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ABSTRACT

In order to investigate whether adaptive observations egmave tropical cyclone (TC) intensity forecasts, obgggvi
system simulation experiments (OSSEs) were conducteddf@iCcases originating in the western North Pacific during the
2010 season according to the conditional nonlinear optpeaiurbation (CNOP) sensitivity, using the fifth versiontiogé
PSU/NCAR mesoscale model (MM5) and its 3DVAR assimilatigsitem. A new intensity index was defined as the sum of
the number of grid points within an allocated square cedtatehe corresponding forecast TC central position, thidfga
constraints associated with the Sea Level Pressure (SeR);surface horizontal wind speed, and accumulated ctvwec
precipitation. The higher the index value is, the more is¢etine TC is.

The impacts of the CNOP sensitivity on the intensity foreseasre then estimated. The OSSE results showed that for
15 of the 20 cases there were improvements, with reductibf@ecast errors in the range of 0.12%-8.59%, which were
much less than in track forecasts. The indication, theegfisrthat the CNOP sensitivity has a generally positivectfta
TC intensity forecasts, but only to a certain degree. We lcolecthat factors such as the use of a coupled model, or better
initialization of the TC vortex, are more important for arcarate TC intensity forecast.
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1. Introduction Prediction (NCEP) Global Forecast System (GFS), Fleet Nu-
mgrical Meteorology and Oceanography Center (FNMOC)
'ﬁavy Operational Global Atmospheric Prediction System

curate TC forecasts in areas threatened by such stormg\?sOGAPS)’ and the Japanese Meteorg)loglcoal Agencyo(JMA)
of great importance. Since the beginning of the numerica{Obal Spectral Model (GSM), are 14%, 14% and 19%, re-
' ectively. Statistical results from the 2003—09 Dropwind

weather forecasting era, researchers have considered mah : . .
. sojide Observations for Typhoon Surveillance near the Tai-
ways to obtain more accurate forecasts of both TC track an . L
. . . . wan Region (DOTSTAR) program showed that assimilation
intensity, such as the application of advanced numericalmo . . .
) ) : \ of dropwindsonde data could lead to a 60% improvement in

els, satellite observations, and adaptive observatioastbe
. o 1- to 5-day track forecasts and a 10%—-20% mean track error
Atlantic and eastern Pacific (Aberson, 2002, 2003), and-westOluction with at least a 90% confidence level (Chou et al
ern Pacific (Wu et al., 2005, 2007; Elsberry and Harr, 2005?) v

during the last decade. Consequently, TC track forecaS sll)'
4 o In contrast, many factors have hampered the development
have improved significantly, and errors have been reduce : . . . o L
. of TC intensity forecasting, including inaccurate iniizal-
by nearly 50% over the period 1980-2008 for forecasts {ion of the TC vortex, imperfect physical parameterization
the Atlantic and eastern North Pacific (Franklin, 2009). The : IMp phy P a

N . . and a lack of data regarding the inner area of TCs. There-
contribution of aircraft-deployed dropwindsondes used f : : . .
. . . are, how to improve TC intensity forecasting has become
adaptive observations has been particularly notable. Wu_e . .
ot topic in recent times. Efforts have focused on under-

al. (2007) showed that, during the first 72 h, the mean trag . : : .

. . . . standing the environmental dynamical factors affecting TC
error reductions in the National Centers for Environmenta o . . : . .
ntensification, intensity, and life peak intensity (Zengk,
2006), the effects of terrain and land surface variationhen t
* Corresponding author: QIN Xiaohao observed evolution of the eyewall (Wang and Cheng, 2008),

Email: xhgin@Ilasg.iap.ac.cn the inter-relationships between upper-ocean thermattstre

As severe natural disasters, tropical cyclones (TCs) ca
huge human and economic losses every year. Hence,
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and western North Pacific category 5 typhoons (Lin et athosen nornf - ||:
2007, 2008), concentric sensitivity of the simulated TGainn
core size to the initial vortex size (Xu and Wang, 2010), eye- J(0Xy) = max [M(Xo+0Xo) =M(Xo)[l. (1)
wall formation (Wu et al., 2011), and the assimilation of air lo%oll<
borne radar observations through an ensemble Kalman filigsre || 5, < B is the initial constraint defined by the cho-
(Weng and Zhang, 2012). The combined impact of such stugm norm| - ||, which reflects the physical laws that the ini-
ies will be to improve the accuracy of TC intensity forecastg| perturbation should satisfy. This norm also meastined t
in the near future. evolution of the initial perturbations in the present stutty

Qin and Mu (2011b) evaluated the influence of the condiiredictability studies, CNOP represents the initial ethat
tional nonlinear optimal perturbation (CNOP) sensitivily has the worst impacts on the prediction result at verificatio
TC track forecasts by assimilating simulated dropwindgongme (Mu et al., 2003). Especially for TC events, CNOP can
observational data. The CNOP sensitivity had an average ysed to identify the initial error that causes the largest
positive effect on the TC track forecasts. In addition, thgction error (Mu et al., 2009). Consequently, the worsefor
CNOP sensitivity generally performed better than the senghst would be avoided if the CNOP is eliminated in the initial
tivities of the five leading singular vectors (SVs) (Palmer gnalysis.
al., 1998). Hence, CNOP is an effective method to identify The CNOP calculated in the present study optimized
sensitive regions for TC adaptive observations. The génefige perturbation energy evolution over a 48-hr optimiza-
beneficial effects of adaptive observations on TC track-forggn period employing adjoint models of the fifth version
casting established from such research motivated us tsinvgs the Pennsylvania State University/National Center for A
tigate whether its impacts on TC intensity forecasts woulgospheric Research (PSU/NCAR) mesoscale model (MM5)
also be positive. This is the question we aim to answer in thgsed on the ERA-Interim reanalysis from the European Cen-
present paper. tre for Medium-Range Weather Forecasts (ECMWF). The

The remainder of the paper is organized as follows. Sgghysical parameterizations used in the simulation indude
tion 2 describes the method, model and strategy used in tRg dry convective adjustment scheme, the grid-resolved
study. Section 3 details the TC intensity index, which enarge-scale precipitation scheme, the high-resolutiot. PB
bodies the synthetic impacts of sea level pressure (SLE¢heme, and the Kuo cumulus parameterization scheme. The
near-surface horizontal wind speed (WIND), and accumyprizontal area covered a 121(lat) 81(lon) square lattice
lated convective precipitation (PP). Section 4 considees tyjth a horizontal resolution of 60 km and 11 levels in the
influence on TC intensity forecasts of assimilating sinedat yertical direction, with the top level at 50 hPa. The verifi-
dropwindsonde data deployed in sensitive regions idedtifigation region was approximately a°1fat) x12° (lon) box
by CNOP. Finally, conclusions and a discussion are preden@ntred at the central forecast position of the correspandi
in section 5. TC at 48 h (verification time).

We used the total dry energy nor®4s) to measure the

initial perturbations and the evolution of the perturbasip
2. Method, model and strategy which can be expressed as

As a method to identify sensitive regions in adaptive ob- L L 2
servations, CNOP has been successfully applied in m _ 4 2.2, Cprr2 Bs
published studies (Mu et al., 2009; Wang and Tan, Zogg;ge(éxo)_D/D/o % +\/0+Tr To Rt (Dr) ] dods,
Wang et al., 2011; Qin and Mu, 2011a, 2011b; Zhou and )

Mu, 2011, 2012a, 2012b; Chen and Mu, 2012; Chen et akhereD is the horizontal model region is the vertical co-
2013; Qin et al., 2013). Using similar mathematic princspleordinate;c, = 10057 J kg~ K~1, which is the specific heat
CNOP has also been employed in the predictability of ENS& constant pressur®, = 287.04 J kgt K1, which is the
(Duan et al., 2004; Mu et al., 2007; Duan et al., 2009; Yéry air constantp, = 1000 hPa; and; = 270 K. X, is com-

et al., 2009; Duan and Luo, 2010; Yu et al., 2012a, 2012bpesed ofy, vy, T§ andpg, which are the perturbed zonal and
thermohaline circulation (Mu et al., 2004; Sun et al., 2005heridional wind components, temperature and surface pres-
blocking events (Jiang and Wang, 2010; Jiang and Wangre, respectively. The integration extends over the fodl d
2011; Mu and Jiang, 2011), simulation and predictability ¢hain D and the vertical directiow. According to Eq. (2),
ecosystems (Sun and Mu, 2009; Sun et al., 2010; Sun alOP sensitivity comprises the grids with larger perturba-
Mu, 2011, 2012), and cold vortices (Jiang and Wang, 2011fjon energy.

The same structure and computation of CNOP as in Qin After identifying CNOP sensitivity, we conducted ob-
et al. (2013) was used in the present study. CNOKR;) is  serving system simulation experiments (OSSEs) in these
the initial perturbatior{dXo), superimposed to initial analy-regions for each individual case to estimate the impacts
sis (Xo), whose nonlinear evolution (using nonlinear modeglf CNOP sensitivity on TC intensity forecasts. The fore-
M) attains the maximal value of the cost functidmt veri- casts from 0 up to 48 h initiated with the NCEP reanalysis
fication timet (Mu et al., 2003; Mu and Zhang, 2006) for adata were deemed as the “truth”, and during that period, TC
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forecast intensity was specified at 6-h intervals to represdion, we first detail this new TC intensity index and compare
the “true” situation. In order to estimate the statisticghaf it with the conventional definition, and then we specify the
OSSE truth run to reality, we compared the simulated TC cefe intensity forecast error in the OSSEs.

ters in the OSSE truth run with best track data from the Joint o

Typhoon Warning Center (JTWC). We found that, on averagel-  Definition

for all 20 cases, the difference increased monotonicalljas In order to estimate, conveniently and quantitatively, the
forecast period increased, from being 92.4 km at 12 h to 32%n§pacts of a TC within a limited region, we first allocate a
km at 48 h. The simulation within 24 h of the OSSE trutkquare centered at the forecasted central position atfigaeci
run had comparative track forecast errors with those of thimmes (from 12 h to 48 h at 6-h intervals) and with a side
National Hurricane Center (NHC) for Atlantic basin trodicalength of 720 km. Because the horizontal spacing between
storms and hurricanes from 2000 to 2009. However, the tratiodel grid points is 60 km, there are 169 grid points within
forecast errors of the OSSE truth run over 30 h were largerthis square. At each grid point, information about three TC
albeit not too much larger—than those of the NHC from 200€riables is considered in forming the TC intensity indée t

to 2009. Generally, the track forecast errors of the OSSh trSLP, WIND at 925 hPa, and 12-h PP. We choose three CMA
run in the present study were acceptable. Forecasts dhwengdriteria as references and thus use 1010 hPa (tropicalsiepre
same period, but initiated with the ERA-Interim reanalysision), 15.2 m st (level 7), and 5 mm (a medium amount of
from the ECMWEF, represented the control run situation. Thiain) to represent the respective limits for SLP, WIND at 925
differences between the TC intensities of the control ruh ahPa, and 12-h PP. These thresholds are determined by itera-
the truth run were defined as the TC intensity forecast eritive tests to satisfy the following two criteria: to reflebet
without dropwindsonde data, which only came from usingimulation ability of the model itself; and to be enough to
different initial reanalysis data. Simultaneously, 15sset represent the impact of a TC. We count the grid points where
simulated observation data, including temperature, bariz each separate criterion is satisfied. The TC intensity index
tal wind speed, and horizontal wind direction at 850, 500 amslthen defined to be the sum of the three counts. For exam-
200 hPa, which were the sum of the forecasts of the truth rpke, if the number of grid points with SLP lower than 1010
at initial time and Gaussian distribution perturbationshwi hPa (or WIND at 925 hPa larger than 15.2 nt &r 12-h PP
zero expectation and different standard deviations (ooflergreater than 5 mm) is A (or B or C), then the index equals
101 of the analysis) according to different variables, wer&+B+C. That is, this index considers a synthetic impact of a
obtained by dropwindsondes over CNOP sensitivity. The3€ within this square according to three factors. The higher
dropwindsonde data were then assimilated by the 3DVARe index value is, the more intense the TC is.

assimilation system of MM5 to produce an analysis at 0 h, We compared the new index measuring TC intensity with
which could then be used to predict the TC intensities duritige conventional one that relies on the maximum near-seirfac
the following 48 h. The differences between this TC intgnsitvind speed. By using the maximum wind speed at every 6-
and the truth run were defined as the TC intensity forecast brinterval, each TC case was classified as a (super) typhoon,
rors with dropwindsondes. Differences between these ®rreevere tropical storm, tropical storm, or tropical defmess
and those without could indicate the influence of CNOP seftolors in Fig. 1). We then identified the TC intensity at gver
sitivity on TC intensity forecasts. 6-h interval according to our indey-axis in Fig. 1). Gen-

TC cases that originated in the western North Pacific dwerally, the index changes synchronously with the maximum
ing the 2010 season were examined. In total, there wevind speed. It ranges between 300 and 400 when the maxi-
14 TCs in that year according to the China Meteorologicadlum wind speed is in the typhoon or super typhoon category.
Administration (CMA). However, for one TC [Namtheumlf a TC case remains in the tropical depression category dur-
(2010)], the lifetime was shorter than 48 h, which is the-opting most of the 36 h, the index falls into 100-200. The (se-
mization period needed for CNOP calculation; and for tweere) tropical storms are positioned between the above two
others [Kompasu (2010) and Mindulle (2010)], the vortegases. A similar comparison was performed according to the
structure of was not simulated well by the model. Furthecentral SLP, and the results were consistent with those ac-
more, where the lifetime of a TC was longer than 96 h, it wa®rding to the maximum near-surface wind speed (data not
separated into two continuous cases. Hence, the remaibingtown).

TCs were separated into 20 cases according to their lifstime Therefore, the index used in the present study is gener-
and these formed the research objects of the study. ally in line with the conventional definition of TC intensity
but possesses a humber of advantages. Suppose there are two
TC cases in the same location with the same maximum wind
3. TCintensity index speed of 45 ms'. With respect to the conventional defini-
tion, the intensity of these two TCs is the same. However, the

Instead of using the conventional definition that relies afegree of their impacts could be different. Is it just lirdite
only the SLP or maximum horizontal wind, we have definealsmall region, or does itinfluence a large area? If repoiting
a new index that gives a direct snapshot of the degree of p@sed only on the conventional definition, the public dods no
tential impact of a TC, and one that could help the public t@ceive detailed information about the degree to which they
determine their activities in the following hours. In thiscs  will be affected by an approaching TC. Instead, the new in-
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Fig. 1. TC intensity index for all 20 cases during the period 12-48®lintervals. Red, blue,
green and purple lines represent (super) typhoons, sewgieal storms, tropical storms and
tropical depressions, respectively, according to the eotiwnal intensity definition that relies
on maximum horizontal wind speed.

tensity index used in the present study provides a diregt-sndefinition of the TC intensity forecast error (IFE) is
shot about the potential degree of impact of a TC, and could

help the public to determine their activities in the follogi (JA—a|+|B—b|+[C—|) x 100

— 0. 3
hours. ATBiC” 3

The IFE represents the difference in intensity between the
control (OSSE) and truth runs in the allocated square. If the
To quantitatively estimate the impacts of the CNOP setFE equals zero, this means that the forecast intensityen th
sitivity on TC intensity forecasts, we specify the TC intéys corresponding control (OSSE) run is the same as that in the
forecast errorin the OSSEs. As discussed in the previous seoth run, suggesting there is no intensity forecast erer b
tion, the TC intensity index consists of three variablesBA, tween them. The larger the IFE is, the larger the intensity
and C) and represents the number of grid points satisfyimg florecast error is, indicating that the intensity predidigdhe
conditions of SLP, WIND and PP, respectively. The letters &pntrol (OSSE) becomes increasingly different from the tru
B and C are used for the truth run; for the control (OSSE}ate. We calculated the IFE twice at every 6-h interval dur-
run, the corresponding values are denoted by a, b and c. Ting the period 12—48 h for each TC case, to represent the

3.2. TC intensity forecast error in the OSSEs
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cases with and without dropwindsonde data. The differenadading CONSONZ1 (2010), Fanapil (2010), MEGI3 (2010),
between the cases illustrate the influence of the CNOP sei@&HABAL (2010) and CHABAZ2 (2010), the level of improve-
tivity on the TC intensity forecast. ment after using dropwindsonde data was marked. However,
in the Maloul (2010) case, the use of dropwindsonde data
caused the intensity forecast to be completely differemfr
4. OSSE resultsand case analyses the true state, and resulted in the worst forecast among all
The IFE at intervals of 6 h during the period 12—48 ke 20 cases (the IFE increased by 18.37%). For nearly half
for each TC case are shown in Fig. 2. In each plot, twaf the 20 cases, the average changes before and after assim-
groups of bars represent the IFE in Eq. (3) at different timé8tion of dropwindsonde data were not that remarkable. On
beginning from 12 h. Generally, IFEs with dropwindsondgome occasions, the differences between control and OSSE
data were lower than those without dropwindsonde dataaheach individual time point were quite major. However, for
15 of the 20 cases, and there was a mean reduction in lf of the time points from 12 to 48 h, the changes were
ror of 0.12%-8.59% for the period 12—-48 h. In contragpositive (reduced errors), and for the other half the change
five cases showed increased forecast errors of 0.20%—18.3v€6€ negative (increased errors). Overall, these two eppos
after utilizing the dropwindsonde data. In some cases, iftg sets of results culminated in an almost neutral effegt [e
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Fig. 2. Intensity forecast errors (IFE) for the 20 cases withouacklbars) and with (gray bars) dropwindsondes
during the 12—-48-h period. The numbers included in the ufgfenf each panel indicate the average forecast
errors during the period.
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Fig. 2. (continued.)

Malakas2 (2010)]. On other occasions, the intensity fatscasion system occupied almost the entire region, and its fowes
with and without dropwindsonde data were similar at each ipressure was 1000 hPa. Strong horizontal wind 6 m s 1)
dividual time point [e.g., Lionrock2 (2010)]. Now follows aformed in a ring, and the region affected by the strong wind
detailed analysis of representative cases in which theinclvas mainly located in the upper right quadrant, in the shape
sion of dropwindsonde data had marked effects. Cases of infia crescent. In addition, the region with convective greci
provement and deterioration are both considered. No furtligtion was located in the lower right corner of this square,
discussion about neutral cases is provided. was oriented from southeast to northwest, and had a maxi-
Fanapil (2010) is a representative case of intensity foraum of > 35 mm for 48 h. Without dropwindsonde data,
cast improvement. It remained as a tropical storm, but thére forecast depression was a little weaker, with a minimum
intensified to a severe tropical storm during the second 24P of > 1000 hPa, and the region it controlled was a little
h. The intensity forecast errors were reduced markedlyiest of the truth. Moreover, strong wind (over level 7) did
the OSSE run at all intervals from 12 h up to 48 h, althougtot form a ring in this case, but instead extended to the south
not at 24 h. The improvementin the intensity forecast at 48lthe region affected by strong wind was distributed almost
was the most significant, in which there was a more than 2@nally. The precipitation zone was shaped like a scorpion’
reduction in the forecast error. To further detail the inyero tail, with the main body distributed east to west. After assi
ments in intensity, Fig. 3 shows the SLP, WIND and 48-h PRiting the dropwindsonde data, the forecast depressian wa
in the square region mentioned in section 3.1 at 48 h for tdeeper £ 1000 hPa) and controlled almost the entire region
truth, control and OSSE runs. In the true run, the depremgain, indicating a trend towards the true situation. More-
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Fig. 3. SLP, horizontal wind speed (at 925 hPa) and accumulateti48nvective precipitation patterns in the allocated
region at 48 h for the true, control and OSSE runs for caseptar(2010).

over, the region affected by strong wind encircled the eye rienportant part is associated with the storm, which explains
gion, as in the truth. Although the strong wind region washy eliminating initial errors with the CNOP pattern could
distributed almost meridionally, the crescent shape was preduce the corresponding TC forecast errors.
nounced. However, it should be noted that the forecast wind We also examined in detail the case in which the great-
speed was stronger than the truth, with a maximum @6 est decrease in intensity forecast accuracy was found.eOf th
m s 1. The precipitation zone had a distribution similar tdive cases that showed increased forecast errors aftez-utili
that for the true situation. However, the amount was muatg the dropwindsonde data, the intensity forecast for Malo
less than the truth, being 20 mm for almost the entire re-(2010) was the furthest from the truth (Fig. 2). Without drop
gion. Generally, if dropwindsondes are deployed using théndsondes, differences between the intensity forecasts f
CNOP sensitivity for case Fanapil (2010) as a guide, the ithe control and truth runs existed at two time points (12 and
provements in the intensity forecast could be significaté-r 24 h), and were around 10%. During the next 24 h, the in-
tive to if the forecast is determined without dropwindsamdetensity forecast of the control run was the same as that of the
The SLP, WIND and precipitation zones can be predicted twwuth run, indicating a very accurate intensity forecagimo
ward the true situation, indicating that the CNOP sensjtiviadaptive observation. However, after assimilating droyplwi
is valid in the intensity forecast. sondes, differences increased at every time interval é4&p

The corresponding streamlines at 850, 500 and 200 hRavith an average error of 21.77%, which was over six times
for the initial and terminal times are displayed in Fig. 4 tthat of the control run (3.40%). The error at 42 h was the
demonstrate the synoptic features captured by the CNOP dangest at nearly 60%. The following detailed analysis fo-
sitivity. At the initial time, the highest CNOP sensitivity  cuses on this particular time point.
the lower and middle levels corresponded to the region of in- The three elements of the TC intensity index (SLP, WIND
flow into the TC center; in the upper level, this region waand PP) are shown in Fig. 5 for the Maloul (2010) case at 42
related to the outflow from the TC center. That is, the regiohs The SLP, WIND and PP patterns were identical in the truth
where mass and energy are exchanged between the stormatticontrol runs. All of them showed that Maloul (2010)
surrounding environment were identified as the most senaias a comparatively weak TC system: the central SLP was
tive regions for adaptive observations. This identificatiol009.4 hPa within a narrow zone; the regions where horizon-
was important for following the development or dissipatiotal wind speed at 925 hPa was larger than 15 frvgere con-
of this TC, which is consistent with the findings of Peng anckntrated in a very small range close to the right boundary;
Reynolds (2006). Hence, it is reasonable to suggest that dae the maximum precipitation amount was only 6 mm for a
ploying dropwindsondes in these regions would have signifi2-h period. After assimilating the dropwindsonde data, th
cant benefits for both track and intensity forecasts. forecast intensity was stronger than the truth: the ceStr&l

The forecast errors in the form of energy [Eq. (2)] at theas below 1009.2 hPa with an expanded range; the region of
end of the 48-h evolution are also shown in Fig. 4. The maostrong horizontal wind was still at the right boundary, kst i
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Fig. 4. Streamlines at 850, 500 and 200 hPa for the initial (O h) arditel (48 h) time points for the
case Fanapil (2010). Shading shows the patterns of CNQét eritors and forecast errors at 48 h. The
red rectangle in each panel is the verification region.
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Fig. 5. The same as Fig. 3, but for the case Maloul (2010) at 42 h.

size had doubled and the maximum was now near 17'm sand control runs, as this indicates that the intensity fasec
However, the precipitation had decreased obviously in baiking the CNOP guided dropwindsonde data was inaccurate,
amount and range. Of note is that the differences between taktive to the forecast that used no additional data.

truth and OSSE runs were larger than those between the truthWhat is the reason for the decline in accuracy of the inten-
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sity forecast? Is the sensitive region identified by the CNGé#iminating the initial errors with the CNOP pattern does no
incorrect? Or are there other possibilities? To investiglaeé necessarily lead to a forecast error reduction in the verific
possible reasons for the deterioration in intensity foseaa- tion region. According to our previous research, a high pro-
curacy, streamlines for different levels at the initial amani- portion of forecast errors within the verification regiomeo

nal times are shown in Fig. 6. Judging from the backgroumpared with those in the whole model region is one necessary
streamlines, the TC vortex of Maloul (2010) was a reallyondition to obtain marked forecast improvements by adap-
weak system at initial time, which could only be traced ttive observations (Qin et al., 2013). Hence, an improvement
within 20°-25°N and 125-130E at 850 hPa. Additionally, in forecast skill was not obtained in this case. Unexpegted|
there were both large-scale and many local systems, whtble forecast accuracy decreased instead, and the reason be-
comprised a really complicated environment. In detail, thend this was the complicated environment, together with a
strong subtropical high and mid-latitude trough sepayateleak TC vortex. Not one of the systems within the verifica-
controlled the western North Pacific for over°36f longi- tion region could dominate the streamlines there.

tude and the continent. Simultaneously, there were several

local highs and lows distributed in the tropical zones. Witg . . .

respect to the CNOP sensitivity, it reflected differentnegs - Discussion and conclusion

at different levels. In the middle and upper levels, the sens TC intensity forecasting is a complicated problem in the
tivity was associated with the trough. In the lower levels, field of weather forecasting. The consensus is that numeri-
was related to the storm itself. Over the 48-h period of evoal modeling needs improvement. In this context, the génera
lution, all of the above systems changed substantially angbasitive effects of adaptive observations on TC track fore-
more complicated environment appeared. The range of tests inspired us to investigate the impacts of additiobal o
subtropical high over the western North Pacific narrowed servations on TC intensity forecasts. Depending on the out-
both the zonal and meridional directions. The mid-latitudeme, it would then be possible to consider upgrading the TC
trough moved eastward by aboutib longitude, and within intensity forecast skill from this point of view.

the verification region. TC Maloul (2010) strengthened and We defined a TC intensity index that focuses on the syn-
moved northwestward during these 48 h, forming a pronthetic impacts on affected regions, which are caused by SLP,
nent cyclone at lower and middle levels. However, most ®/IND and PP. This new index differs from the conventional
the forecast errors caused by CNOP pattern initial errats dlefinition by using the number of grid points satisfying cer-
not fall within the verification region at 48 h. That is to saytain constraints within a geographic square. The higher the
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Fig. 6. The same as Fig. 4, but for the case Maloul (2010).
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index value is, the more intense the TC is. and T-PARCMon. Wea. Rey139, 1728-1743.

Using this new definition of TC intensity, we estimatedDuan, W. S., M. Mu, and B. Wang, 2004: Conditional nonlinear
the impacts of the CNOP sensitivity on the intensity forésas optimal perturbations as the optimal precursors for EI Nino
for 20 cases. The OSSE results for these 20 cases showed Southern oscillation events. Geophys. Res109, D23105,
that 15 of them displayed improvements in the intensityfore doi: 10.1029/2004JD004756. o )
cast, with reductions of intensity forecast errors randing Duan, W. S., F. Xue, and M._Mu, 2009: Investigating a no_nlln-
0.12% to 8.59%. However, five of them showed declines in ear.CharaCtenSt'C’. of El Nifio events by conditional noséin
forecast accuracy ranging from 0.20% to 13.37%. Accordin%uar?’ p\t;vrh‘esll_?:l:]tgraétf natgq 02565)?5246:\2 slt?étegy for solving a
to the properties of the cases that showed improvements, the  ¢jass of constrained nonlinear optimization problemsteela

level of improvement was much more than the level of dete-  to weather and climate predictabilibhdv. Atmos. Sci.27,

rioration, indicating that the CNOP sensitivity generaiyd 741-749, doi: 10.1007/s00376-009-9141-0.
a positive effect on the TC intensity forecasts. Synoptadan Elsberry, R. L., and P. A., Harr, 2008: Tropical cyclone staue
yses of representative cases provided further detailsthiéor (TCS08) field experiment science basis, observationat plat

case with improvement, the CNOP sensitivity captured those ~ forms, and strategyAsia-Pacific J. Atmos. Sc#4, 209-231.

regions that are important for following the development offanklin, J. L., 2009: 2008 National Hurricane Cen-

dissipation of a TC case. Therefore, with the assimilation Ler '/f/orecasL Ve”f'cat'o;‘ rlﬁpor.t. [Available online  at

of dropwindsonde data within the CNOP sensitivity, the pat-_. tp:/fwww.nhc.noaa.gov/ver |cat.|on]

terns of SLP, horizontal wind at 925 hPa and accumulate‘(liang’ Z- N, and D. H. Wang, 2010: A study on precursors to
. R . ) blocking anomalies in climatological flows by using condi-

convective precipitation moved toward the true situatias,

) tional nonlinear optimal perturbation@uart. J. Roy. Meteor.
compared with the control. Soc, 136, 1170—1180.

Nevertheless, the degree of improvement was not as Sigrang, z. N., and D. H. Wang, 2011: Conditional nonlineairopt
nificant as that for track forecasts (0%-51.2%) reported in  perturbations: Behaviour during the evolution of cold iaes
Qin et al. (2013). This indicates that attempting to improve  over northeast ChinQuart. J. Roy. Meteor. Sqcl38, 198—
TC intensity forecasting by adaptive observations remains 208.
challenge. Considering the interaction between atmosphediang, Z. N., M. Mu, and D. H. Wang, 2011: Optimal perturba-
and ocean, improving numerical models (including develop- Fions triggering weather regime transitilons: Onset of blpc
ing optimal physical process parameterization), usingéig ing and strong zonal flovAdv. Atmos. S¢i28(1), 59-68, doi:
resolutions etc., are more important than increasing ebser. 10.1007/500376-010-9097-0. .
vations at present for an accurate TC intensity forecast a'l'm’ 1., C. C. Wu, I. . Pun, and D. S. Ko, 2007: Upper-ocean

.\ . : . ! thermal structure and the Western North Pacific category 5 ty
though additional observations can quite markedly improve

’ ) X FEE phoons. Part I: Ocean features and the category 5 typhoons
TC intensity forecasts in some cases. Therefore, objective jntensificationMon. Wea. Rev136, 3288—3306.

’

evaluation of the impacts of adaptive observations on TC ingin, |. 1., I. F. Pun, and C. C. Wu, 2008: Upper-ocean therriraics
tensity forecasts should be made. While doing so does im-  ture and the Western North Pacific category 5 typhoons. Part
prove TC intensity forecasts in general terms, the degree of 1I: Dependence on translation speddon. Wea. Rey.137,

improvement is not significant. Nevertheless, the effe€ts o 3744-3757. N _ _
adaptive observations are expected to be better embodiedMil, M., and Z. Y. Zhang, 2006: Conditional nonlinear optimal

more advanced numerical models become available. perturbations of a two-dimensional quasigeostrophic mode
J. Atmos. Scj63, 1587-1604.

Mu, M., and Z. N. Jiang, 2011: Similarities between optimia-p
cursors that trigger the onset of blocking events and opyma
growing initial errors in onset predictiod. Atmos. Sc;.68,
2860-2877, doi: 10.1175/JAS-D-11-037.1.
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