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ABSTRACT

Satellite-based observations provide great opportunitie improving weather forecasting. Physical retrievahtfio-
spheric profiles from satellite observations is sensitivéhie uncertainty of the first guess and other factors. Inrome
improve the accuracy of the physical retrieval, an ensemmgithodology was developed with an emphasis on perturbing th
first guess. In the methodology, a normal probability dgriihction (PDF) is used to select the optimal profile from the
ensemble retrievals. The ensemble retrieval algorithmaies four steps: (1) regression retrieval for originaltfgeess;

(2) perturbation of the original first guess to generate nest uesses (ensemble first guesses); (3) using the enstirsble
guesses and nonlinear iterative physical retrieval to iIgg@ensemble physical results; and (4) the final optimdilpris
selected from the ensemble physical results by using PDRp&eature eigenvectors (EVs) were used to generate thapert
bation and generate the ensembile first guess. Comparecheitagular temperature profile retrievals from the Atmosighe
InfraRed Sounder (AIRS), the ensemble retrievals RMSEmptrature profiles selected by the PDF was reduced between
150 and 320 hPa and below 400 hPa, with a maximum improveni@B & at 400 hPa. The bias was also reduced in many
layers, with a maximum improvement of 0.69 K at 460 hPa. Thehlined optimal (CombOpt) profile and a mean optimal
(MeanOpt) profile of all ensemble physical results were wapd below 150 hPa. The MeanOpt profile was better than
the CombOpt profile, and was regarded as the final optimalQ@inprofile. This study lays the foundation for improving
temperature retrievals from hyper-spectral infraredaadé measurements.
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1. Introduction measurements from both polar orbiting and geostationary
ﬁgtellites provide atmospheric soundings for global and re
ﬁnal weather forecasting.

There are two main types of algorithms for atmospheric
rofile retrieval from satellite radiance measuremenggisst
call methodology and physical iterative algorithms. Stat

Atmospheric temperature and humidity are two importa
parameters in global climate and weather systems. Among%{
observations, satellite-derived atmospheric tempezadnd
moisture soundings have their own uniqueness. Historeal ﬁ

formation about severe convective weather at the meso- . )
e methodology includes regression, neural networks et

micro-scale can be obtained from satellite sounding measu . . .
. - . g (Smith and Woolf, 1976; Girbanov and Zakharov, 2003; Li et
ments (Li et al., 2011a), and the profile retrieved from radi- : . . o
T . : l., 2009), and its advantage is its computational effigienc
ance measurements can be assimilated in numerical weather . - . L .
numerical stability, and simplicity. It is often used to gen

prediction (NWP) models to predict convective weather de'ate the first quess for physical retrieval alaorithms. For
velopment (Zavodsky et al., 2007; Reale et al., 2008, 2009Y; guess tor phy gor Co
) . o . . Xample, the Television and Infrared Observation Sagellit
Li and Liu, 2009; Liu and Li, 2010). The atmospheric soundz onal ical d .
ings from geostationary satellites have high temporal r JIROS) Operat|0na_ Vertical Sounder (TOVS) Procesrsmg
ackage (ITPP; Smith et al., 1993), and the International

olution (Schmit et al., 2009), while soundings from pOIa,&TOVS Processing Package (IAPP) (Li et al., 2000) use a

orbiting satellites have the advantage of global Covera%%ysical iterative algorithm with its first guess derivearfra

regression approach. Physical retrieval algorithms arallys
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Atmospheric sounding retrievals are affected by marlgan NWP forecasts as a first guess for the physical retrieval
factors, including the spectral coverage, spectral réieoly (Smith etal., 1993; Li et al., 2000; Li et al., 2008). In ordier
observational errors (Sokolov et al., 2008), the inverge-al obtain a good first guess, the AIRS retrieval algorithm (ver-
rithm (e.g., nonlinearity of the radiative transfer eqaasi), sion 5) uses a two-step regression methodology: the salcalle
uncertainty of the radiative transfer model, first guesskba “cloudy regression” for cloud-clearing and then the soezhll
ground, and the background error covariance matrix (Li &tlear regression”is used as the first guess for the physgeal
al., 2004a; Sharan, 2009; Meibodi et al., 2010). Other fattieval. The AIRS retrieval algorithm (version 6) uses a-heu
tors affecting the retrieval quality include surface pntigs, ral network scheme to improve the accuracy of the retrieval
clouds in the field of view on the observed infrared radiancgSusskind et al., 2012).
aerosols, and trace gas contamination in the atmosphere (Se The ensemble method has been proven useful in atmo-
mann et al., 2008; Li et al., 2011b; Zhou et al., 2011). Marspheric science to resolve some error problems, espeiially
studies have been conducted to address these problems. NWP modeling. Ferreira-Coelho and Rixen (2008) used en-

Progress has been made in improving satellite soursgmble methods to track multi-scale atmosphere errors and
ing retrievals in the past few decades. For instance, radiassification by running the model several times using dif-
ance observations from infrared (IR) high spectral resmtut ferent forcings and starting from different initial coridits
sounders, such as the Atmospheric Infrared Sounder (AIRSlodur, 1997; Bishop and Toth, 1999; Coelho et al., 2009).
(Chahine et al., 2006) onboard NASA's Earth Observing Sy&enerally, the perturbation of the ensemble members is re-
tem (EOS) Aqua satellite, the Infrared Atmospheric Soundlized by using a fairly large number of independent runs to
ing Interferometer (IASI) onboard Europe’s Metop-A and -Besolve error covariance of the state variables (Lermustau
satellites, and the Cross-track Infrared Sounder (CrIS) aal., 2006; Judd et al., 2007). Two general approaches ate use
board the Suomi National Polar-orbiting Partnership (NPR) interpret ensemble modeling results: the determinggiic
and the Joint Polar Satellite System (JPSS), have shown fineach and the probabilistic approach (Huisman et al., 2009
capability to derive atmospheric soundings with high waiti In the deterministic approach, an optimal combination of en
resolution and good accuracy (Tobin et al., 2006). In ordsemble membersis used instead of a single ensemble member
to better handle the clouds within a sounder sub-pixel, tfieranz et al., 2003). In the probabilistic approach, theens
high spatial resolution imager cloud mask can be used fae members are treated as possible realizations of the sys-
sounder cloud detection as well as cloud property retriexalm response. It is used in quantitative ways to determime th
(Li et al., 2004a, 2004b). For example, MODIS (Modemncertainty from an ensemble of predictions (Raftery et al.
ate Resolution Imaging Spectroradiometer) and AIRS benéf@05; Huisman et al., 2009). Because the ensemble method
each other; AIRS is used to inter-calibrate MODIS infrarechn resolve uncertainty problems and atmosphere erroks ana
band radiances (Tobin et al., 2006), while MODIS is used {@is, it is fit for resolving nonlinear error from retrievalnd
cloud-clear the AIRS radiances (Li et al., 2005). In the irthe combination of the ensemble method and the retrieval
frared window spectral region, the surface is an importamtethod is called “ensemble retrieval”, which is used in the
radiative source, which contributes significantly to the olesearch.
served IR radiance. Therefore, objectively quantifying su  The probabilistic approach, also known as the probabil-
face properties (i.e., emissivity) in the radiance calgoteis ity density function (PDF) method, offers compelling ad-
important for the sounding retrieval (Zhou et al., 2011; Li evantages for modeling perturbation. It is probably the most
al., 2011b). The operational MODIS MODO07 atmospherigidely used technique for uncertainty analysis of mathemat
retrieval algorithms use a set of global profiles and corrieal models (Stedinger and Kim, 2010). In particular, it{pro
sponding surface data (surface emissivity, surface skin tevides an effective solution to the closure problems thaeari
perature, and surface pressure) to train the synthetiesegifrom averaging or filtering the highly nonlinear source term
sion (Seemann et al., 2003, 2008). These studies improyeidworth, 2010). As one form of the PDF, the normal PDF
accuracy not only on the regression retrievals, but alstven tomputes the PDF at each of the values using the normal dis-
physical retrievals from the hyperspectral infrared radé tribution. The PDF technique depends highly on the system’s
measurements. sensitivity to small variations in the initial conditions.

Due to the ill-posedness of the retrieval problem (Smith In the present study, an ensemble retrieval method was
et al., 1993; Hannon et al., 1996; Li et al., 2000), physt@ieveloped to improve AIRS sounding retrievals, and a normal
cal retrieval accuracy under cloud-free conditions retigls PDF was used to obtain the optimal profile from the ensem-
ically on the quality of the first guess. Any errors in thdle retrieval members. Just as there are different initalc
first guess could be amplified if the algorithm does not haditions for ensemble NWP model predictions, an ensemble
dle the nonlinear inverse problem well, resulting in signiff the first guesses was used for the physical retrieval. The
icant retrieval errors. Some studies have used NWP foriginal first guess was perturbed to form a set of new first
casts as the first guess; however, interpolation from theggesses for the retrievals (the ensemble first guesses). The
data to satellite observations spatially and temporally wAIRS data are described in section 2, along with a detailed
cause additional errors that are difficult to quantify (Ldandescription of the methodology for generating the first gues
Zeng, 1997). Indeed, regression-based atmospheric tampperturbations, as well as how the PDF is used to obtain an
ture, moisture, and ozone retrievals have been provernrbettptimal retrieval profile. Ensemble retrieval results andla
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ysis are given in section 3. A discussion and conclusions dmeng all first guesses closer to the true state. Therefbee, t

presented in section 4. ensemble physical retrievals should be clustered nearube t
state. Detailed information is described as follows.
2. Data and methodologies 2.2.1. Physical iteration retrieval algorithm
When scatterind? is neglected in the infrared spectra
2.1. Data region, the clear spectrum of infrared radiance reachieg th

The AIRS (Aumann et al., 2003) onboard NASAs posatellite from the Earth—atmosphere system can be expresse

Aqua satellite is one of the most advanced high spectral r&y.-
olution infrared sounders in the world. It is in a polar orbit

and measures the radiances emitted from the atmosphere ar%:
surface of the Earth |n12378 channels ranging from 650_]mehereR is satellite-observed spectral radiangeis Planck
(15.4pm) to 2700 cm™ (3.7 pm), W.Ith a spectral r_eso_lut|0n unction; e is infrared surface emissivity;is the atmospheric
(v/Av) over 1.200' _The AIRS horizontal respluhoq IS 13'{‘ransmittance from the satellite to the pressure lgyed is
km at nadir view, with scan te-49.5° off nadir, leading to

) . surface; and* = 12/7 is the downwelling transmittancéR
90 f|e!ds-of-vu?w (FOVs) across trgck_ and 135 FOVS_ alo a nonlinear function of the atmospheric temperature pro-
track in a 6-minute data granule; it yields a swath width

. o CFIe, water vapor mixing ratio profile, ozone profile, surface
approximately 1650 "”? (Nasiri et al., 2010). AIR_S has be kin temperature, and surface emissivity. By using the-opti
proven very useful to improve weather forecasting throu

. . . ) [ soluti thodol Rod ,1976), t funcgon i
assimilating either radiances (Singh et al., 2012) or smgnd al solution methodology (Rodgers ) acostfuncsoni

products (Zavodsky et al., 2007; Reale et al., 2008, 2009).Oleflned as follows:

The dataset used in this study includes the AIRS level- IX) = [Ym—Y(X)]"E Y¥m-Y(X)]+
1b radiance measurements, MODIS cloud mask product (X —Xp)"H X - Xp). 2)
(MYD35), MODIS emissivity product (MYD11), and the _ ) ) ) _
ECMWF (European Center for Medium-Range Weathé&tere, X is the atmospheric profile to be retrieve, is
Forecasts) analysis. The granules 65 and 66 on 2 March 281 first guess from regression for practical purpodgsis
were used to test the algorithm. It contains>9035x 2 = the vector of observed bright temperature, m is the mean-
24300 FOVs. These two granules were chosen becalliéOf measuremend’(X) is the vector of calculated bright
their observation time (0635 and 0629 UTC) is close to th@mperature corresponding to the atmospheric prafilelZ
ECMWEF analysis time (0600 UTC). The AIRS data covef the obseryatmn error covariance matrlx_ that includes in
both land/ocean (5-5°N, 83°-54W) and the tropical/mid- strument noise an_d forward model uncertainty; &fhds the
latitudes, so the data cover the typical global region ard 4tackground covariance matrix.
good for testing the methodology. The high spatial resotuti  With the quasi-Newtonian iteration approach (Eyre,
MODIS cloud mask product was used for AIRS sub-pixéi989). the physical retrieval can be obtained by
cloud detection (Li et al., 2004a). The high spatial resofut 5Xni1 = (Fr/]TEler/] _ HA)71I,}4T|571((\5Yn_F F3X,),
MODIS emissivity was used for AIRS sub-pixel surface char- (3)
acters, especially in desert and Gobi regions; the highre?f\?herecSXn:Xn—Xb; 5Yn = Ym—F(Xn); F'is weighting
lution emissivity is important for atmospheric profiles O{afunction;n is the iteration number, T means transpdsex)
et_al., 2011)_. The _retrieval was performed for clear-skyfogg the tangent model, which is the function &F; and X,
prints only, including 5662 clear sky FOVs. The ECMWHg the matrix at iteration time. In the retrieval process, the
analysis data were used as reference values (true) to &sigdflectrum of radiance is expressed as the weighting function
AIRS profile retrievals. The ECMWF analysis data were spgt syrface temperature, air temperature and water vagior rat
tially and temporally interpolated to the AIRS footpring®f  Taking the empirical orthogonal functions representatioe
Liu et al. (2008) for more details on the collocation methodhmper of atmospheric variables is reduced; the detailef th

2.2. Methodologies retrieval method was shown in a previous paper (Li, 1994).

The ensemble retrieval algorithm has four steps: (1) ré-2-2. The ensemble first guess generation
gression retrieval process for the original first guess—sthe  Originally, the first guess is obtained through regression.
called “clear regression” first guess; (2) perturbationhef t The SeeBor (Seemann et al., 2008) dataset containing atmo-
original first guess to generate the ensemble first guess; §Bheric state (temperature/moisture/ozone), surfaceski-
nonlinear iterative physical retrieval to generate endemds perature and surface emissivity is used in the training.- Syn
sults; and (4) the optimal profile from the ensemble physiciletic AIRS radiances are calculated (with observatioorsrr
retrievals. Steps (1) and (3) are similar to other algorghnadded) from the SeeBor database using the Stand-alone AIRS
(Li et al., 2000; Li et al., 2008). The basic idea of the enserRadiative Transfer Algorithm (SARTA, Strow et al., 2003).
ble retrieval method is to run the retrieval process mudtipSARTA has 101 vertical pressure layer coordinates from 0.05
times with different first guesses. Although the first gussstio 1100 hPa. The calculations take into account the satellit
different, the physical retrieval algorithm should be atiie zenith angle, absorption by trace gases (including nimmpge

"Ps "Ps
eBsrs—/ Bdr (0, p)+(1—£)/ Bdr' +R, (1)
JO JO
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oxygen, and carbon dioxide), water vapor (including the waenentially, only three temperature EVs were used for gen-
ter vapor continuum) and ozone. The temperature and masating first guess in the retrieval experiments (Fig. lizkth
ture sounding retrievals are produced when the regreseionlnes). The perturbation using a combination of the thres EV
efficients are applied to the actual clear sky AIRS measuiean be written as

ments. The advantage of this approach is that it does not

need AIRS radiances collocated in time and space with at- P = aA1E; +bAoE, + cAsEs, (4)
mospheric profile data; it requires only the historical pesfi whereP is the perturbation of the first gueas; A, As are the

(_e.g., Seel_?ac_)r dataset). _Th|s regression algorlthm IS Ctl]&mpucoefficients of the first three EVs, equal to 4, 10, and 0.8, as
tionally efficient, numerically stable, simple and ideal fie-

ivin the first for phvsical retrieval. In order tovidte calculated by a sensitivity test; b, c all could have three val-
riving the first guess for physicalretriéval. in ordertoy es:—1, 0,41, respectivelyE;, E; are the first two EVsEs
soundings with the required level of accuracy, proper {realii

ment of surface emissivities in the forward radiative tfans 'S a combination of EVs 3-15 in orderto produce large pertur-
: ; : i ations. A simulation study indicated that the first two EVs
model is very important. In the AIRS sounding algorithm, |

R nd the combination of EVs 3-15 can provide a wide range
surface em|§S|V|ty measurements sorted _by (_eco_system ¢ emperature profiles, as compared with a combination of
are used to improve the surface characterization in the-trabnly the first three EVs (Fig. 1b). Depending on the value of

ing data, and a more physical basis for assigning a skin tegln-b andc, there are & 3 x 3= 27 perturbations. Figure 1c

perature to each training profile is adopted (Seemann et ghOws the 27 perturbations. These perturbations were added

2008). e . .
Because the physical retrieval is dependent on the fiththe original first guess to form 27 ensemble first guesses.

guess, it is important to ensure the ensemble first guesfi8.3. Optimal profile selected using PDF

evenly distributed. Eigenvectors (EV) have been used in the Tyenty-seven first guesses yield 27 physical retrievals, or
sounding retrieval to reduce the number of unknowns (Li f{e ensemble retrievals. The PDF technique is used to select
al., 2008); Fig. 1a shows the coefficients of 15 EVs. In thife optimal profile from the ensemble retrievals. For a ran-
study, the 15 EVs were used to produce perturbation, whigBm continuous variablec (—o0,00) the probability density
were added to the original first guess to produce perturbgghctionp(x) satisfies the following conditiongi(x) > 0,x

first guesses, i.e., the 15 EV profiles shown in Fig. 1b. Be- o, ), and [, p(x)dx= 1. The normal PDF uses the nor-
cause the computation increases with the number of EVs @xa| distribution ofx, with a standard deviation af and an
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Fig. 1. (a) The first 15 temperature profile EV coeffiecients; (b) the& find second EVs (red E1 and
blue thick lines E2), EVs 3-15 (thin lines, E3), and their tomed EV (thick blue line); and (c) the 27
perturbations by the first two Evs and the combined EVs 3-15.
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average value qgfi; that is: profiles.
e The PDF technique finds eight optimal profiles. It is un-
y=p(X\u,0) = 1 e 200 (5) known which one of these eight profiles best represents the
avan true state. However, each of these profiles has a certain laye

ensidered optimal. One way to generate the final optimal

erence parameter. Because surface skin temperature Ias Rigfile is to combine different layers from the eight profiles
accuracy, and it has a similar value for 27 retrieval profiled 10rm a single profile (hereafter called the “CombOpt” pro-
while atmospheric temperature for 27 retrieval profiles hii€)- Because each PDF analysis uses a certain height as ref-
different values at the same levels. Therefore, the diffeze €"€NC€ parameter, the chosen profile is expected to have a

between the surface skin temperature and atmospheric t&fter retrieval around that height. This piece of the teape
typg profile is combined with other pieces from different PDF

perature is chosen as the reference parameter. Because A ] g
ferent levels have different retrieval quality, it is impamt to  @nalyses to form a single temperature profile. Another aptio
perform the PDF analysis for the temperature profile at dift {0 take the average of all eight selected profiles to form a

ferent heights. In this study, eight reference parameters w i

To use the PDF technique, one needs to specify the r€&

single profile (hereafter called the “MeanOpt” profile). Ex-

chosen, and they were the differences between surface Jigkiments were conducted to determine which option is bet-
temperature and atmospheric temperature at eight preséﬁFe

levels. The pressure levels were: 100 hPa, 200 hPa, 300 hPa,

400 hPa, 500 hPa, 700 hPa, 850 hPa, and 925 hPa. For evgery .
parameter, the PDF analysis finds the profile with the ma;ﬁ Results and analysis

mum probability in the 27 ensemble retrievals. This profil®.1. Ensemble retrieval based on perturbation of the tem-

is chosen as the optimal profile at the corresponding pressur  perature EVs

level. So in total, there are eight chosen optimal profild® T 16 3 shows ensemble temperature retrieval results of
next sec_tlon further d_escrlbe_s how to_produce the final oPflio AIRS granules from different perturbations using the
mal profile from the eight optimal profiles. ECMWF analysis as the reference (true). The perturbation
2.2.4. Ensemble retrieval steps method reduces the AIRS temperature retrieval standard de-
The flow chart of the ensemble retrieval algorithm i¥|.at|0n (.STD) by 0'01_0'15 K (Fig. 3a), the temperature re-
shown in Fig. 2. Itincludes four steps. In the first step, thtgeval bias by 0.05-1K (Fig. 3b), and the temperature root-
first guess is obtained by using statistical regressionda; ean-square error _(RMSE). by 0'05_(.)'7 K .(F'g' 3¢). _C_om-
on the regression coefficients. In the second step, pertur gred with the original retrieved profile using the original
tions are produced to generate 27 ensemble first guesse I guess, the. e-nsemble temperature retrieval STDs aye ver
the third step, the nonlinear physical iteration retriésader- close to the original .STD; however, absolute values .Of. most
formed with the 27 ensemble first guesses. In the fourth St}%éé\r/]; g?;se(rpnb;gtrsgfﬁlnggzi SLZJ;S; tzlarg)thse?;mg*;:l r
the optimal profile is obtained from the 27 ensemble retfie retrieval RMSEs are distributed on both sides of the origina
RMSE, and most of the perturbation retrieval RMSEs are less
[ Coj iy Ni=-1,1 ]__> Fi, ij=1,27 4_[ En, nj=1,3 ] than the original retrieval RMSE. Figure 3 shows that ensem-
l ble retrievals can reduce STD, bias and RMSE at some pres-
sure levels, which mainly depend on the error of first guess
[ To ]——' Toy, [j=1,27 and ensemble perturbations.
Eight profiles were selected with the maximum probabil-
ity using the PDF according to eight parameters (see section

Ty-Ts, h=1,8 Phy.model 2.2.3). The CombOpt and MeanOpt profiles were derived
from the eight selected profiles (see section 2.2.4). By com-
If jj<=27 paring those eight profiles with the original retrieval plefi
using ECMWEF analysis as the reference, it can be seen that
» Th h=1,8 <—[ pdf ] the selected eight profiles have an overall smaller bias and
RMSE. This trend is more evident at the levels where the pa-
v rameters are used for the PDF analysis (not shown). This
( T ) result confirms that the selected eight parameters are-effec
tive and valid. The MeanOpt profile and CombOpt profile

_ o ) _ were also compared with the ECMWF analysis and the origi-
Fig. 2. Flow chart depicting the ensemble retrieval algorithm 5 retrieval profile. Both the MeanOpt profile and CombOpt
of the temperature profildi{ is surface temperaturg, is tem- o have an overall smaller bias and RMSE. Comparing
perature profileh is pressure level\. is the number of pres- the M Obt brofil d CombOnt file. it b that
sure levelsTy, is MeanOpt profileT. is CombOpt profileF is € Veantp F.)ro'ean ombopt profile, it can be seen tha

MeanOpt profiles are overall better than the CombOpt pro-

perturbations(C is coefficient,E is eigenvector, andy is first :
guess). files, except for pressure layers between 200 and 300 hPa.
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3.2. Improvement of ensembleretrieval imum improved values, 0.55 K, 0.69 K, and 0.5 K, at the
Figure 4 shows the difference of STD, bias and RMSEressure levels of 150 hPa, 460 hPa, and 660 hPa, respec-
between the eight PDF selected profiles/the MeanOpt pftyely. MeanOpt profiles have more improvement between
file/the CombOpt profile and the original retrieval (formed00 hPa and the surface, as well as the layer from 120 hPa to
minus latter). The bias difference is the difference of the a200 hPa. CombOpt profiles have improvement at almost all
solute values; a negative value means an improvement. Sd¥fssure layers. The pressure layers with local maximum im-
STD of the selected profiles shows improvement between 20@vement of MeanOpt and CombOpt profiles are the same
and 350 hPa. The improvement is about 0—0.08 K, with ti§é those with a maximum improvement of selected profiles.
maximum improved value of 0.08 K around the level of 300 The eight PDF selected RMSEs are improved between
hPa. The MeanOpt profile and CombOpt profiles are sin#50 and 200 hPa and below 400 hPa; the improved values
lar to the eight selected profiles. The PDF selected tempe®&€ up to 0.3 K. The improved peak values are 0.29 K, 0.23
ture bias is improved in most layers, with the improved val<, 0.13 K and 0.1 K at the pressure levels of 140 hPa, 460
ues ranging from 0.1 to 0.69 K. There are three local maiPa, 660 hPa and 980 hPa, respectively. The CombOpt pro-
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Fig. 3. Ensemble physical results by using 27 ensemble first guesses granules on 2 Mar 2012
(thick line is the original profile using original first guedisis the same as pt14; thin lines are perturba-
tion profiles by 27 perturbations added in original first gijes
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Fig. 4. Improvements (negative values) of (a) STD, (b) bias (b),@h&MSE of the ensemble retrieval
(figure shows the difference between the ensemble retieufile and original profile; negative values
mean improvement of the ensemble retrieval, while bias avgament is equal to the absolute value of
the profile).
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files are similar to the eight selected profiles; the RMSE are 100

original Bias

improved between 150 and 320 hPa and below 400h Pa, witt P g g S
the maximum improved value being 0.16 K around 460 hPa. 2007 1 Tt 7
The MeanOpt profile shows improvement at all pressure lev- 300 ----- re---- SRy o 1omm--
els from 100 to 1000 hPa, with local improved peak values 4001 L :

being 0.29 K, 0.23 K, 0.13 K and 0.1 K at the levels of 140 MoanOnt Bins
hPa, 460 hPa, 660 hPa, and 980 hPa, respectively. Furthei 800 -----r--m-n °

original RMSE

Pressure (hPa)

more, the improved values are larger than CombOpt profiles, 600 - re- A MeanOpt RVSE ||
except for the layer between 200 and 300 hPa. Comparing £ 501 N O MeanOpt STD
the STD, bias and RMSE of the MeanOpt profiles with the | original STD

800 -t N\ N

CombOpt profiles, it can be seen that the MeanOpt profiles
are more stable and have greater improvement than the Corr 900} -----
bOpt profiles. Therefore, the MeanOpt technique was choser
to derive the optimal results from the eight selected prafile
Figure 5 shows a comparison of the statistical results of the TK)

MeanOpt profile with the original profile. The results show

that the MeanOpt profile has smaller bias and RMSE com-Fig. 5. Comparison of the MeanOpt profile (red lines) with the
pared with the original profile, but the STD of the MeanOpt original profile (blue lines) physical results of two graesibn
profile is similar to the original profile. These results show 2 Mar 2012 (thick line is bias; thin line is STD; thick dashed

1000 1
2 4

that the ensemble retrieval technique is effective in reggic ~ ''"® 1S RMSE).
the bias and therefore RMSE.
3.3. Ensembleerror frequency and uncertainty analysis 015 (hy ! vy !

The bias, RMSE and STD of the final optimal profile of 04 pomme T T T [
ensemble retrieval depend highly on the eight PDF selectec go5) .1 __ I I R
profiles. Figure 6 shows the occurrence frequency distribu- ﬂﬂﬂﬂmﬂm 1 H Hﬂﬂﬂm ﬁﬂﬂmﬂn HHH H{
tion of the 27 ensemble members selected by the eight PDF 0.12 i -
conditions, corresponding to the eight pre-defined pressur (- ! vn -
levels from 100 to 925 hPa, with level numbers defined as 01}~ SRR I TRRRERES H R
I, 11, I, IV, V, VI, VII, and VIII. There are 27 perturbation N | il
members selected by the PDF for every level. For each level 2 ‘ ( HT ! Hm ] H HH
the 27 perturbations can be divided into three parts, includ 3 0 HHHHHHHHHHH [0l e ol H HH H {
ing the first part (the first nine perturbations), the midcietp 0-15 am ! (v !

(from 10 to 18 perturbations), and the last part (from 19to * 01 - R TR b
27 perturbations) in sequential order. These three parts co ol o | |
respond to—1, 0 and 1 for the coefficient of the first EV in 0.05F----- HHH{ WH ””””

Eq. (4). Itis found that the eight PDF frequencies are not 0 HHH Hﬂ sl

the same. The highest frequencies of level numbers Il anc 919 [y

VIII mostly cover the first part and the middle part; the high- 01l ol

est frequency of level number IV occurs mostly in the middle ! !

part; the highest frequency of level number Il occurs mostly ~ 0.05 H( Rl

in the middle and last part; and the highest frequency of leve ol_aa HHH Hﬂﬁﬂﬂ HHHHHH(

numbers |, V, VI and VIl occur mostly in the last part. This 0 9 18 270 9 18 27
shows that perturbation is sensitive to the first EV. Accogdi case case

to the eight level numbers and their corresponding pressure

levels, it can be seen that the perturbation of the negative ¢ Fig. 6. Distribution of the frequency of ensemble members se-

efficient of the first EV is favorable for small retrieval erso ~ lected by the eight PDFs.

and bias for pressure layers around 300 hPa (Fig. 6 Ill) and

925 hPa (Fig. 6 VIII); the positive coefficient of the first Evhumbers show that each perturbation is effective in some lay

is favorable for small retrieval errors and bias for pressuers, and less effective in others. The eight selected pressu

layers around 100 hPa (Fig. 6 1), 500 hPa (Fig. 6 V), 708vels have high uncertainty in their results, which is impo

hPa (Fig. 6 VI), and 850 hPa (Fig. 6 VII). The zero coeffitant for the accuracy of the ensemble retrieval. In order to

cient of the first EV is favorable for small retrieval errorsla minimize the effects and uncertainty of the eight selected p

bias for pressure layers around 200 hPa (Fig. 6 Il) and 4fies, and maximize the available information on the sekkcte

hPa (Fig. 6 IV). In summary, the first EV contributes morpressure levels, the MeanOpt profile of the eight selected pr

than the other two EVs. files was used. The above case study also shows that the
The different frequency histograms of different PDFMeanOpt profile is more stable than the selected profiles and
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the CombOpt profile, and that is the reason why the MeanOp*
profile was regarded as the final optimal result. According to

the above analysis, it is concluded that the MeanOpt profiles
and CombOpt profiles rely strongly on the eight PDF selectec
profiles, which are decided by perturbations, the accurécy o

the original profile, the PDF method, and so on.

Pressure (hPa)

3.4. Simulation results

In the above study, the ensemble results were evaluate
by ECMWF analysis. However, it should be noted that the
ECMWEF has its own errors, as it is not observation data but
reanalysis data. In order to further test the improvement of
the ensemble retrieval, and analyze the information doumri
tion from various errors to the retrieval, a simulation stud
was performed. In the simulation, all the NOAA-88 profile
data samples (http://cimss.ssec.wisc.edu/itwg/grownpg/
profiles.html) were used for training, while real valuesha t
profile were used for testing the retrieval results. Theyvert

100
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T100-Ts

T200-Ts
T300-Ts

T400-Ts

T500-Ts

T700-Ts

T850-Ts

T925-Ts
s Mig@NOpt
e CombOpt

Fig. 7. Improvements (negative values) of RMSE of the ensem-
ble retrieval in the simulation.

300

bation errors added in the simulation were the same as the

errors used in the operational algorithm for the physical re

trieval. It was found that the perturbation results reduibed 400

temperature RMSE by 0.1-0.4 K between 100 hPa and 300 =

hPaand 0.15-0.5K below 300 hPa (not shown). Perturbations o

could decrease the RMSE at some levels in the simulation. @ 500
The PDF selected profiles were performed according to §

the temperature difference between the eight pressurksleve £ 600

(from 100 to 1000 hPa) and the surface temperature (section 700

1.3). The MeanOpt profile and CombOpt profile were also

created according to the eight selected profiles in the simul 800

tion. The statistical results of these profiles minus thgieri 9000

nal profile are shown in Fig. 7. The RMSE of the PDF se-
lected profiles shows improvement between 300 and 800 hPa;
the maximum improved value is 0.18 K_ at 500 _hPa and 600Fig. 8. MeanOpt profile of STD, bias and RMSE over Dun-
hPa. The RMSE of the MeanOpt profile has improvement, ;ang station in Northwest China in 2007 by comparing with
below 150 hPa, improving from 0.05 to 0.14 K; the maxi- synchronous radiosonde data.

mum improvementvalue is 0.14 K at 600 hPa. The RMSE of

_the CombOpt profile also has.improver_nent b_elow 180 hﬁﬂg observed synchronous radiosonder data, which are shown
improving from 0.02 to 0.12 K; the maximum improvemeny, i, g pyst had significant impact on the retrieval (Yao
value is 0.12 K at 600 hPa. Just like the results of the egr 5" 5012), which is considered in the radiation transfer
semble retrieval from real satellite data, the MeanOpt [&rofi, 4ol The STD of the MeanOpt profile is less than 1.2

shows an obvious improvement, and itis more stable than {0, oo 400 hPa. and it is between 1.2 K and 1.8 K be-
CombOpt profile. The MeanOpt profiles and CombOpt Pre%w 300 hPa and 400 hPa. The bias of the MeanOpt pro-

files rely strongly on the_eight PDF selected profile?sf Whi(me is less than 0.5 K between 300 hPa and 650 hPa, and it
are decided by perturbations, the accuracy of the origimal Pis between 1.5 K and 0.5 K below 650 hPa. The RMSE of
file, the PDF method, and so on. the MeanOpt profile is less than 1.5 K between 380 hPa and
3.5. Application of the method 700 hPa, and it is between 1.5 K and 2 K below 700 hPa
The depth of the boundary layer over Gobi and desé#d above 380 hPa. Compared with the original retrieval re-
regions in Northwest China can be more than 4000 m (Zha$igits (not shown), it was found that: the STD and bias of the
et al., 2004, 2011), which results in frequent regional stisaMeanOpt profile showed improvements below 200 hPa (the
ters, such as hail storms and sandstorms. The profile ob&@Ximum improvement value of STD was 0.35 K at 600 hPa
Northwest China is therefore very important for predictingnd the maximum improvement value of STD was 0.28 K
weather disasters, although it is difficult to obtain due toaf 800 hPa), and the RMSE showed improvement below 200
limited number of observation stations. By using AIRS datdPa (improvementwas from 0.05 to 0.44 K and the maximum
for July 2007 (1 July to 15 July; 10 clear days, five cloudinprovement value was 0.44 K at 600 hPa). Comparing en-
days), atmospheric profiles of ten clear days were retrievé@mble retrieval of AIRS data with MODIS retrieval results
and MeanOpt profile STD, RMSE and bias were analyzed i8-previous research (Zhang and Zhang, 2008), the ensemble
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retrieval of AIRS is also better than MODIS results, whiciments of the retrieval. In this study, in order to emphadiee t
means that AIRS data and the ensemble retrieval method pnsemble methodology and perturbation of the first guess of
tentially have the ability to retrieve atmospheric profie®r the temperature profile, water vapor was assumed to remain
Gobi and desert regions. the same as the original water vapor during the ensemble re-
trieval. Undoubtedly, the uncertainty in the water vapan-co
] ) ) tent is an important factor affecting the temperature peofil
4. Discussion and conclusions accuracy. Therefore, if we provide a reasonable pertuwbati

Ensemble first guesses were formed using EVs as pgg;_cording to t.hese_uncert.ainty factors, improvement_ in the
turbation to update the first guess from regression. Th&ﬂsemblg retrieval is possible. V\{gter vapor perturbazon c
the nonlinear physical iterative method was used to regried€ (_jesclrl_bed by water v:lalpor Egj improving the vgi':\ter vapor
atmospheric profiles and obtain ensemble physical retrie\r/‘fat_”E"Va]c IS our Eexfdgga - Ina |(tj|on, a reasonable comgol-
profiles. PDF was used for selecting the optimal profile froff{tion of EVs should be improved so as to improve mode

these ensemble retrieval results. The results showed that:Speed' .
Perturbation is an important step for the ensemble re- The ensemble retrieval results showed that the temper-

trieval technique; a reasonable perturbation will resutigt- tureé bias and RMSE were improved at most of the layers
ter retrieval. The perturbation’s contribution to the entée  COMPared with the original AIRS physical retrieval. Botk th
retrieval also relies on the accuracy of the original firgtggs retrieval of the simulation and application in Northwestr@zh

Atmospheric temperature profiles can be decomposed ush, v_v_ed improvements by gsing ensemble retr.ieval. This has
EVs, and the total variation of the first 15 EVs was more thérl'gnlflc_ance to thg processing of AIRS data using the ensem-
90%. They were combined to generate 27 perturbations S(p(lgretrleval technique.
to generate the ensemble first guess.

The PDF technique was used to select the optimal profile. E X ) i
Eight parameters of the temperature difference between f{gval group at the University of Wisconsin-Madison CIM8S
atmosphere and the surface skin temperature were used'6f €xisting work, including the physical retrieval mgdeloud
the PDF analysis. Eight optimal profiles out of the 27 pr(f'—eteCt.'C’n algorithm, and assistance in th!s work. ThIS.El’ES’EWB.S
files were retained. The final optimal profile was obtained Bgancuauy supported by the Meteorological Foundation ¢fir@
using the technique of the MeanOpt profile and Comboﬁ Srant No. GYHY 201406015), a project funded by the Priority

The MeanOpt showed greater improvement than the Coﬁ,f;_ademic Program Development of Jiangsu Higher Educatien |

bOpt profile at most pressure levels, and the results fronrifiutions (PAPD) and open project of the Key Laboratory et
were considered as the optimal profile of the ensemble fE9logical Disaster of Ministry of Education (KLME1104).
trieval.
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