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ABSTRACT

It is well known that the quasi-geostrophic (QG) omega equation with only two contributors respectively associated
with vorticity advection (VA) and temperature advection isderived for midlatitude synoptic-scale systems only. Based on
reliable reanalysis data, new evidence revealed by cyclonic and anticyclonic cases indicates that forecasters might sometimes
experience problems by paying too much attention to the 500-hPa VA when estimating vertical motions not only in subtropical
systems but also in systems meeting all the assumptions of the QG omega equation. Our investigations also showed that
explicitly considering the vertical profiles of horizontaldivergence could allow for better interpretation of vertical motions
and weather in these real cases, suggesting that this equation might not be sufficient due to the presence of only two horizontal-
divergence-related (HDR) mechanisms and the absence of other HDR mechanisms, e.g., frictional force, mountain barriers,
diabatic/adiabatic processes, and acceleration/deceleration of air flows.
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1. Introduction

It is necessary for scientists to pay great attention to
the vertical motion (e.g.,ω in isobaric coordinates) because
flood/drought and all weathers are associated with vertical
transport of vapor driven by vertical motion. However,ω
is too weak for reliable measurement (Smith, 1971). Thus,
a very important theory—the quasi-geostrophic (QG) the-
ory, with the QG omega(ωQG) equation as one of the great
outcomes—was developed for the evolution of weather sys-
tems. Following its development, theωQG equation has been
included in all dynamic-meteorology textbooks worldwide as
the popular approach forω estimation. In theωQG equation,
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there are only two right-hand-side (RHS) terms used to de-
termineω on the left hand side (LHS) of Eq. (1). One is the
vertical derivative of vorticity(ζ ≈ ζg = ∇2Φ/ f0) advection
(VA); and the other is the Laplacian of temperature advection
(TA), whereVg is the geostrophic portion of horizontal ve-
locity (V2 with the subscript 2 representing two dimensions),
Φ is the geopotential,f = 2 sinϕ is the Coriolis param-
eter, f0 = 2 sin45◦ is a constant for midlatitude systems,
σ is the static stability parameter,p is the air pressure, and

= 7.292× 10−5 s−1 is the angular speed of rotation of
the Earth (Holton, 1979, p. 136). Obviously, the contribu-
tion of horizontal divergence(∇ ·V2) to ωQG is not explicitly
involved in Eq. (1) as a RHS term.

With ∇2ω ∝ −ω (Holton, 1979, p. 137, 2004, p. 166),
the qualitative content of theωQG equation is summarized by
Holton (1979, p. 140) as:

Omega Equation
(
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)

motion ∝ Rate of increase

with height of(±)vorticity advection+
(
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)

advection′′.
(2)
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Based on Eq. (2), the 500-hPa negative vorticity advection
(NVA) responsible for the lower-layer descent and the 500-
hPa positive VA for ascent are still widely taught and used in
the meteorology community.

Since Eq. (2) and the 500-hPa NVA with the lower-
layer descent are considered well understood and accepted,
when the 500-hPa NVA (Figs. 1b and c) was observed be-
fore a severe rainstorm struck South China at 1800 UTC
6 May 2010 (Fig. 1a), severe-storm warnings were not is-
sued. Unfortunately, at around midnight local time (1800
UTC 6 May 2010), a 99.1-mm h−1 rainfall event (Fig. 1a)
suddenly flooded some downtown areas of Guangzhou (the

capital city of Guangdong Province in South China), causing
heavy losses. Although squall lines (not shown) and con-
vective instability (Fig. 1g) with corresponding temperature
advections (Fig. 1f) were considered in this forecast, the 500-
hPa NVA with the low-layer descents had received the most
attention [exactly as pointed out by Dunn (1991, p. 70)], not
the ∇ ·V2 profiles. However, evidence revealed by reliable
data (described in section 2) shows that, consistent with the
severe rainstorm, the strong ascents (Fig. 1d) were accompa-
nied by lower-layer convergence,∇ ·V2 < 0, and upper-layer
divergence,∇ ·V2 > 0 (Fig. 1e), suggesting that an improve-
ment ofω estimation should be made with significant atten-
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vorticity adv. & hgt 12 UTC 6 May 20106 May 2010 Guangzhou

(c) vorticity advection

(f)  T advection (g)  stability 

(d) vertical velocity (e) divergence

(a) (b)

vorticity advection (10-9 s-2) vertical velocity (Pa s-1) divergence (10-5 s-1)

temp. advection (10-5 K s-1)

Fig. 1. Prior to the rainstorm with (a) 99.1 mm h−1 rainfall observed at 1800 UTC 6 May 2010 according to
rain gauge measurements at Guangzhou weather station, someavailable weather conditions given here are: (b)
the 500-hPa NVA (−V2 ·∇ζ < 0, dashed line, interval of 5×10−10 s−2) and geopotential height (solid line,
interval of 20 gpm). The box indicates the (22.5◦–27.5◦N, 112.5◦–117.5◦E) region for regionally-averaged
vertical profiles of (c)−V2 ·∇ζ ×109 s−2 with negative values representing NVA; (d)ω Pa s−1 with ω < 0
representing ascent; (e)∇ ·V2×105 s−1 (with convergence∇ ·V2 < 0, shaded); (f)−V2 ·∇T ×105 K s−1 with
−V2 ·∇T > 0 representing the warm advection; and (g) the vertical-meridional section of pseudo-equivalent
potential temperature(θse) along 113◦E, with the convective instability area shaded based on ERA-Interim
reanalysis data for the 1200 UTC 6 May 2010 cyclone.
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tion to ∇ ·V2 profiles.
In order to learn the lessons from this forecast and make

weather forecasts better in future, the restrictions of theωQG

equation are briefly reviewed in section 3. Additional evi-
dence is provided in section 4 for improving theω estimation
by considering the explicit contribution toω of ∇ ·V2 pro-
files. A discussion and summary are given in section 5.

2. Data
The precipitation data used in the present study were

obtained from the Guangdong Meteorological Observatory.
Since we were unable to have access to higher resolution
data for the 2010 case, the gridded data of geopotential, tem-
perature, horizontal wind, vertical velocity, and specifichu-
midity were from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Interim dataset (ERA-Interim)
with a 1.5◦×1.5◦ resolution and 6-h interval at 37 pressure
levels from 1000 hPa to 1 hPa. These data were considered
accurate enough for the main purpose of the study (i.e., re-
minding forecasters that sufficient attention should be paid
to the assumptions of theωQG equation for synoptic systems
when using the 500-hPa vorticity advection to estimate the
lower-layer vertical motion). An investigation of midlatitude
synoptic-scale anticyclones was also carried out to alert fore-
casters to the possibility that sometimes theωQG equation
does not work well for systems meeting all the equation’s as-
sumptions. For selecting systems that met all the assumptions
of the ωQG equation, the gridded data also included 40-yr
(1957–2002) reanalysis data (ERA-40) of the ECMWF. This
ERA-40 dataset has a 2.5◦×2.5◦ resolution, 6-h interval, and
23 pressure levels from 1000 hPa to 10 hPa.

3. Brief review of the restrictions of the ωQG
equation

Previous studies (e.g., Petterssen, 1956; Hoskins et al.,
1978; Trenberth, 1978; Dunn, 1991; Viúdez et al., 1996) have
pointed out thatω underestimation with Eq. (1) is unavoid-
able due to the cancellation between the two RHS terms. A

Q-vector form of theωQG(Q−ωQG) equation negates this
two-term-cancellation problem through the combination of
these two terms (e.g., Hoskins et al., 1978; Dunn, 1991, p. 70;
Holton, 2004, 168–170). The assumptions used to build these
ωQG equations include the disregard of the observed neutral
stability(σ = 0) and static instability(σ < 0) due to the pres-
ence ofσ as a denominator in Eq. (1) and in the new form of
the ωQG equation(N−ωQG) obtained by adding the Lapla-
cian of the diabatic heating rate to Eq. (1) (Holton, 2004, p.
165), orσ as the coefficient of unknownω in theQ−ωQG

equation and in the elliptic-type generalizedω equation (e.g.,
Pauley and Nieman, 1992). The assumption ofσ > 0 is rea-
sonable since Eq. (1), as well as theQ−ωQG andN−ωQG

equations, are derived only for midlatitude synoptic systems
to make sure that these equations are elliptic-type diagnostic
equations (e.g., Krishnamurti, 1968a, 1968b; Dutton, 1986,
p. 362; Pauley and Nieman, 1992, p. 1113; Tan and Curry,
1993; Räisänen, 1995; Kim et al., 2006; Stone and Goldbart,
2008, 193–194). Thus, when theseωQG equations are applied
to real cases, many studies have suggested that the observed
σ 6 0 should be removed through data modification. Such
data modification could be that “static stability values less
than 0.002 m−2s−2mb−2 are set equal to that value” (Pauley
and Nieman, 1992, p. 1113), or the long-term averaged value
(Kim et al., 2006). Räisänen (1995, Table 1) shows that to
avoid |ω | → ∞, modifying the observedσ 6 0 is necessary
in tropical and extratropical systems at both 900 hPa and 300
hPa.

Even in midlatitude synoptic systems withσ > 0, the ad-
ditional uncertainty could be introduced into theω estima-
tion by Eq. (1) through the calculation of the fourth-order
derivatives in the RHS terms of Eq. (1) with finite differ-
ence schemes and gridded data, leading to a possible too-low
signal-to-noise ratio in the results (e.g., Dunn, 1991; Press et
al., 1992, p. 180). For example, based on the ERA-Interim
reanalysis data from the ECMWF, the 500-hPaζ field (Fig.
2b, dealing with the second-order derivative ofΦ) at 1800
UTC 6 May 2010 was noisier than the correspondingΦ field
(Fig. 2a). Therefore, the results of the RHS terms of Eq. (1)
(dealing with the fourth-order derivative ofΦ) could be much

ζ 18 UTC 6 May 2010geopotential 18 UTC 6 May 2010
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Fig. 2. (a) The 500-hPaΦ (interval of 1000 m2 s−2) and (b) relative vorticity (interval of 3×10−5 s−1) based
on ERA-Interim reanalysis data for 1800 UTC 6 May 2010.
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noisier.

4. Additional evidence for improving the
omega estimation by explicitly considering
the horizontal divergence

With the advantage of reanalysis data, this section focuses
on the evidence that Eqs. (1) or (2) sometimes might not hold
well even for midlatitude synoptic anticyclones withσ > 0
due to the absence of an explicit contribution of∇ ·V2 on the
RHS of Eq. (1). The evidence is revealed through a compari-
son between the LHS and RHS values of simplified equations
[Eqs. (3) and (4), below] used to build Eqs. (1) or (2).

According to Holton (1979, 2004), the derivation of Eq.
(1) starts by eliminating allω terms in the primitiveζ equa-
tion (Holton, 1979, subsection 6.2.1, 126–130, 2004, 147–
152) to generate the simplifiedζ equation

∂ζ
∂ t

+V2 ·∇(ζ + f ) = − f ∇ ·V2 , (3)

after using the assumption(ζ + f ) ≈ f on the RHS of Eq.
(3). Correspondingly, the primitive thermodynamic energy
equation is also simplified as

∂T
∂ t

+V2 ·∇T =
pσ
R

ω , (4)

after using the following assumptions: (i) midlatitude synop-
tic systems are statically stable(σ > 0) for the calculation of
ω since the neutral stability(σ = 0) will lead to |ω | → ∞;
(ii) midlatitude synoptic systems are approximately adiabatic
since the LHS terms of Eq. (4), respectively associated with
temperature tendency,∂T/∂ t, and TA, are larger than the
diabatic term (Holton, 1979, 127–128). Based on the fur-
ther simplified Eqs. (3) and (4) with the QG theory, Eq. (1)
is derived through eliminating the∂T/∂ t and∂ζ/∂ t terms
(Holton, 1979, subsections 6.2.2–6.3, 126–143), leading to
ω being determined only by VA and TA processes.

The following quantitative comparisons between the LHS
and RHS values of Eqs. (3) and (4) are made with the ERA-
40 reanalysis data for the real anticyclones selected that sat-
isfied all the assumptions used in the derivation of Eqs. (1)

(a) Potential T (c) LHS and RHS of (3)

(e) LHS and RHS of (4)

(b) Vorticity advection

vorticity advection (10-9 s-2) LHS and RHS of (3) (10-9 s-2)

vertical velocity (Pa s-1) LHS and RHS of (4) (10-5 K s-1)
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Fig. 3. (a) The vertical-zonal section of potential temperature along 40◦N latitude. The (37◦–43◦N, 100◦–95◦W)
regionally-averaged vertical profiles of: (b)V2 ·∇(ζ + f )× 109 s−2 with −V2 ·∇(ζ + f ) < 0 or V2 ·∇(ζ + f ) > 0
representing the NVA; (c)[∂ζ/∂ t +V2 ·∇(ζ + f )]×109 (s−2, dashed line) and− f ∇ ·V2×109 (s−2, solid line) with
the convergence,f ∇ ·V2 < 0 or− f ∇ ·V2 > 0, area shaded; (d)ω (Pa s−1) with ω > 0 representing descent; and (e)
(∂T/∂ t +V2 ·∇T)×105 (K s−1, dashed line) andpσω/R×105 (K s−1, solid line) based on ERA-40 reanalysis data
for the 1200 UTC 18 February 1978 extratropical anticyclone.
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or (2). Figure 3 shows the midlatitude synoptic anticyclone
affecting the (37◦–43◦N, 100◦–95◦W) region at 1200 UTC
18 February 1978 to be characterized by monotonous change
with height of VA in the 950–500-hPa layer (Fig. 3b) in a
cold dome without noticeable effects ofσ 6 0 (Fig. 3a). The
RHS of Eq. (3) i.e.,− f ∇ ·V2, displays the 500–200-hPa con-
vergence (∇ ·V2 < 0 or− f ∇ ·V2 > 0, indicated by the shaded
area based on the solid profile in Fig. 3c) and 1000–600-hPa
divergence (∇ ·V2 > 0 or− f ∇ ·V2 < 0; Fig. 3c, solid line)
with a significant downward motion(ω > 0) at 500 hPa (Fig.
3d, directly from the ERA-40ω data). Noticeably, the LHS
of Eq. (3) [i.e.,∂ζ/∂ t + V2 ·∇(ζ + f ), calculated with the
central difference scheme; Fig. 3c, dashed line] is opposite to
the RHS of Eq. (3) (Fig. 3c, solid line) in this real anticyclone
meeting all the QG assumptions. The 500–200-hPa weak “di-
vergence” (Fig. 3c, dashed line) and the 1000–600-hPa weak
“convergence” (the shaded area based on the dashed profile
in Fig. 3c) indicate a weak “upward motion” around 500 hPa
[referred to as VA-related weak ascent due to the absence of
∂ζ/∂ t and∂T/∂ t in Eq. (1) obtained by the combination of
the further simplified Eqs. (3) and (4)].

To elucidate the contribution from the thermodynamic
processes, similar quantitative comparisons were also made
between the LHS and RHS values of Eq. (4). Figure 3e
shows a relatively weak “downward motion” at 500 hPa due
to the∂T/∂ t +V2 ·∇T (calculated with the central difference
scheme) on the LHS of Eq. (4) (referred to as TA-related
relatively-weak descent; Fig. 3e, dashed line) and a relatively
strong “downward motion” due to the RHS of Eq. (4) (Fig.
3e, solid line, directly from the ERA-40 data).

Consistent with observations and previous studies (e.g.,
Petterssen, 1956; Hoskins et al., 1978; Trenberth, 1978;
Dunn, 1991; Viúdez et al., 1996), there exists the cancella-
tion between the VA-related weak ascent and the TA-related
relatively-weak descent, leading to VA- and TA-relatedω ≈ 0

around 500 hPa. Since there are only VA and TA terms on
the RHS of Eq. (1), it might underestimate theω around 500
hPa in this real anticyclone. This VA- and TA-relatedω ≈ 0
around 500 hPa is quite different from the near-maximum
downward motion around 500 hPa shown by Fig. 3d (di-
rectly from ERA-40ω data). Similar to the 2010 heavy-rain
case (Fig. 1), the∇ ·V2 again interprets theω profile and
weather in the anticyclone well. The present cyclone and an-
ticyclone case studies suggest that explicitly considering the
contribution of∇ ·V2 might improve the estimation ofω .

More midlatitude anticyclones that have caught meteorol-
ogists’ attention can also be studied. For example, in the in-
tense North American anticyclone during the winter of 1989,
selected by Tan and Curry (1993), at 0600 UTC 29 January
1989 this midlatitude synoptic anticyclone was characterized
by a (zonal span≈ 5×106 m) cold dome withσ 6 0 affecting
the (175◦E–135◦W, 1000–850 hPa) region (Fig. 4a) and by
non-monotonous change with height of VA in the 1000–500-
hPa layer (Fig. 4b). Since these features do not meet the re-
quirements of Eqs. (1) or (2),σ 6 0 must be removed by data
modification to avoid the divergent solution (Tan and Curry,
1993, p. 963). With the explicit contribution of∇ ·V2, the
|ω | → ∞ problem might be reduced because the mass conser-
vation law guarantees a non-zero denominator and non-zero
coefficient forω determined by∇ ·V2.

5. Discussion and summary
In the present case studies, several vortices (based on

ECMWF reanalysis data) were examined to highlight two
kinds of possibilities to forecasters. One is that using Eq.
(1) to estimate the vertical motions in subtropical cyclones
could lead to an underforecasting of rainfall since Eq. (1)
(theQ−ωQG equation or theN−ωQG equation) is derived
only for midlatitude systems. The other is that using Eq. (1)

(a) Potential temperature

P
re

ss
u
re

 (
h
P

a)

P
re

ss
u
re

 (
h
P

a)

(b) Vorticity advection

Fig. 4. (a) The vertical-zonal section of potential temperature along 55◦N latitude (with
neutral stabilityσ = 0 and static instabilityσ < 0 areas shaded) and (b) the (52.5◦–
57.5◦N, 175◦E–135◦W) regionally-averaged vertical profiles ofV2 ·∇(ζ + f )×109 s−2

based on the ERA-40 reanalysis data for the 0600 UTC 29 January 1989 extratropical
anticyclone.



454 IMPROVING OMEGA ESTIMATION BY EXPLICITLY CONSIDERING HORIZONTAL DIVERGENCE VOLUME 31

to estimate vertical motions might result inω ≈ 0 in the mid
troposphere of midlatitude synoptic-scale anticyclones meet-
ing all the QG assumptions. These cyclone and anticyclone
case studies suggest that explicitly considering the vertical
profiles of∇ ·V2 should improveω estimation because the
vertical profiles of∇ ·V2 reasonably match and interpret the
ω profiles and weather in these real cases. Thus, the prob-
lems with Eq. (1) might be that it considers only VA and TA
terms and neglects other mechanisms of∇ ·V2.

To understand why Eq. (1) does not include the explicit
contribution of∇ ·V2 to ω , its derivation was reviewed. Ac-
cording to Holton (1979, 129–130, 2004, 151–152), in the
derivation of Eq. (1),−∇ ·V2 on the RHS of Eq. (3) is re-
placed by the undetermined∂ω/∂ p for the purpose of deter-
miningω with Eq. (3). Since observations show that∇ ·V2 is
associated with not only VA and TA, but also frictional force,
mountain barriers, acceleration/deceleration of air flows, ra-
diation heating/cooling, latent heating, latent heat flux,sen-
sible heat flux etc., the replacement indicates that, with the
modified ζ equation, the unknown∂ω/∂ p is determined
only by the vorticity terms on the LHS of Eq. (3). Holton’s
text also shows that the TA is introduced into theωQG equa-
tion by eliminating the time derivations of vorticity and tem-
perature through the combination of further simplified Eqs.
(3) and (4). As a result, the contributions to∂ω/∂ p from
other ageostrophic processes are all neglected due to the dis-
appearance of∇ ·V2 in Eq. (3).

More importantly, with the replacement of−∇ ·V2 on
the RHS of Eq. (3) by∂ω/∂ p, the coefficient of unknown
∂ω/∂ p changes from 100 in the mass conservation law to
f0 =10−4 s−1 in the modifiedζ equation, or the coefficient
of ∂ω/∂ p possibly becomesζ + f = 0 if the assumption
ζ + f ≈ f is not used on the RHS of Eq. (3), causing ad-
ditional |ω | → ∞. Observations show thatζ + f = 0 could
happen in the real atmosphere on the anticyclonic shear side
of upper-layer jets in midlatitudes.

In order to explicitly consider all the mechanisms ofω
(including∇ ·V2), a full ω-mechanism equation (referred to
as the fullω equation) can be derived by linearly combin-
ing the unsimplified vorticity equation, primitive thermody-
namic equation, and continuity equation in isobaric coordi-
nates, since these primitive equations are linear diagnostic
equations for the only unknownω (see the appendix). The
linear combination of these primitive equations makes deriva-
tion simple, avoids reducing the order of magnitude for the
coefficients ofω , avoids introducing fourth-order derivatives,
and works for the globalω .

Since observationalω data are not available for determin-
ing the linear-combination-related coefficients (see the full ω
equation in the appendix withc1 for the primitive mass conti-
nuity equation,c2 for the primitive thermodynamic equation
andc3 for the unsimplified vorticity equation), the ECMWF
ω data were used as the “observed”ω data. According to
Simmon and Burridge (1981), the ECMWFω data are ob-
tained from the mass continuity equation, which suggests that
the error (i.e., the absolute value of the difference between
the global-meanω values from the ECMWF and from the

full ω model) should approach zero withc2 → 0 andc3 → 0
(Fig. A1 in the appendix). Determining the unique-optimal
c2 6= 0 andc3 6= 0 requires at least one designed in situ ob-
servation with intensive measurements and extra-high tech-
nologies. This in situ observation is as necessary as TOGA
(Tropical Ocean–Global Atmosphere) designed for solving
problems systematically.
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APPENDIX A

A full ω global model with the explicit contribution of
∇ ·V2 to ω without fourth-order derivatives

Responsible for the vertical transport of mass, energy and
momentum or vorticity,ω appears in many primitive (unsim-
plified) equations governing geophysical-fluid behaviors in
the real atmosphere. These equations include the mass con-
tinuity equation in the spherical-isobaric coordinates (for di-
agnosing the globalω):

∂ω
∂ p

= −∇ ·V2 = −
(

∂u
∂x

+
1

cosϕ
∂vcosϕ

∂y

)

, (A1)

with a = 6.37× 106 m in ∂x = acosϕ∂λ and ∂y = a∂ϕ ,
whereλ is the longitude andϕ the latitude. The unknown
ω also appears in the thermodynamic equation in terms of
potential temperatureθ :

−σω =
RQ̇
cpp

− RT
p

(

∂ lnθ
∂ t

+V2 ·∇ lnθ
)

, (A2)

where Q̇ is the diabatic heating rate. The unsimplified
relative-vorticity equation is obtained by applying the curl
operator,{∂ ( )/∂λ −∂ [( )cosϕ ]/∂ϕ}/(acosϕ), to the prim-
itive horizontal velocity equation, yielding

−
(

∂ω
∂x

∂v
∂ p

− ∂ω
∂y

∂u
∂ p

)

−ω
∂ζ
∂ p

= (ζ + f )∇ ·V2+V2 ·∇ζ +v
d f
dy

+
∂ζ
∂ t

−k ·curlF , (A3)

where the relative vorticity in spherical coordinates is

ζ =
∂v
∂x

− ∂ (ucosϕ)

cosϕ∂y

and the vertical component of the curl of frictional force,F ,
is

k ·curlF =
∂Fy

∂x
− ∂ (Fxcosϕ)

cosϕ∂y

in spherical coordinates. Similar to theωQG equation, a
full ω diagnostic equation should take into account all the
geophysical-fluid-dynamic equations involvingω . Different
from theωQG equation, this fullω equation should be derived
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without eliminating anyω term on the LHS of Eqs. (A1)–
(A3) and introducing higher-order derivatives into the model
for diagnosing the weak signal ofω .

We notice that in terms of the only unknownω , Eqs.
(A1)–(A3) areω ’s linear (due to the absence of nonlinear
terms ofω) and diagnostic (due to the absence of∂ω/∂ t)
equations. Thus, the linear combination principle is applied
to the incorporation of Eqs. (A1)–(A3), resulting in

L(ω) = S, (A4)

where

L(ω) = c1
∂ω
∂ p

−c3

(

∂v
∂ p

∂ω
∂x

− ∂u
∂ p

∂ω
∂y

)

−
(

c3
∂ζ
∂ p

+c2 σ
)

ω

S= − [c1 −c3(ζ + f )]∇ ·V2 +

c2

[

RQ̇
cpp

− RT
p

(

∂ lnθ
∂ t

+V2 ·∇ lnθ
)]

+c3

[

V2 ·∇ζ +v
d f
dy

+
∂ζ
∂ t

−k ·curlF

]

.

In the derivation of Eq. (A4), Eqs. (A1), (A2) and (A3) are
respectively weighted byc1 , c2 andc3. If c1 = c2 =

√
2 is

selected, thenc1 = c2 is equivalent to the Coriolis param-
eter, f = 2 sinϕ , atϕ = 45◦ latitude with = 7.292×10−5

s−1 for unit consistency. One of the advantages of Eq. (A4) is
the absence of fourth-order derivatives since the weak signal
of ω attributed to fourth-order-derivative terms [e.g., the RHS
terms of Eq. (1)] might be masked by discrete, truncation and
roundoff errors accompanying the use of computers, gridded
data and finite difference schemes (e.g., Dunn, 1991; Press
et al., 1992, p. 180; Räisänen, 1995). The second advantage
is that∇ ·V2 and all otherω-related mechanisms have been
explicitly included in Eq. (A4), and the third is that all mech-
anisms are in their familiar forms with clear physical mean-
ings given by primitive equations. As mentioned earlier, Eq.
(A4) is derived for diagnosing the globalω .

The simplest way to handle the weighting functions in
Eq. (A4) is to treatc1, c2 andc3 as three constant parameters.
The values ofc1, c2 andc3 can be determined by pursuing
the best fit between the observed globalω and the globalω
obtained from solving Eq. (A4). To solve Eq. (A4) numer-
ically with the periodic boundary in the zonal direction and
with the observedω as meridional boundary values ofω , we
apply the central difference scheme to Eq. (A4) and obtain
the following finite difference equation:

c1
ωi, j ,k+1−ωi, j ,k

∆p
−c3

vi, j ,k+1−vi, j ,k

∆p
· (ωi+1, j ,k+1−ωi−1, j ,k+1)+ (ωi+1, j ,k−ωi−1, j ,k)

4∆x
+

c3
ui, j ,k+1−ui, j ,k

∆p
· (ωi, j+1,k+1−ωi, j−1,k+1)+ (ωi, j+1,k−ωi, j−1,k)

4∆y
−

(

c3
ζi, j ,k+1− ζi, j ,k

∆p
+c2 σ

)

· (A5)

1
2

(

ωi+1, j ,k+1 + ωi−1, j ,k+1+ ωi, j+1,k+1+ ωi, j−1,k+1

4
+ ωi, j ,k

)

= Si, j ,k+ 1
2

,

whereω at levelk = 1 should be specified with the ob-
served globalω . We use the four-point mean ofω in the last
LHS term of Eq. (A5) to representωi, j ,k+1 for ensuring the
non-zero coefficient ofωi, j ,k+1.

The Gauss–Seidel iteration method is used to solve Eq.
(A5). To clearly explain the procedure of the Gauss–Seidel
iteration (Haltiner and Williams, 1980, p. 156), we rewrite
Eq. (A5) as

ω(n+1)
i, j ,k+1 = L(ω(n+1)

i−1, j ,k+1,ω
(n+1)
i, j−1,k+1,ω

(n)
i+1, j ,k+1,ω

(n)
i, j+1,k+1,d) ,

(A6)

where the superscriptn represents thenth iteration,L rep-
resents a linear finite-difference operator andd includes all
the known quantities as well as theω available at thekth
level with ω at k = 1 given by the observations. At the be-
ginning of the Gauss–Seidel iteration withn = 1, the RHS
ω values at levelk+ 1 are also unknown. In order to start
the iteration, we simply set them to arbitrary values such as

ω(n+1)
i−1, j ,k+1 = ω(n+1)

i, j−1,k+1 = ω(n)
i+1, j ,k+1 = ω(n)

i, j+1,k+1 = 0. During

the calculation based on Eq. (A6), the RHSω values at
level k+ 1 are updated immediately. This procedure is re-

peated withn= 1,2, · · · until |ω(n+1)
i, j ,k+1−ω(n)

i, j ,k+1|< 1.0×10−3

Pa s−1, yielding theω field at levelk+ 1. Using theω field
available at levelk+ 1 and repeating the same iteration pro-

cedure, we obtainω fields at levelsk+2,k+3, · · ·.
Because the observedω values are used as meridional

boundary conditions and the lowest-level values ofω in this
global model with the periodic boundary as the zonal bound-
ary, determining non-zeroc1, c2 andc3 requires at least one
designed in situ observation with international cooperation
(for the globalω), technical innovation and enhanced moni-
toring with high-level technologies, among other factors.As
mentioned in section 5, the observed globalω is not yet
available. So far, we can only perform a theoretical justi-
fication of the full ω linear model with the ECMWFω as
the “true” ω . According to Simmons and Burridge (1981),
the ECMWFω is derived from the mass continuity equation,
which indicatesc1 6= 0 andc2 = c3 = 0 for the best fit be-
tween the globalω from the ECMWF and the globalω from
Eq. (A6). This theoretical inference has been confirmed by
numerical experiments withc1 = 10,c2 ∈ [−4,4], c3 ∈ [−3,3]
and∆c2 = ∆c3 = 1 (Fig. A1) as well as with available values
of ∇ ·V2, T, u andv etc. from the ECMWF dataset. These
experiments are all freed from the modifications of observed
data, while such data modifications are common in otherω
models (e.g., Holton, 1979, p. 137, 2004, p. 165; Pauley
and Nieman, 1992, p. 1113; Räisänen, 1995, p. 2450) for
removing theω → ∞ problem caused by the observedσ 6 0
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error

with c2 

0

0

→

→

→

and c3 0→

Fig. A1. The distribution of error as the function ofc2 andc3.
The error is the surface-to-100-hPa global-mean absolute value
of the difference between ERA-40 globalω at 0600 UTC 27
January 1989 derived from the mass continuity equation (Sim-
mons and Burridge, 1981) and the globalω from Eq. (A6).
Therefore, the best fit should produce error→0 with c2 → 0 and
c3 → 0. In the numerical experiments based on the least-square
fit method, the primitive continuity equation is weighted byc1
andc1 = 10; the primitive thermodynamic equation is weighted
by c2 andc2 ∈ [−4,4], i.e., the abscissa; and the unsimplified
vorticity equation is weighted byc3 andc3 ∈ [−3,3], i.e., the
ordinate.

and(ζ + f ) f 6 0.
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