)
during the last decade. Consequently, TC track forecasts
have improved significantly, and errors have been reduced
by nearly 50% over the period 1980–2008 for forecasts in
the Atlantic and eastern North Pacific (Franklin, 2009). The
contribution of aircraft-deployed dropwindsondes used for
adaptive observations has been particularly notable. Wu et
al. (2007) showed that, during the first 72 h, the mean track
error reductions in the National Centers for Environmental
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Prediction (NCEP) Global Forecast System (GFS), Fleet Nu-
merical Meteorology and Oceanography Center (FNMOC)
Navy Operational Global Atmospheric Prediction System
(NOGAPS), and the Japanese Meteorological Agency (JMA)
Global Spectral Model (GSM), are 14%, 14% and 19%, re-
spectively. Statistical results from the 2003–09 Dropwind-
sonde Observations for Typhoon Surveillance near the Tai-
wan Region (DOTSTAR) program showed that assimilation
of dropwindsonde data could lead to a 60% improvement in
1- to 5-day track forecasts and a 10%–20% mean track error
reduction with at least a 90% confidence level (Chou et al.,
2011).

In contrast, many factors have hampered the development
of TC intensity forecasting, including inaccurate initializa-
tion of the TC vortex, imperfect physical parameterization,
and a lack of data regarding the inner area of TCs. There-
fore, how to improve TC intensity forecasting has become
a hot topic in recent times. Efforts have focused on under-
standing the environmental dynamical factors affecting TC
intensification, intensity, and life peak intensity (Zeng et al.,
2006), the effects of terrain and land surface variation on the
observed evolution of the eyewall (Wang and Cheng, 2008),
the inter-relationships between upper-ocean thermal structure
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and western North Pacific category 5 typhoons (Lin et al.,
2007, 2008), concentric sensitivity of the simulated TC inner-
core size to the initial vortex size (Xu and Wang, 2010), eye-
wall formation (Wu et al., 2011), and the assimilation of air-
borne radar observations through an ensemble Kalman filter
(Weng and Zhang, 2012). The combined impact of such stud-
ies will be to improve the accuracy of TC intensity forecasts
in the near future.

Qin and Mu (2011b) evaluated the influence of the condi-
tional nonlinear optimal perturbation (CNOP) sensitivityon
TC track forecasts by assimilating simulated dropwindsonde
observational data. The CNOP sensitivity had an average
positive effect on the TC track forecasts. In addition, the
CNOP sensitivity generally performed better than the sensi-
tivities of the five leading singular vectors (SVs) (Palmer et
al., 1998). Hence, CNOP is an effective method to identify
sensitive regions for TC adaptive observations. The general
beneficial effects of adaptive observations on TC track fore-
casting established from such research motivated us to inves-
tigate whether its impacts on TC intensity forecasts would
also be positive. This is the question we aim to answer in the
present paper.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the method, model and strategy used in the
study. Section 3 details the TC intensity index, which em-
bodies the synthetic impacts of sea level pressure (SLP),
near-surface horizontal wind speed (WIND), and accumu-
lated convective precipitation (PP). Section 4 considers the
influence on TC intensity forecasts of assimilating simulated
dropwindsonde data deployed in sensitive regions identified
by CNOP. Finally, conclusions and a discussion are presented
in section 5.

2. Method, model and strategy

As a method to identify sensitive regions in adaptive ob-
servations, CNOP has been successfully applied in many
published studies (Mu et al., 2009; Wang and Tan, 2009;
Wang et al., 2011; Qin and Mu, 2011a, 2011b; Zhou and
Mu, 2011, 2012a, 2012b; Chen and Mu, 2012; Chen et al.,
2013; Qin et al., 2013). Using similar mathematic principles,
CNOP has also been employed in the predictability of ENSO
(Duan et al., 2004; Mu et al., 2007; Duan et al., 2009; Yu
et al., 2009; Duan and Luo, 2010; Yu et al., 2012a, 2012b;),
thermohaline circulation (Mu et al., 2004; Sun et al., 2005),
blocking events (Jiang and Wang, 2010; Jiang and Wang,
2011; Mu and Jiang, 2011), simulation and predictability of
ecosystems (Sun and Mu, 2009; Sun et al., 2010; Sun and
Mu, 2011, 2012), and cold vortices (Jiang and Wang, 2011).

The same structure and computation of CNOP as in Qin
et al. (2013) was used in the present study. CNOP(δX∗

0 ) is
the initial perturbation(δX0), superimposed to initial analy-
sis (X0), whose nonlinear evolution (using nonlinear model
M) attains the maximal value of the cost functionJ at veri-
fication timet (Mu et al., 2003; Mu and Zhang, 2006) for a

chosen norm‖ · ‖:

J(δX∗
0 ) = max

‖δX0‖6β
‖M(X0 + δX0)−M(X0)‖. (1)

Here,‖δX0‖ 6 β is the initial constraint defined by the cho-
sen norm‖ · ‖, which reflects the physical laws that the ini-
tial perturbation should satisfy. This norm also measured the
evolution of the initial perturbations in the present study. In
predictability studies, CNOP represents the initial errorthat
has the worst impacts on the prediction result at verification
time (Mu et al., 2003). Especially for TC events, CNOP can
be used to identify the initial error that causes the largestpre-
diction error (Mu et al., 2009). Consequently, the worst fore-
cast would be avoided if the CNOP is eliminated in the initial
analysis.

The CNOP calculated in the present study optimized
the perturbation energy evolution over a 48-hr optimiza-
tion period employing adjoint models of the fifth version
of the Pennsylvania State University/National Center for At-
mospheric Research (PSU/NCAR) mesoscale model (MM5)
based on the ERA-Interim reanalysis from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). The
physical parameterizations used in the simulation included
the dry convective adjustment scheme, the grid-resolved
large-scale precipitation scheme, the high-resolution PBL
scheme, and the Kuo cumulus parameterization scheme. The
horizontal area covered a 121(lat)× 81(lon) square lattice
with a horizontal resolution of 60 km and 11 levels in the
vertical direction, with the top level at 50 hPa. The verifi-
cation region was approximately a 15◦ (lat) ×12◦ (lon) box
centred at the central forecast position of the corresponding
TC at 48 h (verification time).

We used the total dry energy norm (Gde) to measure the
initial perturbations and the evolution of the perturbations,
which can be expressed as

Gde(δX0)=
1
D

∫

D

∫ 1

0

[

u′20 +v′20 +
cp

Tr
T ′2

0 +RaTr

(

p′s
pr

)2
]

dσds,

(2)
whereD is the horizontal model region;σ is the vertical co-
ordinate;cp = 1005.7 J kg−1 K−1, which is the specific heat
at constant pressure;Ra = 287.04 J kg−1 K−1, which is the
dry air constant;pr = 1000 hPa; andTr = 270 K.δX0 is com-
posed ofu′0, v′0, T ′

0 andp′s, which are the perturbed zonal and
meridional wind components, temperature and surface pres-
sure, respectively. The integration extends over the full do-
main D and the vertical directionσ . According to Eq. (2),
CNOP sensitivity comprises the grids with larger perturba-
tion energy.

After identifying CNOP sensitivity, we conducted ob-
serving system simulation experiments (OSSEs) in these
regions for each individual case to estimate the impacts
of CNOP sensitivity on TC intensity forecasts. The fore-
casts from 0 up to 48 h initiated with the NCEP reanalysis
data were deemed as the “truth”, and during that period, TC
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forecast intensity was specified at 6-h intervals to represent
the “true” situation. In order to estimate the statistics ofthe
OSSE truth run to reality, we compared the simulated TC cen-
ters in the OSSE truth run with best track data from the Joint
Typhoon Warning Center (JTWC). We found that, on average
for all 20 cases, the difference increased monotonically asthe
forecast period increased, from being 92.4 km at 12 h to 325.9
km at 48 h. The simulation within 24 h of the OSSE truth
run had comparative track forecast errors with those of the
National Hurricane Center (NHC) for Atlantic basin tropical
storms and hurricanes from 2000 to 2009. However, the track
forecast errors of the OSSE truth run over 30 h were larger—
albeit not too much larger—than those of the NHC from 2000
to 2009. Generally, the track forecast errors of the OSSE truth
run in the present study were acceptable. Forecasts during the
same period, but initiated with the ERA-Interim reanalysis
from the ECMWF, represented the control run situation. The
differences between the TC intensities of the control run and
the truth run were defined as the TC intensity forecast error
without dropwindsonde data, which only came from using
different initial reanalysis data. Simultaneously, 15 sets of
simulated observation data, including temperature, horizon-
tal wind speed, and horizontal wind direction at 850, 500 and
200 hPa, which were the sum of the forecasts of the truth run
at initial time and Gaussian distribution perturbations with
zero expectation and different standard deviations (orderof
10−1 of the analysis) according to different variables, were
obtained by dropwindsondes over CNOP sensitivity. These
dropwindsonde data were then assimilated by the 3DVAR
assimilation system of MM5 to produce an analysis at 0 h,
which could then be used to predict the TC intensities during
the following 48 h. The differences between this TC intensity
and the truth run were defined as the TC intensity forecast er-
rors with dropwindsondes. Differences between these errors
and those without could indicate the influence of CNOP sen-
sitivity on TC intensity forecasts.

TC cases that originated in the western North Pacific dur-
ing the 2010 season were examined. In total, there were
14 TCs in that year according to the China Meteorological
Administration (CMA). However, for one TC [Namtheum
(2010)], the lifetime was shorter than 48 h, which is the opti-
mization period needed for CNOP calculation; and for two
others [Kompasu (2010) and Mindulle (2010)], the vortex
structure of was not simulated well by the model. Further-
more, where the lifetime of a TC was longer than 96 h, it was
separated into two continuous cases. Hence, the remaining 11
TCs were separated into 20 cases according to their lifetimes,
and these formed the research objects of the study.

3. TC intensity index

Instead of using the conventional definition that relies on
only the SLP or maximum horizontal wind, we have defined
a new index that gives a direct snapshot of the degree of po-
tential impact of a TC, and one that could help the public to
determine their activities in the following hours. In this sec-

tion, we first detail this new TC intensity index and compare
it with the conventional definition, and then we specify the
TC intensity forecast error in the OSSEs.

3.1. Definition

In order to estimate, conveniently and quantitatively, the
impacts of a TC within a limited region, we first allocate a
square centered at the forecasted central position at specified
times (from 12 h to 48 h at 6-h intervals) and with a side
length of 720 km. Because the horizontal spacing between
model grid points is 60 km, there are 169 grid points within
this square. At each grid point, information about three TC
variables is considered in forming the TC intensity index: the
SLP, WIND at 925 hPa, and 12-h PP. We choose three CMA
criteria as references and thus use 1010 hPa (tropical depres-
sion), 15.2 m s−1 (level 7), and 5 mm (a medium amount of
rain) to represent the respective limits for SLP, WIND at 925
hPa, and 12-h PP. These thresholds are determined by itera-
tive tests to satisfy the following two criteria: to reflect the
simulation ability of the model itself; and to be enough to
represent the impact of a TC. We count the grid points where
each separate criterion is satisfied. The TC intensity index
is then defined to be the sum of the three counts. For exam-
ple, if the number of grid points with SLP lower than 1010
hPa (or WIND at 925 hPa larger than 15.2 m s−1 or 12-h PP
greater than 5 mm) is A (or B or C), then the index equals
A+B+C. That is, this index considers a synthetic impact of a
TC within this square according to three factors. The higher
the index value is, the more intense the TC is.

We compared the new index measuring TC intensity with
the conventional one that relies on the maximum near-surface
wind speed. By using the maximum wind speed at every 6-
h interval, each TC case was classified as a (super) typhoon,
severe tropical storm, tropical storm, or tropical depression
(colors in Fig. 1). We then identified the TC intensity at every
6-h interval according to our index (y-axis in Fig. 1). Gen-
erally, the index changes synchronously with the maximum
wind speed. It ranges between 300 and 400 when the maxi-
mum wind speed is in the typhoon or super typhoon category.
If a TC case remains in the tropical depression category dur-
ing most of the 36 h, the index falls into 100–200. The (se-
vere) tropical storms are positioned between the above two
cases. A similar comparison was performed according to the
central SLP, and the results were consistent with those ac-
cording to the maximum near-surface wind speed (data not
shown).

Therefore, the index used in the present study is gener-
ally in line with the conventional definition of TC intensity,
but possesses a number of advantages. Suppose there are two
TC cases in the same location with the same maximum wind
speed of 45 m s−1. With respect to the conventional defini-
tion, the intensity of these two TCs is the same. However, the
degree of their impacts could be different. Is it just limited to
a small region, or does it influence a large area? If reportingis
based only on the conventional definition, the public does not
receive detailed information about the degree to which they
will be affected by an approaching TC. Instead, the new in-
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Fig. 1. TC intensity index for all 20 cases during the period 12–48 h at 6-h intervals. Red, blue,
green and purple lines represent (super) typhoons, severe tropical storms, tropical storms and
tropical depressions, respectively, according to the conventional intensity definition that relies
on maximum horizontal wind speed.

tensity index used in the present study provides a direct snap-
shot about the potential degree of impact of a TC, and could
help the public to determine their activities in the following
hours.

3.2. TC intensity forecast error in the OSSEs

To quantitatively estimate the impacts of the CNOP sen-
sitivity on TC intensity forecasts, we specify the TC intensity
forecast error in the OSSEs. As discussed in the previous sec-
tion, the TC intensity index consists of three variables (A,B,
and C) and represents the number of grid points satisfying the
conditions of SLP, WIND and PP, respectively. The letters A,
B and C are used for the truth run; for the control (OSSE)
run, the corresponding values are denoted by a, b and c. The

definition of the TC intensity forecast error (IFE) is

(|A−a|+ |B−b|+ |C−c|)×
100

A+B+C
% . (3)

The IFE represents the difference in intensity between the
control (OSSE) and truth runs in the allocated square. If the
IFE equals zero, this means that the forecast intensity in the
corresponding control (OSSE) run is the same as that in the
truth run, suggesting there is no intensity forecast error be-
tween them. The larger the IFE is, the larger the intensity
forecast error is, indicating that the intensity predictedby the
control (OSSE) becomes increasingly different from the true
state. We calculated the IFE twice at every 6-h interval dur-
ing the period 12–48 h for each TC case, to represent the
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cases with and without dropwindsonde data. The differences
between the cases illustrate the influence of the CNOP sensi-
tivity on the TC intensity forecast.

4. OSSE results and case analyses

The IFE at intervals of 6 h during the period 12–48 h
for each TC case are shown in Fig. 2. In each plot, two
groups of bars represent the IFE in Eq. (3) at different times
beginning from 12 h. Generally, IFEs with dropwindsonde
data were lower than those without dropwindsonde data in
15 of the 20 cases, and there was a mean reduction in er-
ror of 0.12%–8.59% for the period 12–48 h. In contrast,
five cases showed increased forecast errors of 0.20%–18.37%
after utilizing the dropwindsonde data. In some cases, in-

cluding CONSON1 (2010), Fanapi1 (2010), MEGI3 (2010),
CHABA1 (2010) and CHABA2 (2010), the level of improve-
ment after using dropwindsonde data was marked. However,
in the Malou1 (2010) case, the use of dropwindsonde data
caused the intensity forecast to be completely different from
the true state, and resulted in the worst forecast among all
the 20 cases (the IFE increased by 18.37%). For nearly half
of the 20 cases, the average changes before and after assim-
ilation of dropwindsonde data were not that remarkable. On
some occasions, the differences between control and OSSE
at each individual time point were quite major. However, for
half of the time points from 12 to 48 h, the changes were
positive (reduced errors), and for the other half the changes
were negative (increased errors). Overall, these two oppos-
ing sets of results culminated in an almost neutral effect [e.g.,

Fig. 2. Intensity forecast errors (IFE) for the 20 cases without (black bars) and with (gray bars) dropwindsondes
during the 12–48-h period. The numbers included in the upperleft of each panel indicate the average forecast
errors during the period.
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Fig. 2. (continued.)

Malakas2 (2010)]. On other occasions, the intensity forecasts
with and without dropwindsonde data were similar at each in-
dividual time point [e.g., Lionrock2 (2010)]. Now follows a
detailed analysis of representative cases in which the inclu-
sion of dropwindsonde data had marked effects. Cases of im-
provement and deterioration are both considered. No further
discussion about neutral cases is provided.

Fanapi1 (2010) is a representative case of intensity fore-
cast improvement. It remained as a tropical storm, but then
intensified to a severe tropical storm during the second 24
h. The intensity forecast errors were reduced markedly in
the OSSE run at all intervals from 12 h up to 48 h, although
not at 24 h. The improvement in the intensity forecast at 48 h
was the most significant, in which there was a more than 20%
reduction in the forecast error. To further detail the improve-
ments in intensity, Fig. 3 shows the SLP, WIND and 48-h PP
in the square region mentioned in section 3.1 at 48 h for the
truth, control and OSSE runs. In the true run, the depres-

sion system occupied almost the entire region, and its lowest
pressure was 1000 hPa. Strong horizontal wind (> 15 m s−1)
formed in a ring, and the region affected by the strong wind
was mainly located in the upper right quadrant, in the shape
of a crescent. In addition, the region with convective precip-
itation was located in the lower right corner of this square,
was oriented from southeast to northwest, and had a maxi-
mum of > 35 mm for 48 h. Without dropwindsonde data,
the forecast depression was a little weaker, with a minimum
SLP of> 1000 hPa, and the region it controlled was a little
west of the truth. Moreover, strong wind (over level 7) did
not form a ring in this case, but instead extended to the south.
The region affected by strong wind was distributed almost
zonally. The precipitation zone was shaped like a scorpion’s
tail, with the main body distributed east to west. After assim-
ilating the dropwindsonde data, the forecast depression was
deeper (< 1000 hPa) and controlled almost the entire region
again, indicating a trend towards the true situation. More-
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Fig. 3. SLP, horizontal wind speed (at 925 hPa) and accumulated (48-h) convective precipitation patterns in the allocated
region at 48 h for the true, control and OSSE runs for case Fanapi1 (2010).

over, the region affected by strong wind encircled the eye re-
gion, as in the truth. Although the strong wind region was
distributed almost meridionally, the crescent shape was pro-
nounced. However, it should be noted that the forecast wind
speed was stronger than the truth, with a maximum of> 26
m s−1. The precipitation zone had a distribution similar to
that for the true situation. However, the amount was much
less than the truth, being< 20 mm for almost the entire re-
gion. Generally, if dropwindsondes are deployed using the
CNOP sensitivity for case Fanapi1 (2010) as a guide, the im-
provements in the intensity forecast could be significant, rela-
tive to if the forecast is determined without dropwindsondes.
The SLP, WIND and precipitation zones can be predicted to-
ward the true situation, indicating that the CNOP sensitivity
is valid in the intensity forecast.

The corresponding streamlines at 850, 500 and 200 hPa
for the initial and terminal times are displayed in Fig. 4 to
demonstrate the synoptic features captured by the CNOP sen-
sitivity. At the initial time, the highest CNOP sensitivityin
the lower and middle levels corresponded to the region of in-
flow into the TC center; in the upper level, this region was
related to the outflow from the TC center. That is, the regions
where mass and energy are exchanged between the storm and
surrounding environment were identified as the most sensi-
tive regions for adaptive observations. This identification
was important for following the development or dissipation
of this TC, which is consistent with the findings of Peng and
Reynolds (2006). Hence, it is reasonable to suggest that de-
ploying dropwindsondes in these regions would have signifi-
cant benefits for both track and intensity forecasts.

The forecast errors in the form of energy [Eq. (2)] at the
end of the 48-h evolution are also shown in Fig. 4. The most

important part is associated with the storm, which explains
why eliminating initial errors with the CNOP pattern could
reduce the corresponding TC forecast errors.

We also examined in detail the case in which the great-
est decrease in intensity forecast accuracy was found. Of the
five cases that showed increased forecast errors after utiliz-
ing the dropwindsonde data, the intensity forecast for Malou1
(2010) was the furthest from the truth (Fig. 2). Without drop-
windsondes, differences between the intensity forecasts for
the control and truth runs existed at two time points (12 and
24 h), and were around 10%. During the next 24 h, the in-
tensity forecast of the control run was the same as that of the
truth run, indicating a very accurate intensity forecast prior to
adaptive observation. However, after assimilating dropwind-
sondes, differences increased at every time interval except 12
h, with an average error of 21.77%, which was over six times
that of the control run (3.40%). The error at 42 h was the
largest at nearly 60%. The following detailed analysis fo-
cuses on this particular time point.

The three elements of the TC intensity index (SLP, WIND
and PP) are shown in Fig. 5 for the Malou1 (2010) case at 42
h. The SLP, WIND and PP patterns were identical in the truth
and control runs. All of them showed that Malou1 (2010)
was a comparatively weak TC system: the central SLP was
1009.4 hPa within a narrow zone; the regions where horizon-
tal wind speed at 925 hPa was larger than 15 m s−1 were con-
centrated in a very small range close to the right boundary;
and the maximum precipitation amount was only 6 mm for a
42-h period. After assimilating the dropwindsonde data, the
forecast intensity was stronger than the truth: the centralSLP
was below 1009.2 hPa with an expanded range; the region of
strong horizontal wind was still at the right boundary, but its
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Fig. 4. Streamlines at 850, 500 and 200 hPa for the initial (0 h) and terminal (48 h) time points for the
case Fanapi1 (2010). Shading shows the patterns of CNOP initial errors and forecast errors at 48 h. The
red rectangle in each panel is the verification region.

Fig. 5. The same as Fig. 3, but for the case Malou1 (2010) at 42 h.

size had doubled and the maximum was now near 17 m s−1.
However, the precipitation had decreased obviously in both
amount and range. Of note is that the differences between the
truth and OSSE runs were larger than those between the truth

and control runs, as this indicates that the intensity forecast
using the CNOP guided dropwindsonde data was inaccurate,
relative to the forecast that used no additional data.

What is the reason for the decline in accuracy of the inten-
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sity forecast? Is the sensitive region identified by the CNOP
incorrect? Or are there other possibilities? To investigate the
possible reasons for the deterioration in intensity forecast ac-
curacy, streamlines for different levels at the initial andtermi-
nal times are shown in Fig. 6. Judging from the background
streamlines, the TC vortex of Malou1 (2010) was a really
weak system at initial time, which could only be traced to
within 20◦–25◦N and 125◦–130◦E at 850 hPa. Additionally,
there were both large-scale and many local systems, which
comprised a really complicated environment. In detail, the
strong subtropical high and mid-latitude trough separately
controlled the western North Pacific for over 30◦ of longi-
tude and the continent. Simultaneously, there were several
local highs and lows distributed in the tropical zones. With
respect to the CNOP sensitivity, it reflected different regimes
at different levels. In the middle and upper levels, the sensi-
tivity was associated with the trough. In the lower levels, it
was related to the storm itself. Over the 48-h period of evo-
lution, all of the above systems changed substantially and a
more complicated environment appeared. The range of the
subtropical high over the western North Pacific narrowed in
both the zonal and meridional directions. The mid-latitude
trough moved eastward by about 5◦ in longitude, and within
the verification region. TC Malou1 (2010) strengthened and
moved northwestward during these 48 h, forming a promi-
nent cyclone at lower and middle levels. However, most of
the forecast errors caused by CNOP pattern initial errors did
not fall within the verification region at 48 h. That is to say,

eliminating the initial errors with the CNOP pattern does not
necessarily lead to a forecast error reduction in the verifica-
tion region. According to our previous research, a high pro-
portion of forecast errors within the verification region com-
pared with those in the whole model region is one necessary
condition to obtain marked forecast improvements by adap-
tive observations (Qin et al., 2013). Hence, an improvement
in forecast skill was not obtained in this case. Unexpectedly,
the forecast accuracy decreased instead, and the reason be-
hind this was the complicated environment, together with a
weak TC vortex. Not one of the systems within the verifica-
tion region could dominate the streamlines there.

5. Discussion and conclusion
TC intensity forecasting is a complicated problem in the

field of weather forecasting. The consensus is that numeri-
cal modeling needs improvement. In this context, the general
positive effects of adaptive observations on TC track fore-
casts inspired us to investigate the impacts of additional ob-
servations on TC intensity forecasts. Depending on the out-
come, it would then be possible to consider upgrading the TC
intensity forecast skill from this point of view.

We defined a TC intensity index that focuses on the syn-
thetic impacts on affected regions, which are caused by SLP,
WIND and PP. This new index differs from the conventional
definition by using the number of grid points satisfying cer-
tain constraints within a geographic square. The higher the

Fig. 6. The same as Fig. 4, but for the case Malou1 (2010).
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index value is, the more intense the TC is.
Using this new definition of TC intensity, we estimated

the impacts of the CNOP sensitivity on the intensity forecasts
for 20 cases. The OSSE results for these 20 cases showed
that 15 of them displayed improvements in the intensity fore-
cast, with reductions of intensity forecast errors rangingfrom
0.12% to 8.59%. However, five of them showed declines in
forecast accuracy ranging from 0.20% to 18.37%. According
to the properties of the cases that showed improvements, the
level of improvement was much more than the level of dete-
rioration, indicating that the CNOP sensitivity generallyhad
a positive effect on the TC intensity forecasts. Synoptic anal-
yses of representative cases provided further details. Forthe
case with improvement, the CNOP sensitivity captured those
regions that are important for following the development or
dissipation of a TC case. Therefore, with the assimilation
of dropwindsonde data within the CNOP sensitivity, the pat-
terns of SLP, horizontal wind at 925 hPa and accumulated
convective precipitation moved toward the true situation,as
compared with the control.

Nevertheless, the degree of improvement was not as sig-
nificant as that for track forecasts (0%–51.2%) reported in
Qin et al. (2013). This indicates that attempting to improve
TC intensity forecasting by adaptive observations remainsa
challenge. Considering the interaction between atmosphere
and ocean, improving numerical models (including develop-
ing optimal physical process parameterization), using higher
resolutions etc., are more important than increasing obser-
vations at present for an accurate TC intensity forecast, al-
though additional observations can quite markedly improve
TC intensity forecasts in some cases. Therefore, objective
evaluation of the impacts of adaptive observations on TC in-
tensity forecasts should be made. While doing so does im-
prove TC intensity forecasts in general terms, the degree of
improvement is not significant. Nevertheless, the effects of
adaptive observations are expected to be better embodied if
more advanced numerical models become available.
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