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ABSTRACT

The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive
understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. Itis argued
that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit
assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized.
While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent.

On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm,
the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed
experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple
nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of
the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.
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1. Introduction

Atmospheric and oceanic flows can be described by a
system of stochastic partial differential equations (sPDE).
Within this framework, not only can the dynamical system be
stochastically forced, but the observations can also be con-
sidered stochastic processes rather than single numericalval-
ues. The most commonly used sPDE model is the state-space
model, in which the dynamical model describes the evolu-
tion of the state variable over time, whereas the measurement
model explains how the measurement relates to the state vari-
able:

xt = M(xt−1,ηt−1) (dynamic model)

yt = h(xt ,εt ) (measurement model)
, (1)

wherext denotes the state variable at timet; t is the time in-
dex;ηt is the dynamical process noise;εt is the measurement
noise; andyt is the measurement. The functionsM and h
describe the evolution of the state variable over time and the
relationship between the measurement and state, respectively.

In general, data assimilation is used to estimate the model
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states by combining the observational and model forecast
data (e.g., Talagrand and Bouttier, 2007). Thus, a data as-
similation system consists of three components: a dynamical
model, a measurement (observation) model, and an assimila-
tion scheme. Neither the dynamical model nor the measure-
ment model is perfect. Errors in both model and observation
play a critical role in the assimilation process. Therefore, they
should be estimated and modeled accurately.

In general, assimilation methods can be classified into
two categories: variational and sequential. Variational meth-
ods, such as the three-dimensional variational (3DVAR)
method and four-dimensional variational (4DVAR) method
(e.g., Le Dimet and Talagrand, 1986; Courtier et al., 1998),
are batch methods; whereas sequential methods, such as the
Kalman filter (KF) (proposed by Kalman, 1960), are part of
estimation theory. Methods in both categories have had great
success in atmosphere–ocean data assimilation. In November
1997, the European Centre for Medium-Range Weather Fore-
casts (ECMWF) introduced first the 4DVAR method to the
operational global analysis system (e.g., Klinker et al., 2000).
The ensemble Kalman filter (EnKF) was first introduced to
the operational ensemble prediction system by the Canadian
Meteorological Centre (CMC) in January 2005 (Houtekamer
et al., 2005).
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An ideal case of data assimilation is when all the equa-
tions are linear and the noise is additive. Thus, Eq. (1) may
become:

xt = Mxt−1 + ηt−1

yt = Hxt + εt
, (2)

whereM andH are linear operators of the model and mea-
surement, respectively. The optimal solution among sequen-
tial methods to Eq. (2) is provided by the KF under the as-
sumption that the noise is Gaussian. The operatorsM and
H must be linear in the KF as indicated in the update equa-
tion for forecast error covariance and in the Kalman gain.
Thus, approximating techniques must be employed for non-
linear dynamics. A common approach is to linearize the non-
linear model, which is the key attribute of the Extended KF
(EKF) (e.g., Jazwinski, 1970). Furthermore, the difficultyof
the linearization of complex nonlinear models (e.g., general
circulation models) forces one to use other possible alterna-
tives to update the forecast error covariance, which was the
motivation for other KF-based derivatives, such as the EnKF.
The EnKF was initially introduced by Evensen (1994); it es-
timates the forecast error covariance using multiple integra-
tions of the same models from subtly different initial con-
ditions (ensemble), thereby avoiding the complicated—even
intractable in some cases—linearization of nonlinear dynam-
ical models. Because it is easy to implement and its algo-
rithm is simple, the EnKF has attracted much attention and
has been widely used in atmospheric and oceanic sciences in
recent years (e.g., Evensen, 2003; Deng et al., 2012). In par-
ticular, the issues related to the implementation and potential
concerns of the standard EnKF have become less significant
with the advent of advanced and more efficient algorithms,
such as the ensemble square-root filters (EnSRF), local en-
semble transform Kalman filters (LETKF), maximum likeli-
hood ensemble filter (MLEF), and localization and inflation
schemes (e.g., Ito and Xiong, 2000; Anderson, 2001; Tippett
et al., 2003; Hunt et al., 2007).

Despite the fact that EnKF-based filters have gained great
success in many applications, there still exist some concerns.
For example, the current Kalman gain algorithm of the EnKF
actually originated from a natural extension of the KF or
EKF, which is for linear cases. There has been no comprehen-
sive discussion in the literature as to whether such a natural
extension holds for the nonlinear estimate of Eq (1). Another
example is the treatment of nonlinear measurement functions.
In a classic EnKF with nonlinear measurement functions, the
Kalman gain was written in a different way by decomposing
the forecast error covariance matrix (see section 2.2 for de-
tails), thus allowing a direct evaluation of the nonlinear mea-
surement function, as proposed by Houtekamer and Mitchell
(2001; referred to as HM2001 hereafter). However, this al-
gorithm was presented based on scientific intuition and there
is a lack of rigorous mathematical proof (see section 2.2 for
details). Thus, the current EnKF algorithm deserves further
analysis in a statistically rigorous sense, to better understand
and apply the EnKF. In fact, we can find in the following sec-
tions that a general Kalman gain algorithm can be derived for

the nonlinear estimate of Eq. (1), which provides a better un-
derstanding of the EnKF, including some potential concerns
about the EnKF, e.g., why the current EnKF algorithms of-
ten underestimate the prediction error covariance and need
an inflation scheme (Furrer and Bengtsson, 2007; Anderson,
2007). In particular, we can find that the nonlinear measure-
ment treatment in the classic EnKF contains an implicit as-
sumption; that is, the forecast of the measurement function
h(x̂t,b) is unbiased or the mean of the forecast(h(x̂t,b)) equals
the forecast of the mean(h( ¯̂xt,b)) wherex̂t,b is model fore-
cast, and the over-bar is the mean over the ensembles. This
implicit assumption may impact the accuracy of the estima-
tion.

This paper first examines the current EnKF algorithm
based on a rigorous definition of model error and observa-
tion error, and a general form of the Kalman filter for Eq.
(1). In particular, we explore the treatment of nonlinear mea-
surement functions used in the EnKF in a rigorous statisti-
cal sense with detailed derivations. On this basis, two mod-
ified schemes of Kalman gain are proposed. Section 2 pro-
vides a brief review of the KF family methods, including the
EKF and EnKF. A generalized KF algorithm for the nonlinear
state-space model, Eq. (1), is also presented in section 2. In
section 3, we analyze the Kalman gain algorithm used in the
current EnKF and then develop two modified algorithms with
a detailed statistical derivation. In section 4, the results from
tests that were conducted on these Kalman gain algorithms
using a low-dimensional 3-component Lorenz model are re-
ported. Finally, discussions and conclusions are presented in
section 5.

2. The standard KF, EKF, and EnKF and their
generalized algorithm

2.1. KF and EKF

An ideal case in data assimilation is when the forecast
and measurement models are both linear and the errors are
Gaussian, as described by Eq. (2). The solution among se-
quential methods to this case is provided by the KF. Below,
the primary equations of the KF are displayed, and attention
is drawn to the characteristic properties of the algorithm,ap-
plying to the time step,t. The detailed derivation of these
equations can be found in the literature (e.g., Simon, 2006).

x̂t,a = x̂t,b +K[yt − ŷt ] , (3)

K = Pt,bHT(HPt,bHT +R)−1 , (4)

Pt,a = (I −KH)Pt,b , (5)

Pt,b = MPt−1,aMT +Q , (6)

x̂t,b = M x̂t−1,a , (7)

ŷt = Hx̂t,b , (8)

wherex̂t,a and x̂t,b are model analysis and forecast, respec-
tively, at time stept. I is unity matrix. The model errors
ηt and observed errorsεt have zero mean and variance val-
ues var(ηt) =< ηt ,ηT

t >= Q, var(εt) =< εt ,εT
t >= R. The
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variablesPt,a andPt,b represent the analysis and forecast error
covariance, respectively.

In Eq. (3),yt is the true value of measurement by Eq. (1)
or Eq. (2). Often, it is approximated by observationyt,o. If
the random nature of the true measurement is considered,yt

should be the observationyt,o perturbed by noise, resulting in
an analysis ensemble. Thus, the ˆxt,a in Eq. (3) should be un-
derstood as the mean of the analysis whenyt,o is used directly
instead ofyt , if we assume the observationyt,o is unbiased.
This strategy should be followed in the KF-family of filters
discussed in this paper. This also explains why the perturbed
observation (i.e.,yt,o + εt , whereεt is noise) is often used in
applying Eq. (3) in the EnKF.

The above equations consider the evolution of the fore-
cast (background) error covariance with time and are con-
trolled by the dynamical model operatorM . Equations (3)–
(8) constitute the framework of the Kalman filter for Eq. (2).
If the forecast error covariancePb

t is prescribed as a constant
in time, the estimate is called the optimal interpolation (OI).

In deriving Eqs. (4)–(6), both the dynamical modelM and
the measurement modelH should be assumed to be linear
and the errors to be Gaussian. Therefore, the standard KF
only works for linear models and Gaussian distribution. If
the dynamical model and/or the measurement model are not
linear, the KF cannot be directly applied. Instead, lineariza-
tion must be performed prior to applying the KF. The analyt-
ically linearized version of the KF is called the extended KF
(EKF), which solves the state-space estimate problem of Eq.
(1). The disparities and similarities between the EKF and the
KF include the following: (1) both the Kalman gainK and the
update equation of forecast error covariance have the same
form, with the use of the linear and linearized state model;
(2) the forecast model and the measurement model are differ-
ent, with linear Eq. (2) for the KF and nonlinear Eq. (1) for
the EKF; (3) Eqs. (7) and (8) are different, with linear model
M and linear measurement functionH used for the KF, and
nonlinear modelM and nonlinear measurement functionH
used for the EKF.

2.2. EnKF

A challenge in the EKF is to update the prediction error
covariance using Eq. (6), which requires linearization of the
nonlinear modelM. The linearization of a nonlinear model is
often technically difficult and even intractable in some cases,
e.g., in non-continuous functions. Another drawback of the
EKF is the neglect of the contributions from higher-order sta-
tistical moments in calculating the error covariance.

In the EnKF, the prediction error covariancePt,b used in
Eq. (4) is estimated using an ensemble of model forecasts.
The equation below was used for the EnKF to replace Eq.
(6), while the other equations are kept the same, i.e.,

Pt,b =
1

L−1

L

∑
i=1

(x̂t,i,b− x̂t,b)(x̂t,i,b− x̂t,b)
T , (9)

wherex̂t,i,b represents the forecast of thei-th member at step
t andL is the ensemble size. The use of Eq. (9) avoids the

task of processing Eq. (6), which requires the linearized op-
eratorM for the nonlinear model,M. In the Kalman gain [Eq.
(4)], the measurement functionH is still linear or linearized,
which might cause concerns when the nonlinear measure-
ment function is difficult to linearize. To avoid the lineariza-
tion of a nonlinear measurement function, HM2001 re-wrote
the Kalman gain [Eq. (4)] as follows:

K = PbHT(HPbHT +R)−1 , (10)

PbhT ≡
1

L−1

L

∑
i=1

(x̂i,b− x̂b)(h(x̂i,b)−h(x̂b))
T , (11)

HPbHT ≡
1

L−1

L

∑
i=1

(h(x̂i,b)−h(x̂b))(h(x̂i,b)−h(x̂b))
T , (12)

whereh(x̂i,b) =
L

∑
i=1

h(x̂t,b)/(L−1) andi is the ensemble index.

The time step,t, is omitted in Eqs. (11) and (12) for sim-
plicity. Equations (11) and (12) allow for a direct evaluation
of the nonlinear measurement functionH in calculating the
Kalman gain. However, Eqs. (11) and (12) have not been
proven mathematically. Tang and Ambadan (2009) argued
that Eqs. (11) and (12) approximately hold only if the follow-
ing is true:

h(x̂i,b) = h(x̂b) ; (13)

x̂i,b− x̂b = εi , Norm(εi) is small fori = 1,2. . . (14)

Under the conditions of Eqs. (13) and (14), Tang and Am-
badan (2009) argued that Eqs. (11) and (12) actually linearize
the nonlinear measurement functionsh to H. Therefore, the
direct application of the nonlinear measurement function in
Eqs. (11) and (12) imposes an implicit linearization process
using ensemble members. In the next sections, we will find
that Eqs. (11) and (12) actually held without requiring the
conditions of Eqs. (13) and (14), if the measurement forecast
ŷt was unbiased. A further interpretation is the equivalence
of Eqs. (13) and (14) with the unbiased forecast ˆyt .

2.3. General form of ensemble-based filters for Gaussian
models

As discussed in the preceding subsections, the linear or
linearized measurement functions are still required in theop-
timal Kalman gainK in the KF, EKF and EnKF. In this
subsection, we proceed with a general form of the Kalman
gain, which does not contain the linear measurement oper-
ator. This general form was first introduced by Julier et al.
(1995) when they developed the unscented Kalman filter and
has been widely applied in the literature (e.g., Simon, 2006).

Following the general state-space model, Eq. (1), the state
update equation can be written as:

x̂t,a = x̂t,b +Kt(yt − ŷt) ,

x̂t,b = M(x̂t−1,a) ,

ŷt = h(x̂t,b) .

The analysis error is denoted by ˜xt,a = xt − x̂t,a, the forecast er-
ror by x̃t,b = xt − x̂t,b, and the observation error by ˜yt = yt − ŷt ,
wherext andyt are the true values at the time stept in the
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model state and measurement. For convenience, we omit the
subscriptt in the derivation below.

Considering an unbiased estimate, we have:

x̃a = x̃b−Kỹ ,

Pa = E[x̃ax̃
T
a] = E(x̃b−Kỹ)(x̃b−Kỹ)T

= E(x̃bx̃T
b − x̃bỹ

TKT −Kỹx̃T
b +KỹỹTKT) ,

Pa = Px̃bx̃b −Px̃bỹK
T −KPỹx̃b +KPỹỹK

T ,

where E[·] is the expectation. Under the Gaussian distribu-
tion assumption, the optimal estimate as the trace of the min-
imumPa is:

∂ [tr(Pa)]

∂K
= 0 ,

−Px̃bỹ−Pỹx̃b +2KPỹỹ = 0 ,

K = Px̃bỹP
−1
ỹỹ ,

Pa = Px̃bx̃b −KPx̃bỹ ,

A summary of the main equations discussed above is listed
below:

x̂t,a = x̂t,b +K[yt − ŷt ] , (15)

Kt = Px̃bỹP
−1
ỹỹ , (16)

Pa = Px̃bx̃b −KPx̃bỹ , (17)

x̂t,b = M(x̂t−1,a) , (18)

ŷt = h(x̂t,b) . (19)

Equations (15)–(19) show a general algorithm for the Gaus-
sian nonlinear model and the nonlinear measurement func-
tion. The derivation of the Kalman gainK does not invoke
any linear assumptions for the dynamical model or measure-
ment function. If the observation is approximated as the true
value, thePx̃bỹ in Eq (16) is the cross-covariance between the
state and observation errors, and thePỹỹ is the error covari-
ance of the difference between the observation and its pre-
diction ŷt . Additionally, in the case of nonlinear models, the
statistical moments can be exactly calculated in a closed form
only if the underlying distribution is Gaussian.

3. Application of the general Kalman filter
form for the standard KF and EnKF

It is clear that the linear assumption is made for the mea-
surement function to obtain Eq. (4), as indicated by the linear
operatorh. To deal with the nonlinear measurement func-
tion in the EnKF, HM2001 proposed Eqs. (11) and (12) to di-
rectly evaluate the nonlinear measurement functions. Appar-
ently, there is a gap here, i.e., the left hand sides of Eqs. (11)
and (12) need the linear measurement functionh, whereas
their right hand sides directly use the nonlinear functionh.
HM2001 realized that there was this gap and used the equiv-
alence sign “≡” instead of the equality sign “=” in Eqs. (11)
and (12). However, the equivalence is primarily based on
intuition. It is necessary to examine the equivalence in a rig-
orous, statistical framework.

First, we re-examine the optimal Kalman gain, Eq. (4),
using the general form of the Kalman gain, Eq. (16). When
the dynamical model is linear, i.e.,xt = Mxt−1 + ηt−1, x̂t,b =
M x̂T

t−1,a,Pt,b = MPt−1,aMT + Q, where Q = E(ηt−1ηT
t−1).

When the measurement function is linear, i.e., ˆyt = Hx̂t,b,

ỹt = yt − ŷt = Hxt + εt −Hx̂t,b = Hx̃t,b + εt ,

Px̃bỹ = Px̃bx̃bHT ,

Pỹỹ = HPx̃bx̃bHT +R ,

whereR= E(εtεT
t ). Then, the optimal Kalman gain is

K = Px̃bỹP
−1
ỹỹ = Px̃bx̃bHT(HPx̃bx̃bHT +R)−1 . (20)

Equation (20) is identical to Eq. (4). Therefore, Eq. (4) used
in the KF, EKF, and EnKF is a special case of Eq. (16), under
the assumption of a linear measurement function.

We now examine Eqs. (11) and (12) of HM2001 that have
been widely used to treat the nonlinear measurement function
in the EnKF. Emphasis is placed on the comparison of Eqs.
(4), (11), and (12) against Eq. (16).

When the noise is additive, the nonlinear state-space
equation [Eq. (1)] becomes

{

xt = M(xt−1)+ ηt−1

yt = h(xt)+ εt
.

The assumption of additive noise is commonly used for the
assimilation in Gaussian-based systems. For a non-additive
noise system (e.g., multiplicative noise), Gaussian-based as-
similation methods, such as the EnKF, are often invalid.

We started from Eq. (16), i.e.,K = Px̃bỹPỹỹ−1. If the esti-
mate is unbiased and the ensemble sizeL is infinite, we can
use the ensemble mean to represent the true value, i.e.,

{

xt = E(x̂i,t,b)+ ηt = ¯̂xt,b + ηt

yt = h( ¯̂xt,b)+ εt
, (21)

where E[·] denotes the expectation,i is the ensemble index
and the overbar represents the mean over all the ensemble
members. The termsηt andςt were added due to the random
nature of the true states:

Px̃bỹ = E[(x̂i,t,b−xt)(ŷi,t −yt)
T]

= E[x̂i,t,b−E(x̂i,t,b)−ηt ][h(x̂i,t,b)−h(E(x̂i,t,b))− εt ]
T .

For a realistic ensemble system with finite ensemble size,Px̃bỹ

can be written as:

Px̃bỹ =
1

L−1

L

∑
i=1

(x̂i,t,b− ¯̂xt,b)[h(x̂i,t,b)−h( ¯̂xt,b)]
T . (22)

Similarly,

Px̃bx̃b = E[(x̂i,t,b−xt)(x̂i,t,b−xt)]
T

= E[x̂i,t,b−E(x̂i,t,b)−ηt ][x̂i,t,b−E(x̂i,t,b)−ηt ]
T

=
1

L−1

L

∑
i=1

(x̂i,t,b− ¯̂xt,b)(x̂i,t,b− ¯̂xt,b)
T +Q , (23)

Pỹỹ = E[(ŷi,t −yt)(ŷi,t −yt)
T]
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= E[h(x̂b
i,t)−h( ¯̂xb

t )− εt ][h(x̂b
i,t)−h( ¯̂xb

t )− εt ]
T

= E[(h(x̂b
i,t)−h( ¯̂xb

t ))(h(x̂b
i,t)−h( ¯̂xb

t ))
T]+R ,

Pỹỹ =
1

L−1

L

∑
i=1

[h(x̂i,t,b)−h( ¯̂xt,b)][h(x̂i,t,b)−h( ¯̂xt,b)]
T +R .

(24)

Here, the assumption is that the noise termsεt andηt have
zero mean and are uncorrelated with other variables. The
variances ofηt andεt areQ andR, respectively. Equation
(23) represents the forecast error covariance estimated bythe
ensemble member. Compared to the standard EnKF [Eq. (9)],
there appears to be one more itemQ on the left hand side of
Eq. (23). The absence ofQ in the standard EnKF algorithm is
because the forecast error is being defined with respect to the
ensemble mean rather than to the true state. Thus, the ran-
dom nature of the true states is ignored. The standard EnKF
often systematically underestimates the error covarianceand
requires an inflation scheme to “adjust” the estimated error
covariance.

The Kalman gain is written as

K = Px̃bỹP
−1
ỹỹ

=
1

L−1

L

∑
i=1

(x̂i,t,b− ¯̂xt,b)[(h(x̂i,t,b)−h( ¯̂xt,b)]
T

·

{

1
L−1

L

∑
m=1

[h(x̂i,t,b)−h( ¯̂xt,b)][h(x̂i,t,b)−h( ¯̂xt,b)]
T+R

}−1

.

(25)

A comparison of Eqs. (11) and (12) with Eqs. (22) and (24)
reveals that they are completely equivalent, if Eq. (13) holds
true. From the linearization point of view, Eq. (13) holds true
only if Eq. (14) also holds true. Conversely, when Eqs. (22)
and (24) are used instead of Eqs. (11) and (12) in the EnKF,
the modified Kalman gain form should be more rigorous in
the statistical framework, which is equivalent to the general
Kalman gain form, Eq. (16), without demanding any assump-
tion of linearization. Clearly, when the noise is non-additive,
the equivalence is no longer valid. However, in case of non-
additive noise, all Kalman-based filters are invalid due to the
non-Gaussian nature of the systems. Recently, Ambadan and
Tang (2011) discussed the assimilation of a nonlinear sys-
tem in a multiplicative noise environment and found that the
intrinsic properties of the multiplicative noise challenge the
current EnKF algorithms.

In the above derivations, we used the forecast measure-
ment to represent the true measurement, i.e.,yt = h( ¯̂xt,b)+εt ,
as indicated in Eqs. (24) and (25). One important assump-
tion here is the unbiased nature of the forecast(x̂t,b), i.e.,
the ensemble mean instead of the unknown true state. This
unbiased assumption results in the prediction error of mea-
surement, which may be serious in some cases. One solution
used to reduce the impact of the unbiased assumption on the
estimate of the Kalman gain is to directly use the actual ob-
servationyt,o to represent the true measurement; namely

yt = yt,o + εt . (26)

Thus, the Kalman gain can be written as

K = Px̃bỹP
−1
ỹỹ

=
1

L−1

L

∑
i=1

(x̂i,t,b− ¯̂xt,b)[(h(x̂i,t,b)−yt,o− εt ]
T

·

{

1
L−1

L

∑
m=1

[h(x̂i,t,b)−yt,o− εt ][h(x̂i,t,b)−yt,o−εt ]
T
}−1

.

(27)

One important disparity between Eqs. (27) and (25) is the
disappearance ofR in Eq. (27). However, it is implicitly rep-
resented by the perturbed observation. In other words, the
observation should be randomly perturbed when applying the
general form of the Kalman gain.

In the above discussion, we only assume that the model
forecast is unbiased, i.e.,xt = E(x̂i,t,b)+ ηt . If we further as-
sume that the forecast of the measurement model is unbiased
and random, i.e.,

yt = E(ŷi,t)+ εt = E(h(x̂i,t,b))+ εt , (28)

we have

Px̃bỹ=E[(x̂t,b−xt)(ŷt −yt)
T]

=E[x̂i,t,b−E(x̂i,t,b)−ηt ][h(x̂i,t,b)−E(h(x̂i,t,b))− εt ]
T

=
1

L−1

L

∑
i=1

[x̂i,t,b− ¯̂xi,t,b][h(x̂t,b)−h(x̂i.t,b)]
T , (29)

Pỹỹ=E[(ŷt −yt)(ŷt −yt)
T]

=E[h(x̂i,t,b)−E(h(x̂i,t,b))−εt ][h(x̂i,t,b)−E(h(x̂i,t,b))−εt ]
T

=
1

L−1

L

∑
i=1

[(h(x̂i,t,b)−h(x̂i,t,b))(h(x̂i,t,b)−h(x̂i,t,b))
T]+R .

(30)

So we can see that Eqs. (29) and (30) are identical to Eqs.
(11) and (12). Thus, another interpretation of Eqs. (11) and
(12) is the application of the unbiased assumption to the mea-
surement forecast, under which the linearization assumption,
Eq. (13), can be removed. The assumption of Eq. (13) can
clearly be seen as equivalent to the assumption of the unbi-
ased nature of the measurement forecast. Thus, Eqs. (11) and
(12) have a rigorous statistical foundation when the unbiased
assumption is applied to both the model forecast and the mea-
surement forecast.

In summary, there are three schemes used to estimate the
Kalman gain in the EnKF while the measurement function is
nonlinear. The similarity, disparity, and theoretical accuracy
of the estimates are summarized in Table 1. Clearly, when
the observation is appropriately perturbed, Scheme 3 should
have the smallest estimated errors, followed by Scheme 2 and
Scheme 1.

4. Application of modified Kalman gain to the
simple Lorenz model

In this section, we use the 3-component Lorenz model
to examine several of the aforementioned algorithms. This
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Table 1.Three Schemes for the optimal Kalman gain in the EnKF.

Scheme name Equations Assumptions Sources of estimated errors

Scheme 1 (HM2001) (10), (11) and (12) (1) An unbiased assumption for the model prediction;
(2) The noise is additive;
(3) An implicit assumption for linearization of measure-
ment function, or an unbiased assumption for measurement
prediction;
(4) Forecasted observation instead of raw observation

Assumptions (i)–(iv)

Scheme 2 (25) (1) An unbiased assumption for model prediction;
(2) The noise is additive;
(3) Forecasted observation instead of raw observation;

Assumptions (i)–(iii)

Scheme 3 (27) (1) An unbiased assumption for model prediction;
(2) The noise is additive;
(3) Perturbed raw observation is directly used.

Assumptions (i)–(ii)

model consists of three ordinary differential equations
(Lorenz, 1963):



























dx1

dt
= σ(x2−x1)+ η1

dx2

dt
= ρx1−x2−x1x3 + η2

dx3

dt
= x1x2−βx3+ η3

, (31)

where(xi ,ηi)(i = 1,2,3) are the model state variable and ran-
dom noise, respectively, andΛ = (σ ,ρ ,β ) are model param-
eters.

In our test experiment, we focused on the parameter es-
timate, where the parameters are treated as special states for
estimation, which can be written as

Λt = Λt−1 + ηt−1

yt = h((xi)t ,Λt)+ εt

, (32)

where the measurement function is the nonlinear modelh.
The true data were produced by integrating Eq. (31) with pa-
rameters(α,ρ ,β ) of (10.0, 28.0 and 8/3), and initial condi-
tions of 1.5088,−1.531, and 25.46; the integration interval
was 0.01. These sets are the same as in Miller et al. (1994).

For this experiment, the state observations were gener-
ated by adding Gaussian noise N(0,

√
2) to the model inte-

grations (i.e., perturbed observations used in assimilation), as
in Miller et al. (1994) and Evensen (1997). To make a fair
comparison between the filters, the unknown parameter,ρ ,
was initially set to zero. Additionally, the observation inter-
val was 25; thus, the observations were assimilated every 25
time steps. In the experiment, the errors of the model and the
observation were assumed to be uncorrelated in space and
time.

We assumed that the parameterρ is uncertain, so it
needed to be estimated. Figure 1 presents the estimations us-
ing the three schemes, with an ensemble size of 100 for each.
Figure 1a shows the parameter estimation using the standard
EnKF scheme (Scheme 1), and Figs. 1b and c show the modi-
fied approaches described in Table 1 (Schemes 2 and 3). The
parameter estimates in all three schemes approach the true

value after some time steps, but Scheme 3 has a relatively
slow convergence compared to Schemes 1 and 2, probably
because the observation noiseς used in Eq. (27) is too largea,
leading to a long training time. The modified EnKF schemes
have better estimations than the standard EnKF, with the best
values from Scheme 3, consistent with the theoretical analy-
sis shown in Table 1.

An interesting feature in Figure 1 is that the performances
of both Schemes 1 and 2 start to degrade after around 600
time steps, especially for Scheme 1, as indicated by an in-
creasing divergence of the estimated parameter away from
the true value. This is most probably due to the variation of
nonlinearity of the dynamical system (phase transition) dur-
ing the assimilation period. Figure 2 shows the model inte-
gration (true states) over 1000 time steps. As can be seen,
the nonlinearity of the system increases with the time steps
and the model states seem to become chaotic after around
600 time steps. Unlike Schemes 1 and 2, Scheme 3 seems
little affected by the variation of nonlinearity. This is proba-
bly because by perturbing the observation, we used observed
information to calculate the covariance matrix instead of eval-
uatingh(x̂b) (Scheme 1) orh( ¯̂xb) (Scheme 2), alleviating the
impact of nonlinearity on the estimation. Thus, Scheme 3
has a relatively steady performance and relatively little im-
pact from the variation in nonlinearity.

Figure 3 showsh(x̂i,b)−h( ¯̂xb) for x, y andz, which is the
source of difference between Schemes 2 and 1 shown in Figs.
1a and b. The difference is rather small in this case and thus
Scheme 2 is only slightly better than Scheme 1 in Fig. 1. In
cases whenh(x̂i,b)−h( ¯̂xb) is large, the two schemes may have
significant differences.

5. Summary and discussion
For atmospheric and oceanic data assimilation systems,

the measurement function may be nonlinear. In this paper, we
explored several schemes for calculating the optimal Kalman
gain when the measurement function is nonlinear, including
a widely used scheme in the standard EnKF. Emphasis was
placed on a comprehensive interpretation of the current algo-
rithm and an extension of it in a rigorous statistical frame-

aThe noise variance is arbitrarily set to 2.
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Fig. 1.Parameterρ estimate by the three Kalman gain schemes.
The dashed line is the true parameter, and the solid line is the
estimated parameter.

Fig. 2. The evolution of model states during the first 1000 time
steps.

Fig. 3.h(x̂b
i )−h( ¯̂xb) for x (upper panel),y (middle panel), andz

(bottom panel) of the Lorenz model.h is the nonlinear Lorenz
model itself.

work.
When the measurement functionh is nonlinear, the cur-

rent EnKF algorithm contains an implicit assumption; the
forecast of the measurement functionh(x̂b) is unbiased or the
mean of the forecast(h(x̂b)) equals the forecast of the mean
(h( ¯̂xb)). While the forecast of model state ˆxb is assumed to be
unbiased, the two assumptions are actually equivalent. An-
other interpretation for the latter is the implicit assumption
of the linearization process, under whichh(x̂b) approximates
h( ¯̂xb) asx̂b gets close tō̂xb. Based on the general form of the
Kalman gain and some statistical derivations, we presented
two modified Kalman gain algorithms. Compared to the cur-
rent Kalman gain algorithm, the modified ones remove the
above assumptions; thus, they can lead to smaller estimated
errors. This outcome was confirmed by an actual example,
where we used the simple Lorenz 3-component model as the
test. The parameter estimate of this simple Lorenz model is
designed with a highly nonlinear measurement function. The
three Kalman gain algorithms were applied to estimate the
model parameters. The results showed that the modified al-
gorithms lead to a better estimate than the current algorithm
in such a simple dynamical system.

A prerequisite for the Kalman filters is the Gaussian dis-
tribution of model and observation errors, under which the
KF provides an optimal estimate for the state-space equa-
tion [Eq. (2)]. The Gaussian assumption reflects the fact that
the KF is designed based on minimizing the analysis error
variance (i.e., trace of error covariance), which ignores the
higher-order moments. For a non-Gaussian system, the so-
lution by the KF is not optimal. The EKF, EnKF, and SPKF
use the same optimality criterion in their algorithms. For a
nonlinear state-space system, the Gaussian assumption is of-
ten violated, even when the initial noise is Gaussian, because
a nonlinear transformation of the Gaussian process is often
non-Gaussian. In his seminal paper, Kalman (1960) confined
the filter to linear systems and linear measurement functions.
Thus, the EKF and EnKF are only an approximation to the
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optimal estimate of the nonlinear state-space equation [Eq.
(1)]. Such an approximation can provide at least a practi-
cal solution for many realistic problems, as indicated by the
broad application of the EnKF in atmospheric and oceanic
assimilation. However, one should take care in interpreting
the EnKF estimates when they are applied to nonlinear state
models or nonlinear measurement functions.

Care should also be taken when understanding and in-
terpreting the outcomes. The statistical derivation is rigor-
ous but some assumptions were made in this manuscript, like
the unbiased assumption of the ensemble mean estimate, al-
though they are also held in the classic EnKF. Furthermore,
the outcomes from the statistical derivation were verified only
by the parameter estimate of a simple 3-component dynam-
ical system, where the measurement function is rather artifi-
cial in this context. A further test and validation is required
using more complex systems. Nevertheless, the theoretical
analyses and experiment results presented in this paper sug-
gest that the development of the Kalman gain algorithm de-
scribed here is on the right track, providing possible better
assimilation schemes for realistic models when the measure-
ment functions are nonlinear.
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