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ABSTRACT

A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over
North China by considering the effect of decadal variability based on observational datasets and dynamical model outputs.
Both predictands and predictors were first decomposed into interannual and decadal components. Two predictive equations
were then built separately for the two distinct timescales by using multivariate linear regressions based on independent sample
validation. For the interannual timescale, 850-hPa meridional wind and 500-hPa geopotential heights from multiple dynam-
ical models’ hindcasts and SSTs from observational datasets were used to construct predictors. For the decadal timescale,
two well-known basin-scale SST decadal oscillation (the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscilla-
tion) indices were used as predictors. Then, the downscaledpredictands were combined to represent the predicted/hindcasted
total rainfall. The prediction was compared with the models’ raw hindcasts and those from a similar approach but without
timescale decomposition. In comparison to hindcasts from individual models or their multi-model ensemble mean, the skill of
the present scheme was found to be significantly higher, withanomaly correlation coefficients increasing from nearly neutral
to over 0.4 and with RMSE decreasing by up to 0.6 mm d−1. The improvements were also seen in the station-based temporal
correlation of the predictions with observed rainfall, with the coefficients ranging from−0.1 to 0.87, obviously higher than
the models’ raw hindcasted rainfall results. Thus, the present approach exhibits a great advantage and may be appropriate for
use in operational predictions.
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1. Introduction

North China (NC) is a highly populated region, and
anomalous climatic conditions have a substantial impact on
agriculture, industry and society. Located within the northern
extension of the East Asian summer monsoon, NC exhibits
typical mid-latitudinal monsoon characteristics with summer
(June–August) mean rainfall accounting for more than 60%
of the annual total. Rainfall anomalies often result in se-
vere floods or drought. Hence, predicting summer rainfall
over NC is of considerable importance for climate scientists,
and continues to be a challenging topic up to the present day
(Chen, 1999).

During recent decades, many studies have been devoted
to the prediction of rainfall ahead of seasons (Barnston and
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He, 1996; Chen, 2000; Chu et al., 2008). Scientists have de-
veloped a variety of approaches to achieve this, including tra-
ditional experience-based statistics, physical-mathematical
statistics, numerical dynamic model simulations, and the
dynamical–statistical joined method (Zeng et al., 2003). The
latter method not only obtains advantages through use of
state-of-the-art dynamical models in simulating large-scale
atmospheric circulation variability, but also overcomes the
disadvantages involved in simulating regional-scale rainfall;
thus, it is widely considered the most effective approach
(Fuentes and Heimann, 1996; Li and Chen, 1999; Chen et
al., 2003; Zeng et al., 2003).

However, owing to its relatively coarse resolution, it is
difficult for the dynamical approach to predict station-scale
rainfall. Thus, researchers have developed various methods
to resolve the model’s grid scale to the smaller station-scale,
and the process is called “downscaling”. Such downscaling
methods can be categorized into two types: dynamical and
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statistical. The former involves nudging a higher-resolved re-
gional model into a global model, and although it has been
shown to have the potential to simulate extreme events (Dı́ez
et al., 2005; Wang et al., 2011), it consumes a huge amount of
computing resource. For this reason, in comparison, the latter
(the statistical downscaling approach) is more widely usedby
the community (von Storch et al., 1993; Murphy, 1999).

Various statistical downscaling techniques have been de-
veloped. As far as the source of predictors is concerned, re-
searchers extract valuable information from the outputs of
a single dynamical model (Hewitson and Crane, 1996) or
a set of dynamical models (Liu and Fan, 2012), even from
both the preceding-term observations and the model outputs
(Lang, 2011). As far as the prediction equation construction
is concerned, an efficient approach called the “interannualin-
crement approach” was proposed by Fan et al. (Fan et al.,
2008; Fan and Wang, 2009, 2010). They predicted the year-
to-year increment of an object variable (predictand) like sur-
face air temperature or rainfall, rather than the variable itself.
This approach highlights the anomalies of the predictand and
incorporates the significant quasi-biennial oscillation feature
of the East Asian climate, thus exhibiting a great advantage.
Recently, Wang and Fan (2009) developed another new ap-
proach called the “tropics analog” method, in which they
considered the primary origination of the predictability of
the East Asian summer monsoon from the tropics and made
predictions by using the analogue of the current factor field
to historical records. The “tropics analog” method has also
been used to substantially improve the short-term prediction
of East Asian summer rainfall (Wang and Fan, 2009; Fan et
al., 2011).

However, the current status of downscaling is not opti-
mistic, and the prediction level is unsatisfactory. In partic-
ular, the skill level is unstable, with significant year-to-year
or decadal variation. Previous studies have illustrated that
one important factor responsible for this instability is the in-
ability to separate interannual and decadal signals when con-
structing the prediction model (Chen and Zhao, 1998; Shukla,
2007; Chen et al., 2008; Qian and Lu, 2010). It is well
known that rainfall over NC exhibits significant interannual
and decadal variability. On the interannual scale, it features
a quasi-biennial period together with an almost five-year pe-
riod (Chen, 1999; Dai et al., 2003), while on the decadal scale
it experienced a substantial shift around the late 1970s from a
wetter period that began in the 1950s to a drier period there-

after (Lu, 2003; Ma, 2007).
The key for improving short-term climate prediction is to

identify the link between predictors and predictands at dif-
ferent background timescales. Considering this, Chen et al.
(2008) and Qian and Lu (2010) suggested that both kinds of
signal from decadal and interannual timescales should be uti-
lized. Following this suggestion, we developed an approach
for improving short-term prediction of summer rainfall over
NC by decomposing interannual and decadal variabilities.
We describe and test this new approach in the present pa-
per, which is organized as follows. Section 2 describes the
datasets and methodology used. An analysis of the results is
presented in section 3, followed by a summary and discussion
of the major findings in section 4.

2. Datasets and methodology

2.1. Datasets

Three sets of outputs from ensemble hindcast experi-
ments from three global coupled ocean–atmosphere mod-
els involved in the DEMETER (Development of a European
Multi-model Ensemble System for Seasonal-to-Interannual
Prediction) project were used for constructing the fac-
tors for downscaling. The three models were developed
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF), the United Kingdom Meteorological Of-
fice (UKMO), and the Centre National de Recherches
Me’te’orologiques (CNRM) respectively. Each set consisted
of one ensemble with nine members, and each was integrated
beginning from the initial days in May until the end of Au-
gust for each individual year during the period 1960–2001.
A brief summary of the models is provided in Table 1, and
further details can be found in Palmer et al. (2004).

Different kinds of observational variables including sea
surface temperature (SST) and atmospheric circulation vari-
ables were used to construct the predictors. The SST data
used were from the Hadley Centre Global Sea Ice and Sea
Surface Temperature (HadISST) dataset (Rayner et al., 2003).
The atmospheric circulation data used were from the ERA-40
Reanalysis (Upplal et al., 2004) dataset. Observed monthly
rainfall from over 160 stations within mainland China were
used for validation and obtained from the National Meteoro-
logical Information Center, China Meteorological Adminis-
tration. The rainfall dataset spanned the period from January

Table 1. Details of the three DEMETER dynamical models used for the present analysis.

Atmospheric Oceanic component

Model name Component Resolution Initial conditions Component Resolution Initial conditions

ECMWF IFS T63 40 levels ERA-40 HOPE-E 1.4◦× (0.3◦−1.4◦); Ocean analyses forced
29 levels by ERA-40

Météo-France ARPEGE T63 31 levels ERA-40 OPA 8.0 182 GP× 152 GP; Ocean analyses forced
(CNRM) 31 levels by ERA-40

Met Office HadAM3 2.5◦(lat)×3.75◦ ERA-40 GloSea OGCM, 1.25◦× (0.3◦−1.25◦); Ocean analyses forced
(UKMO) (lon) 19 levels based on HadCM3 40 levels by ERA-40
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1951 to the present day.

2.2. Downscaling schemes

We decomposed the rainfall over NC into the two distinct
timescales through a Fourier function transformation filter.
The decadal components of NC rainfall were defined as the
variability with period greater or equal to nine years. The po-
tential predictors were filtered too. Then, we chose the pre-
dictors for decadal/interannual rainfall components and cal-
ibrated the decadal/interannual predictive equations, respec-
tively. Finally, the downscaled decadal and interannual rain-
fall components were combined to obtain the total predicted
rainfall. This method is called the “decomposing timescale
downscaling” (DTD) scheme.

When building the DTD model for the decadal compo-
nent, two basin-scale SST oscillation indices describing the
Pacific Decadal Oscillation (PDO) and the Atlantic Multi-
decadal Oscillation (AMO) were used as predictors, since
previous studies have demonstrated their substantial influ-
ences (Ma and Fu, 2003; Ma and Shao, 2006; Lu et al., 2006;
Li and Bates, 2007; Wang et al., 2009). The statistical down-
scaling prediction model was built through a linear multivari-
ate fit, together with training and validation processes, for
each station. The training period was 1960–94, for which a
cross-validation-based regression was used. Further details
about the method can be found in Kim et al. (2004).

When building the DTD model for the interannual com-
ponent, predictors were selected based on significant connec-
tions between observed rainfall with large-scale atmospheric
circulation variables in the dynamical model’s outputs or ob-
servational dataset. To reduce noise, an EOF (Empirical Or-
thogonal Function) analysis was applied to the predictors and
predictands, and the first ten leading EOFs were retained to
obtain the principal components. Then, an SVDA (singular
value decomposition analysis) was used to obtain the coupled
connection between regional rainfall over NC and the large-
scale atmospheric circulation pattern. The coupled patterns
derived from the SVDA could be expressed mathematically
as follows:

Zpredictor(t,x) = ∑m
i=1Ui(x)Si(t) , (1)

Zpredictand(t,x) = ∑m
i=1Ri(x)Ki(t) . (2)

Here,x andt represent spatial and temporal grid, respec-
tively. m is the total number of SVD modes, andUi(x) and
Ri(x) are the singular vectors of predictor and predictand, re-
spectively, in thei mode.Then, a downscaling transfer func-
tion was used:

Pj(t,x) = ∑n
i=1Ri(x)Si(t) , (3)

wherePj(t,x) indicates the downscaled prediction,Si(t) and
Ki(t) represent the time expansion coefficient for predictand
and predictors of thei mode, andn is the total number of
SVD modes retained. In this study, the leading six coupled
modes were retained. Thus, individual statistical models at
each station for the interannual component could be built by

using the training period and the pathway similar to the above
decadal component model.

For comparison, a parallel downscaling scheme was con-
structed by using unfiltered raw data, which we refer to as the
“no-decomposition downscaling” (NDD) scheme. The same
predictors as in the above interannual model were used, ex-
cept for that they were derived directly from the model’s raw
outputs or observations (unfiltered). In other words, the NDD
scheme does not distinguish the interannual and decadal com-
ponents for both the predictands and the predictors.

2.3. Validation methods

An independent-sample validation was carried out for the
7-yr period from 1995 to 2001. This period was not included
when training the above models. Several variables were used
to quantify the skills of the predictions/hindcasts. The first
was the anomaly correlation coefficient (ACC), which was
calculated as the correlation between predicted and observed
rainfall anomaly time series and reflected the model’s ability
to yield rainfall anomalies at each station. The second was
the spatial correlation coefficient (CC) between the predicted
and observed rainfall anomaly pattern. This described the
model’s ability to predict the spatial pattern of rainfall.The
third was the root-mean-squareerror (RMSE), which was cal-
culated as follows:

RMSE=

√
∑T

t=1(yt − yot)
2

N
, (4)

whereyt is hindcasted from the models or the downscaling,
yot represents the observation, andN and T represent the
amount of stations within the NC region and forecast time
length, respectively. The smaller the RMSE, the better the
predictions. In addition, a comparison of the historical evo-
lution of NC regionally-averaged rainfall with observations
was also employed to assess the skill.

3. Results

3.1. Selection of predictors

The selection of appropriate predictors is one of the most
important steps. Two requirements should be satisfied before
a variable is selected. It has to be well simulated by the mod-
els, and have a stable correlation with the predictand. In other
words, only those variables with a high correlation coefficient
with the predictand can be possible candidates (Kang et al.,
2007). Whether a particular variable is selected should be
based on previous studies and operational experience.

Water vapor transported from the South China Sea (SCS),
the Bay of Bengal (BOB) and the subtropical western Pacific
plays an important role in the East Asian summer monsoon
(Huang and Wu, 1989; Huang et al., 1998). An increase in
vapor flux transportation from the SCS and BOB can result in
increased summer rainfall over NC (Zhao et al., 2002; Li et
al., 2002; Zhou and Yu, 2005). Because vapor transportation
achieves a maximum in the lower troposphere, the 850-hPa
meridional wind was selected as one potential factor.
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Fig. 1. Correlation coefficients between the interannual components of observed NC summer rainfall
and 850-hPa meridional wind in the three models and their MME. The interval is 0.1, and only val-
ues> 0.3(<−0.3) are displayed, as solid (dashed) lines. Shading indicates significance at the 95%
confidence level.

Figure 1 displays the simultaneous correlation of ob-
served NC summer rainfall with simulated 850-hPa merid-
ional wind in each individual model, as well as the multi-
model ensemble (MME) of all three models. Significant pos-
itive correlations can be seen over the BOB, Indochina and
the Maritime Continent in nearly all three models and their
MME. These confirm that the increased NC rainfall is as-
sociated with the anomalous vapor transportation from the
BOB and the southern SCS. It also shows an opposite cor-
relation of NC rainfall with South China. Besides, nega-
tive correlations can be seen in the equatorial central-western
Indian Ocean. Thus, we selected the averaged meridional
wind as one predictor, calculated over various domains for
the different models. For CNRM, the domain was (25◦S–
20◦N, 65◦–110◦E), which covers the central-western Indian
Ocean and BOB. For ECMWF and the MME, the domain was
(7.5◦–30◦N, 110◦–135◦E) and (10◦S–30◦N, 90◦–130◦E), re-
spectively, which covers the SCS and the East China Sea.
And finally, for UKMO, the domain was (15◦S–30◦N, 170◦–
120◦W), a sub-region of the tropical central-eastern Pacific
Ocean.

The western Pacific subtropical high is another key cir-
culation system influencing the East Asian summer monsoon
(e.g., Zhu and Yang, 2003). A previous study on summer
rainfall over NC and 500-hPa geopotential height anomalies
suggested a high degree of correlation between them (Lau
and Weng, 2002; Wang et al., 2004). This is confirmed in
Fig. 2a, and a similar correlation could be seen when the sim-
ulated 500-hPa heights were used (not shown). Thus, for all
the models and the MME, the averaged 500-hPa height over
the equatorial region (10◦S–20◦N, 60◦W–120◦E) was used as
another predictor.

In addition, SST is an important factor influencing sum-
mer rainfall over NC. Generally, in the year following an El

Niño event, less rainfall occurs over NC, along with more
rainfall over the Yangtze River valley and Northeast China
(Zhang and Huang, 1998; Yang and Lau, 2004). Tropical
Indian Ocean SST, including the dipole mode and the basin-
scale mode, also have a substantial influence (e.g., Li et al.,
2008; Xie et al., 2009). Additionally, SST in the SCS in early
winter has been found to significantly correlate with rainfall
over NC in the following summer (He et al., 2003). Thus,
tropical SST may provide potential predictability. Figure2b
shows the correlation of NC summer rainfall with preced-
ing winter SST. A significant positive correlation can be seen
in the equatorial western Pacific, whereas opposite correla-
tions are seen in the central-eastern equatorial Pacific andthe
whole basin of the tropical Indian Ocean. These correlations
reflect the lagged impact of El Niño events on East Asian
summer climate (Zhang et al., 1997, 1999; Wang et al., 2000;
Huang et al., 2000, 2004).

On the decadal timescale, most previous studies have
shown NC experienced a relatively wet period from the 1950s
and then a dry period since the 1970s (Chen, 1999; Lu, 2003).
This decadal variability is highly correlated with the PDO and
AMO (Ma, 2007; Wang et al., 2009). The warmer (colder)
phases of the PDO are coupled with colder (warmer) SST
of the westerly drift region. The sea level pressure anomaly
is negative (positive) over Siberia and north of Japan, but
positive (negative) over most of southern China, which gen-
erates an anomalous northwesterly over NC and reduces
water vapor transportation from the oceans. The positive
AMO phase leads to a stronger East Asian summer monsoon
with enhanced rainfall over NC, along with a delayed with-
drawal of the Indian summer monsoon. Hence, the preceding
spring AMO and annual PDO indices were chosen as the
decadal predictors. The PDO index is determined by project-
ing SST on the leading EOF of monthly SST on the Pacific
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Fig. 2. Correlation coefficients of the interannual components of observed NC
summer rainfall with the simultaneous (a) 500-hPa geopotential heights and
(b) the preceding winter (Dec–Feb) SST. The interval is 0.1.Shading over the
oceans indicates significance at the 95% confidence level.

north of 20◦N (Mantua and Hare, 2002), and can be down-
loaded from http://jisao.washington.edu./pdo/PDO.latest.
The AMO index is based on Enfield et al.
(2001), and can be downloaded from http://
www.esrl.noaa.gov/psd/data/correlation/amon.us.long. data.

All the above chosen predictors are summarized in Ta-
ble 2. Through a step-by-step training process, a statistical
model was built for each station, and the schematic diagram
for these models is illustrated in Fig. 3. Thus, the interan-
nual rainfall component could be hindcasted by the individ-
ual models and the decadal rainfall component could be hind-
casted by the observed AMO and PDO indices. The down-
scaled interannual and decadal rainfall components were
combined to yield the total predicted rainfall.

3.2. Validation of the results

To provide a reference for comparison, the raw predic-
tion in the models was analyzed. Figure 4 shows a compari-
son of the distribution of ACCs between the observed and the
modeled raw prediction. As can be seen, nearly all the mod-
els show little skill, with the correlation coefficients ranging
from−0.25 to 0.1. At some stations, the modeled raw predic-
tion is even opposite to the observed. Also, the MME exhibits
an improvement relative to any individual model, albeit an
insignificant one. This illustrates that the models’ abilities to
predict summer rainfall over NC is weak, and the scheme of
the MME is favorable for improving the seasonal prediction.

When the DTD scheme is used, the level of prediction
significantly improves. From the left column of Fig. 5, one

Table 2. Summary of the selected predictors for constructing the statistical downscaling models of the distinct interannual and decadal
predictands.

Predictor Calibration period Region

Interannual 850-hPa meridional wind from
models’ outputs

Jun–Aug, 1960–94 CNRM: (25◦S–20◦N, 65◦–110◦E) ECMWF: (7.5◦–30◦N,
110◦–135◦E) UK: (15◦S–30◦N, 170◦–120◦W) MME:
(10◦S–30◦N, 90◦–130◦E)

500-hPa geopotential height from
models’ outputs

Jun–Aug, 1960–94 (10◦S–20◦N, 60◦W–120◦E)

Sea surface temperature Dec–Feb, 1960–94 South China Sea
Decadal PDO index Annual mean, 1959–93 North Pacific (30◦–65◦N, 160◦E–140◦W)

AMO index Spring mean, 1960–94 North Atlantic Ocean basin
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Fig. 3. Schematic diagram of the statistical downscaling approaches used in this
study: (a) for the decomposing timescale downscaling (DTD)scheme, and (b)
for the no-decomposition downscaling(NDD) scheme. Here,Y ,Y1 andY2 repre-
sent the raw predictand and interdecadal, interannual component, respectively.
a0, a1, a2, a3 is coefficient of different predictors.

Fig. 4. Spatial distribution of temporal correlation coefficientsof station sum-
mer rainfall time series of the models’ raw predictions withobservations. Shad-
ing indicates significance at the 95% confidence level.

can see that the ACCs are positive at all stations, and are over
0.4 at most of them, which is significant at the 99% level. The
regional-averaged ACC is over 0.5 for all three models and
their MME. Comparing with the model’s raw prediction, the
ACCs increase from−0.15 to 0.57 near the northern rim for
CNRM, while for ECMWF and UKMO the ACC achieves

a value of 0.46 at the stations near the domain center from
−0.25.

To understand the individual contributions from different
timescale components, a comparison of ACCs between ob-
servations and the hindcasts for the two distinct timescales
of the downscaling models is given in Fig. 6. For both
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Fig. 5. Statistical significance of ACCs between observations and the models’ hindcast rainfall
for the 42-yr period (1960–2001) in the DTD scheme (left column) and the NDD scheme (right
column). Smaller (bigger) black circles represent stations with significance exceeding the 95%
(99%) confidence level. Blank boxes indicate no significance.

timescales, all ACCs are positive with the maximum over
0.6, much higher than the models’ raw predictions. At some
stations near the northern rim, the correlation even reaches
0.75 for the interannual timescale (significant at the 99% con-
fidence level). Meanwhile, near the center, the maximum

correlation is close to 0.79 for the decadal timescale. This
means that the source of improvement near the northern rim
is primarily from the interannual component, while from the
decadal component for the improvement in the central re-
gion. This can also be seen from a quantitative comparison of
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Fig. 6. ACCs of hindcast rainfall with observations during the training period 1960–94.
Panels (a–d) represent the interannual component in individual models and the MME,
and (e) represents the decadal component in the MME. Light and dark shading represent
significance at the 95% and 99% confidence levels, respectively.

the relative contribution rates from the two timescales, which
were calculated through the follow equation:

1 =

n

∑
i=1

(y1− y1)
2

n

∑
i=1

(ỹ− y)2
+

n

∑
i=1

(y2− y2)
2

n

∑
i=1

(ỹ− y)2
+

n

∑
i=1

(y1− y1)(y2− y2)

n

∑
i=1

(ỹ− y)2
.

(5)
Here, ỹ represents the predicted total, whiley1 andy2 rep-
resent the interannual and decadal rainfall, respectively. The

relatively more important component at each station is dis-
played in the left column of Fig. 7. Clearly, the contribution
rate of decadal components is higher in the central station,
while near the northern part the interannual components pre-
vail.

As a comparison, the ACCs in the NDD scheme are dis-
played in the right column of Fig. 5. Relative to the models’
raw predictions, the ACCs are higher than all of them, as well
as their MME, for some stations (cp. Fig. 4). This suggests
that NDD downscaling does indeed improve the level of pre-
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Fig. 7. A comparison of the two different timescale components (left column) or the various
predictors (right column) in the relative contributions tothe improvements of the hindcasted
rainfall. In the left column, solid black circles (blank boxes) indicate that the decadal (inter-
annual) component has the greater contribution. In the right column, solid black circles, blank
boxes and triangles represent that SST, 850-hPa meridionalwind and 500-hPa height has the
most important contribution, respectively.
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diction to some extent. However, the ACCs from the NDD
scheme are significantly smaller than in the DTD scheme.
In particular, the number of stations with a significant im-
provement in skill is much less for all the models. This indi-
cates that the DTD scheme can indeed significantly improve
the skill relative to both the models’ raw predictions and the
NDD scheme.

The above results can also be seen from the temporal evo-
lution of the spatial anomaly CCs between the observations
and hindcasts. For the DTD scheme (Fig. 8), a consider-
able consistency can be seen in all three models and their
MME. The mean spatial anomaly CC during the training
period (1960–94) is 0.58, 0.57, 0.58 and 0.57 for CNRM,
ECMWF, UKMO and MME, respectively, while these val-
ues are 0.17, 0.21, 0.21 and 0.18 in their raw predictions. We
also calculated the significance of the differences betweenthe
two sets of CCs, and obtained at value of 2.81, 3.02, 2.68 and
2.59 for ECMWF, UKMO, CNRM and MME, respectively—
all of them being significant at the 95% confidence level. This
again suggests the DTD scheme’s improvement relative to the
models’ raw predictions. The modest correlation between the
two evolution curves of DTD scheme’s hindcast and the raw
predictions illustrates that the improvement is not uniform
from year to year. For the validation period (1995–2001), the
correlation is also higher than the models’ raw predictions.

When NDD was conducted, the improvement after the

statistical downscaling was modest (not shown). The mean
spatial CC between the predicted and observed rainfall
anomalies during the period 1960–2001 is 0.27, 0.31, 0.3 and
0.32 for CNRM, ECMWF, UKMO and MME, respectively.
This suggests that the spatial distribution of rainfall canbe
better predicted using the NDD scheme than the models’ raw
predictions, which is in agreement with its good performance
in capturing the temporal evolution of rainfall at some sta-
tions. However, the efficiency of the NDD scheme is still not
as high as the DTD scheme (cp. Fig. 8).

As mentioned above, the bias of prediction or hindcast
relative to the observations can be measured by the RMSE.
Figure 9 presents the difference in RMSE between the mod-
els’ raw predictions and the DTD scheme’s downscaling pre-
diction. As can be seen, all values are positive for the three
models and their MME, illustrating that the DTD scheme im-
proves the level of prediction consistently. The maximum of
the differences is located near the northern rim, indicating
the largest significance there, in agreement with that shown
in Fig. 6.

In addition, a further evaluation was conducted by com-
paring the time series of the observed and predicted regional
mean rainfall anomalies (Fig. 10), which was defined as the
mean of 21 stations within the domain (Fig. 5a). In the ob-
servations, a negative (drying) trend can be seen during the
whole period. A similar negative trend exists in the DTD

Fig. 8. Evolution (solid line marked with crosses) of spatial correlation coefficients of the DTD hind-
casts for (a–c) individual models and the (d) MME with the observed rainfall interannual component.
For comparison, the evolution (dashed lines marked with boxes) of a similar correlation but from the
models’ raw predictions is included. The value in the upper-left corner of each panel is the correlation
coefficient between the two evolution curves.
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hindcasts, particularly for UKMO and CNRM. This consis-
tency in trend is in agreement with their substantial correla-
tion with a coefficient of around 0.7, which is significant at
the 99% confidence level. For the independent sample val-
idation period (1995–2001), the ratio with the same sign of
anomaly in the predicted rainfall with the observed is 100%.
This result is higher than that reported by Fan et al. (2008),

which was 40% (three instances when the predictions were
consistent with observations within eight years) achievedby
adapting the year-to-year increment technique to construct a
statistical downscaling scheme without timescale decompo-
sition (cp. their Fig. 6 with Fig. 10 here). This indicates
a considerable advantage when timescale decomposition is
used.

Fig. 9. Differences of RMSE in the models’ raw predictions minus that in the
hindcast after DTD downscaling.

Fig. 10. Evolution of regional-averaged summer rainfall anomaliesover NC during 1960–2001. The short dashed curve
indicates the observed, while the solid curve represents the values from the DTD scheme. The dashed (solid) line
indicates the trend in the observations (DTD scheme predictions). The gray vertical line indicates the division for the
period used for training the downscaling models and for validation as independent samples. The correlation coefficient
between the observed and DTD-downscaled rainfall are plotted in the top right of each panel.



446 SHORT-TERM PREDICTION BY DECOMPOSING INTERANNUAL AND DECADAL VARIABILITY VOLUME 31

It is extremely valuable to examine which component of
predictors used plays the primary role in improving the ACCs
in the DTD scheme. Similar to the above calculation re-
garding the contribution of the two distinct timescale com-
ponents, we calculated the relative contribution rates of the
various predictors to the hindcast interannual rainfall compo-
nent. The right column of Fig. 7 displays the predictor with
the greatest contribution over the individual stations. From
this, it can be seen that SST is the most important factor for
all the models and their MME, since at nearly half of the sta-
tions it explains the greatest contribution rate. This suggests
that the decomposition of SST may be the most important
factor for DTD downscaling.

4. Summary

In the present reported work, a statistical downscaling
technique was developed to predict the summer rainfall over
NC. First, both the predictors and predictands were decom-
posed into interannual and decadal timescale components.
Then, two individual models were built for the two timescales
using multivariate linear regression. Finally, the predicted
rainfall for the two timescales was combined to represent the
final prediction. Validations of the predictions based on inde-
pendent samples suggested a substantial improvement in skill
in station-based temporal correlation, ACCs and RMSE, rela-
tive to the conventional without-timescale decompositionand
the models’ raw predictions. Moreover, the present approach
reproduces the observed linear trend of rainfall over NC.

The key to the success of this approach is the selection of
different potential predictors for the distinct timescalepredic-
tands. In other words, it considers the different timescalepre-
dictands are influenced by different physical processes. As
in conventional statistical downscaling, potential predictors
are selected based on the correlations between the observed
rainfall component and the large-scale circulation from the
model’s simulations or observations, and also the correlations
with the lower boundary conditions, such as SST. Thus, it
conveys information on large-scale atmospheric circulation
to local regional rainfall, considering the dynamical model’s
advantage in simulating large-scale circulation and avoid-
ing the model’s disadvantage in simulating regional or lo-
cal rainfall. For the interannual timescale, three large-scale
variables (850-hPa meriondinal wind, 500-hPa geopotential
heights and tropical SST) were selected as the potential pre-
dictors. For the decadal timescale, the PDO and the AMO
were calibrated to the prediction equation.

Previous studies have speculated that one potential ap-
proach to improving short-term climate predictions is to in-
corporate decadal signals (e.g., Chen et al., 2008; Qian and
Lu, 2010). This study set out to investigate that hypothesis,
and the results showed significant improvements in compari-
son with traditional statistical downscaling approaches with-
out timescale decomposition. Nonetheless, more validations
using state-of-the-art techniques are expected in the future.
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