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ABSTRACT

The Global/Regional Assimilation and PrEdiction System (GRAPES) is the new-generation numerical weather predic-
tion (NWP) system developed by the China Meteorological Administration. It is a fully compressible non-hydrostatical
global/regional unified model that uses a traditional semi-Lagrangian advection scheme with cubic Lagrangian interpola-
tion (referred to as the SLCL scheme). The SLCL scheme has been used in many operational NWP models, but there
are still some deficiencies, such as the damping effects due to the interpolation and the relatively low accuracy. Based on
Reich’s semi-Lagrangian advection scheme (referred to as the R2007 scheme), the ReR2007 scheme that uses the low- and
high-order B-spline function for interpolation at the departure point, is developed in this paper. One- and two-dimensional
idealized tests in the rectangular coordinate system with uniform grid cells were conducted to compare the ReR2007 scheme
and the SLCL scheme. The numerical results showed that: (1) the damping effects were remarkably reduced with the
Re R2007 scheme; and (2) the normalized errors of the ReR2007 scheme were about 7.5 and 3 times smaller than those of
the SLCL scheme in one- and two-dimensional tests, respectively,indicating the higher accuracy of the ReR2007 scheme.
Furthermore, two solid-body rotation tests were conductedin the latitude–longitude spherical coordinate system with non-
uniform grid cells, which also verified the ReR2007 scheme’s advantages. Finally, in comparison with other global advection
schemes, the ReR2007 scheme was competitive in terms of accuracy and flow independence. An encouraging possibility for
the application of the ReR2007 scheme to the GRAPES model is provided.
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1. Introduction

The transport process is of crucial importance in atmo-
spheric movements. In numerical weather prediction (NWP)
models, some discretized advection schemes need to be used
to approximate the solution of the advection equations. The
accuracy of the advection scheme plays a key role in the
performance of NWP models. Therefore, lots of attention
has been paid to the study of advection schemes in the past
decades. In the early NWP models, the Eulerian advection
scheme was widely used, but its time step length is strictly
limited by the Courant–Friedrichs–Lewy condition for en-
suring the numerical stability of integration in NWP models.
In recent years, semi-Lagrangian advection schemes incor-
porating the semi-implicit scheme have been widely used
in operational weather and climate models because they use
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a larger time step length than Eulerian advection schemes,
which reduces the time taken to run the model and lowers
the computational cost. Robert (1981, 1982) proved that the
combination of the semi-Lagrangian treatment of advection
and the semi-implicit treatment of gravitational oscillations
could increase the maximum stable time step length by a fac-
tor of six at some extra cost but without lowering the nu-
merical accuracy. In addition, Staniforth and Côté (1991)
demonstrated that the semi-Lagrangian advection scheme
could achieve a computational accuracy comparable to the
Eulerian scheme and that it also exhibited better efficiency
and less dissipation of quantity. As expected, these advan-
tageous semi-Lagrangian advection schemes have been in-
troduced into many NWP models at operational meteoro-
logical centers, such as the European Center for Medium-
range Weather Forecasts (ECMWF), the UK Met Office, the
METEO FRANCE, the National Centers for Environmental
Prediction (NCEP) in USA, Canadian Meteorological Center
(CMC), and Japan Meteorological Agency (JMA), etc.
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GRAPES (Global/Regional Assimilation and PrEdiction
System), the new-generation NWP model developed by the
China Meteorological Administration (CMA), adopted the
traditional semi-Lagrangian advection scheme with cubic La-
grangian interpolation (SLCL scheme), since the cubic La-
grangian interpolation represents a good compromise be-
tween accuracy and computational cost (Staniforth and Côté,
1991). However, the SLCL scheme damps the extrema of
quantities and incurs some spurious oscillations in the dis-
continuous areas due to the interpolation (McDonald, 1984,
1987), so it cannot preserve the shape of the initial field. This
behavior also indicates a potential problem in the traditional
semi-Lagrangian advection scheme. The simple interpolation
(e.g., linear interpolation) can reduce the computationalcost
and smooth the spurious oscillations of quantities in the dis-
continuous areas but sacrifices the numerical accuracy; while
the complex interpolation (e.g., the high-order interpolation
method) has higher accuracy but with expensive computa-
tional costs and severe spurious oscillations of quantities in
the discontinuous areas. To suppress the spurious oscillations
in the discontinuous areas, Bermejo and Staniforth (1992)
converted the traditional semi-Lagrangian advection scheme
into the quasi-monotone semi-Lagrangian (QMSL) scheme
by combining the low- and high-order approximate solutions.
This kind of treatment in the QMSL scheme can effectively
control the oscillations and be easily incorporated into any
traditional semi-Lagrangian advection scheme. However, it
should be noted that it reduces the numerical accuracy in the
QMSL scheme. Therefore, it is expected to improve the nu-
merical accuracy and simultaneously reduce the spurious os-
cillations in the discontinuous areas in the semi-Lagrangian
advection scheme.

Based on the remapped particle-mesh (RPM) method and
the forward trajectory algorithm, Cotter et al. (2007) de-
veloped the remapped particle-mesh semi-Lagrangian (RPM
SL) advection scheme from the continuity equation, in which
the factor of grid cell area was introduced to the interpola-
tion function to ensure the conservativeness property of this
scheme. It was found that the RPM SL scheme could the-
oretically keep the conservativeness property of quantities
and simultaneously achieve the same accuracy as the SLCL
scheme. However, for the RPM SL scheme, a tri-diagonal lin-
ear system of equations needs to be solved at each time step,
and this increases the computational cost, especially when
the resolution is increased. To overcome this deficiency, Re-
ich (2007) employed a quasi-interpolation (Powell, 1981) to
approximate the solution of the tri-diagonal linear systemof
equations in the RPM SL scheme and advanced the explicit
RPM SL scheme based on the forward trajectory algorithm,
which, as has been proved, reduces the computational cost
without sacrificing the conservativeness property and numer-
ical accuracy of the RPM SL scheme. At the end of Reich’s
paper (see section 6 of his paper), he appropriately adjusted
the interpolation algorithm in the explicit RPM SL scheme,
and applied it to the backward trajectory algorithm (hereafter,
referred to as the R2007 scheme), but he did not verify the
feasibility of the R2007 scheme in practical tests.

During our tests of the R2007 scheme, it was found
that on the grid mesh with uniform grid cells, the factor of
grid cell area had nothing to do with the whole computation
since it was offset in the interpolation process. Also, when
the R2007 scheme was applied to the grid mesh with non-
uniform grid cells (e.g., the latitude–longitude spherical grid
mesh), this factor of grid cell area could not guarantee the
conservativeness property in theory but also possibly led to
numerical instability in the interpolation (e.g., when thefluid
flows across the poles). In this paper, we attempt to remove
the factor of grid cell area in the R2007 scheme and only con-
sider the effect of the grid spacing in the interpolation func-
tions to make the R2007 scheme valid in a latitude–longitude
grid coordinate system. For convenience, the R2007 scheme
after this revision is referred to as the ReR2007 scheme. The
feasibility of the ReR2007 scheme was justified and com-
pared with the SLCL scheme on grid meshes with uniform
and non-uniform grid cells and the results were promising
and encouraging.

The paper is organized as follows: Section 2 briefly dis-
cusses the semi-Lagrangian method and cubic Lagrangian in-
terpolation. Section 3 is devoted to the description and anal-
ysis of the specific procedures of the ReR2007 scheme. In
section 4, the results from one-dimensional (1D) and two-
dimensional (2D) numerical tests in the rectangular coordi-
nate system with uniform grid cells are presented and ana-
lyzed to compare the ReR2007 and SLCL schemes. Section
5 gives the results of solid-body rotation tests in the latitude–
longitude spherical coordinate system with non-uniform grid
cells in both schemes. Finally, some discussions and conclu-
sions about the ReR2007 scheme are drawn in section 6.

2. Semi-Lagrangian method and cubic La-
grangian interpolation

Detailed descriptions of GRAPES can be seen in the work
of Xue (2004), Xue and Liu (2007), Chen et al. (2008), Yang
and Shen (2011) and Liu et al. (2012). The key project for the
development of GRAPES was launched in 2001, and it has
been operationally or quasi-operationally implemented since
2004 at the national and regional meteorological centers of
the CMA. GRAPES uses the SLCL scheme to deal with the
solution of the advection equations. For convenience, the dis-
cussion in this section focuses on the solution of the pure ad-
vection problem (i.e., the forcing term in the advection equa-
tion was ignored) in the 2D case. Then, the Lagrangian ad-
vection equation for the scalarf (x,t) can be written as

d f
dt

=
∂ f
∂ t

+V ·∇ f = 0 , (1)

dx̃

dt
= V (x̃,t) , (2)

wherex̃ denotes the position vector;t the time;V the wind
field; and∇ the gradient operator; andd/dt and∂/∂ t are the
Lagrangian and Eulerian time derivatives, respectively.

The semi-Lagrangian approximation to Eq. (1) is gener-
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ally expressed as

f (x̃A , t(n+1)) = f (x̃D, t(n)) , (3)

wheret(n) = n∆t andt(n+1) = (n+1)∆t; n represents the num-
ber of the time step; and∆t is the time-step length. The sub-
scripts “D” and “A” denote the departure point at timet(n) and
the arrival point at timet(n+1), respectively.

Equation (3) reveals that for the pure advection problem,
the value at the arrival point at timet(n+1) is equal to that at
the departure point at timet(n). When it is applied on a regu-
lar grid mesh, the grid point is assumed to be the arrival point
at timet(n+1). Before the value at the grid point at timet(n+1)

can be computed, the position of its corresponding departure
point at timet(n) must be located and its value estimated. This
is the essence of the semi-Lagrangian method. In general,
the departure point does not match a regular grid point; its
value needs to be computed by some interpolation method.
In GRAPES, the cubic Lagrangian interpolation method is
used and its interpolation procedures are described below.

The 1D cubic Lagrangian interpolation polynomial is ex-
pressed as

f (x) = l0(x) f0 + l1(x) f1 + l2(x) f2 + l3(x) f3 , (4)

wherex denotes the interpolated point;xi(i = 0,1,2,3) are
the four distinct known points surrounding the interpolated
point; and fi = f (xi) andl i(x) represent the value and cubic
Lagrangian basis function at the corresponding point. Ac-
cordingly,l i(x) can be written as

l0(x) =
(x−x1)(x−x2)(x−x3)

(x0−x1)(x0−x2)(x0−x3)
, (5)

l1(x) =
(x−x0)(x−x2)(x−x3)

(x1−x0)(x1−x2)(x1−x3)
, (6)

l2(x) =
(x−x1)(x−x0)(x−x3)

(x2−x1)(x2−x0)(x2−x3)
, (7)

l3(x) =
(x−x1)(x−x2)(x−x0)

(x3−x1)(x3−x2)(x3−x0)
. (8)

In the 2D case, 16 points around the interpolated point
are required to compute the value at the interpolated point,ac-
cording to Li et al. (2006). Figure 1 shows a regular grid mesh
with uniform grid spacing that was introduced to illustratethe
specific procedures of the 2D cubic Lagrangian interpolation
method, where the Eulerian grid point and its correspond-
ing value are denoted byxi, j = (xi ,y j) = (i ·∆x, j ·∆y) and
fi, j = f (xi ,y j), i = 1, . . .M, j = 1, . . . ,N,M(N) and ∆x(∆y)
are the total grid number and the uniform grid spacing inx(y)
direction. Point A represents any Eulerian grid point and sig-
nifies the arrival point in the semi-Lagrangian method, and
point D is thought to be its corresponding departure point de-
noted byxD = (xD,yD). The value off at point D can be
interpolated from the values off at the surrounding 16 points
enclosed by the thick solid lines in Fig. 1. First, the values
of f at points a, b, c and d are computed using the 1D cubic
Lagrangian interpolation along thex direction, then the value

i-2 i-1 i i+1 i+2 i+3

j-2

j-1

j

j+1

j+2

j+3

a

b

c

d

A

D

Fig. 1. Interpolation schematic for the SLCL and ReR2007
schemes.

of f at point D is determined using the 1D cubic Lagrangian
integration with the values off at points a, b, c and d. The
detailed interpolation procedures are presented below:

f (xa,ya) = la0fi−1, j−1+la1fi, j−1 + la2fi+1, j−1 + la3fi+2, j−1 ,

(9)

f (xb,yb) = lb0 fi−1, j + lb1 fi, j + lb2 fi+1, j + lb3 fi+2, j , (10)

f (xc,yc) = lc0 fi−1, j+1+lc1 fi, j+1 + lc2 fi+1, j+1 + lc3 fi+2, j+1 ,

(11)

f (xd,yd) = ld0 fi−1, j+2+ld1 fi, j+2+ld2 fi+1, j+2 + ld3 fi+2, j+2 ,

(12)

f (xD,yD) = lD0 f (xa,ya)+ lD1 f (xb,yb)+ lD2 f (xc,yc)+

lD3 f (xd,yd) , (13)

where lai , lbi , lci , ldi and lDi(i = 0,1,2,3) are the cubic La-
grangian basis functions corresponding to the points a, b, c, d
and D.

3. Interpolation algorithm in the Re R2007
scheme

The ReR2007 scheme was developed during tests of the
R2007 scheme. It removes the factor of the grid cell area in
the whole computation in the R2007 scheme and only allows
for the effect of the grid spacing in the basis functions. So
its main approach and general procedure are consistent with
those of the R2007 scheme and can be seen in the work of
Reich (2007). According to the work of Cotter et al. (2007)
and Reich (2007), in this section we briefly describe the in-
terpolation algorithm of the ReR2007 scheme in the 2D case
in the context of Fig. 1. It can be easily modified to the 1D
form by adjusting the dimensions in the computation. In fact,
the ReR2007 scheme associates the cubic B-spline function
with the linear B-spline function and takes advantage of the
low-order value to correct the high-order value, contributing



696 IMPROVEMENT OF SL ADVECTION SCHEME IN GRAPES MODEL VOLUME 31

to the higher accuracy of the ReR2007 scheme. In Fig. 1,
each Eulerian grid pointxi, j , carries a bi-cubic and bi-linear
B-spline function, which are defined as, respectively,

Pi, j(x) = ψcs

(

x−xi

∆x

)

·ψcs

(

y−y j

∆y

)

, (14)

Qi, j (x) = ψls

(

x−xi

∆x

)

·ψls

(

y−y j

∆y

)

, (15)

wherex = (x,y) denotes the interpolated point andψcs(r)
andψls(r) are the cubic and linear B-spline basis function,
respectively:

ψcs(r) =























2
3
−|r|2 +

1
2
|r|3 , |r| 6 1 ,

1
6
(2−|r|)3 , 1 < |r| 6 2 ,

0 , |r| > 2 ;

(16)

ψls(r) =

{

1−|r| , |r| 6 1 ,

0 , |r| > 1 .
(17)

In Fig. 1, M × N Lagrangian particles are introduced
in the ReR2007 scheme. Based on the remapped particle-
mesh (RPM) method (Cotter et al., 2007), theM × N La-
grangian particles are uniformly assigned onto theM×N Eu-
lerian grid points at the beginning of each time step. In the
meantime, the value of the Lagrangian particles is defined as
Fi, j = F(xi ,y j), which is unknown.

To estimate the value ofF of the Lagrangian particles, it
is assumed that the value off at the Eulerian grid points and
the value ofF of the Lagrangian particles are related in the
following way:

fi, j =
j+1

∑
l= j−1

i+1

∑
k=i−1

Fk,l Pk,l (xi, j) . (18)

Equation (18) indicates that the value off at any Eule-
rian grid point can be interpolated from the values ofF at the
surrounding 9 Lagrangian particles. In this case, considering
the values off at all the Eulerian grid points (the exact value
at the Eulerian grid points, referred to asfex), Eq. (18) can
constitute a linear system of equations about the value ofF .
By solving this linear system of equations, we can obtain the
value ofF of the Lagrangian particles (the exact value of the
Lagrangian particles, referred to asFex). Unfortunately, this
treatment causes expensive computational cost. To avoid this,
a quasi-interpolation (Powell, 1981) is employed to approxi-
mate the value ofF of the Lagrangian particles (the approx-
imate value of the Lagrangian particles, referred to asFap),
which is expressed as

Fi, j =
1
6
(8F̃i, j − F̃i, j+1− F̃i, j−1) ;

F̃i, j =
1
6
(8 fi, j − fi+1, j − fi−1, j) .

(19)

However, it should be noted that there exists an error be-
tweenFex from Eq. (18) andFap from Eq. (19), so whenFap

is put into Eq. (18) to compute the value off at the Eulerian
grid points (the approximate value at the Eulerian grid points,
referred to asfap), there is an error betweenfex and fap at the
Eulerian grid points, which is defined as∆ f at any Eulerian
grid point:

∆ fi, j = fi, j −
j+1

∑
l= j−1

i+1

∑
k=i−1

Fk,l Pk,l (xi, j) . (20)

To eliminate the effects of the error betweenFex andFap,
the linear combination of Eqs. (19) and (20) are used to com-
pute the value off at pointD:

f (xD) =
j+2

∑
l= j−1

i+2

∑
k=i−1

Fk,l Pk,l (xD)+
j+1

∑
l= j

i+1

∑
k=i

∆ fk,l Qk,l (xD) .

(21)
Eqs. (19)–(21) describe the interpolation procedures in

the ReR2007 scheme, the final value off at pointD can be
divided into two parts: one part is the first term on the right-
hand side of Eq. (21), which is computed using the bi-cubic
B-spline function with the values ofF at the surrounding 16
Lagrangian particles (i.e., the 16 points enclosed by the thick
solid lines in Fig. 1); the other part is the second term on
the right-hand side of Eq. (21), which is interpolated using
the bi-linear B-spline function with the values of∆ f at the
surrounding four Eulerian grid points (i.e., the four points
enclosed by the thin solid lines in Fig. 1). The numerical
tests showed that, in practice, the second part is mainly used
to correct the first part, thus contributing to the improvement
in the accuracy of the ReR2007 scheme. When the field of
quantities is sufficiently smooth, the correction of the sec-
ond part to the first part is very small, since the value ofFap

from Eq. (19) closely approximates the value ofFex from Eq.
(18), then the value of∆ f can be almost negligible so that
the high-order interpolated value is sufficient to approximate
the value off at point D. However, if the field of quantities
is not sufficiently smooth, then the second part can influence
the first part positively and significantly, since the value of
∆ f can be very important due to the relatively big error be-
tween the value ofFex from Eq. (18) and the value ofFap

from Eq. (19), then the linear interpolation with the value
of ∆ f can make a big difference in correcting the high-order
interpolated results.

By comparing the interpolation procedures between the
SL CL scheme and the ReR2007 scheme, it was found that
the ReR2007 scheme increased the computational cost rel-
atively for the extra efforts to computeF and∆ f before the
interpolation, while in the SLCL scheme the value at the
departure point could be directly interpolated from the val-
ues of f at the surrounding grid points. However, the nu-
merical tests showed that the extra computational cost in the
Re R2007 scheme only increased a little more and could be
acceptable under the existing computational capability. On
the other hand, its remarkable accuracy would overcome the
deficiency in this aspect. Therefore, the ReR2007 scheme
should be a good scheme to be incorporated into the numeri-
cal model.
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4. Numerical tests in the rectangular coordi-
nate system with uniform grid cells

To evaluate the behavior of the ReR2007 scheme, we
first compared it with the SLCL scheme using two groups of
numerical tests: the 1D and 2D idealized tests in the rectan-
gular coordinate system with uniform grid cells.

For the sake of contrasting the difference between the nu-
merical solution and the exact solution, we defined the nu-
merical error asσ :

σi, j = ( fi, j )num− ( fi, j)exa , (22)

where the subscripts (i, j) represents theith and jth Eulerian
grid point, and the subscripts “num” and “exa” denote the
corresponding numerical solution and exact solution, respec-
tively.

Meanwhile, to better illustrate the numerical accuracy, the
normalized errors were defined according to Williamson et al.
(1992):

L1( f ) =
I(|( fi, j )num− ( fi, j)exa|)

I(|( fi, j )exa|)
, (23)

L2( f ) =

√

I([( fi, j )num− ( fi, j)exa]2)
√

I([( fi, j )exa]2)
, (24)

L∞( f ) =
maxall i, j |( fi, j )num− ( fi, j)exa|

maxall i, j |( fi, j )exa|
, (25)

where the relative parameters are the same as Eq. (22) and

I( f ) represents the domain integral defined by

I( f ) =
N

∑
j=1

M

∑
i=1

fi, j , (26)

whereM andN are the total number of grid points in thex
andy direction, respectively.

4.1. 1D sine wave test

Considering that the interpolation can incur some damp-
ing to the extrema of quantities, a sine wave was chosen in the
1D test to examine the damping effects in both schemes by
inspecting the effects on the peak and valley of a sine wave.

The initial distribution was:

f (x,0) = sin(πx), −1.0 6 x 6 1.0 . (27)

In the test, the uniform grid spacing was∆x = 0.02,
the time step was∆t = 0.01, and the constant velocity was
u = 1.0. The number of time steps was 2000 with the com-
pletion of 10 revolutions.

Figure 2 illustrates the numerical results (top figures) and
errors (bottom figures) of the SLCL and ReR2007 schemes.
It was found that both advection schemes could favorably
maintain the initial distribution of the sine wave with neg-
ligible deformation after a 2000-step integration. However,
the peak and valley of the sine wave in the SLCL scheme
were more seriously damped than in the ReR2007 scheme.
Figs. 2c and d show that the high-value errors mainly rest
near the peak and valley of the sine wave, and the maximum
of the absolute errors in the SLCL scheme is roughly 0.0007,
while it is not more than 0.0001 in the ReR2007 scheme.
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−1.0 −0.5 0.0 0.5 1.0

−1.0
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0.0

0.5

1.0
Re_R2007

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0
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Fig. 2. Numerical results and errors of the 1D sine wave experiment.Numerical results of the
(a) SL CL scheme and (b) ReR2007 scheme; and numerical errors of the (c) SLCL scheme
and (d) ReR2007 scheme.
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Figure 3 illustrates the normalized errors of both schemes,
showing the distinctly higher accuracy of the ReR2007
scheme. In both schemes, the three normalized errors in-
creased at nearly the same rate, but the increase rate in the
Re R2007 scheme was much smaller than that in the SLCL
scheme. At the end of the integration, the ratio of the normal-
ized errors in the SLCL scheme to those in the ReR2007
scheme was approximately 0.00075/0.0001= 7.5. There-
fore, the ReR2007 scheme showed a 7.5-time higher accu-
racy than the SLCL scheme in this respect.

4.2. 2D cosine bell test

The interpolation also easily incurs spurious oscillations
in the discontinuous areas, affecting the numerical accuracy.
For instance, in the initial field with all positive values, neg-
ative values may occur after the interpolation. In the 2D test,
we chose a cosine bell with an unsmooth boundary and all
non-negative values, to examine the spurious oscillationsas
well as the damping effects of both schemes in the 2D case.

The initial distribution of the cosine bell is given by

f (x,y,0) =







1
2
(1.0+cos

πr
r0

) , r 6 r0

0 , r > r0

, (28)

wherer =
√

(x−x0)2 +(y−y0)2, r0 = 0.5,x0 = y0 = 0.0.
The test settings were as follows: the uniform grid spac-

ing ∆x = ∆y = 0.02; the integration domain[−1.0,1.0]×
[−1.0,1.0], the time step∆t = 0.01; and the constant 2D ve-
locity u = v = 1.0. This test was run with 2000 time steps to
complete 10 revolutions.

The numerical results (see Figs. 4a and b) indicate that
both schemes developed obvious spurious oscillations near
the unsmooth boundary. However, the size of the oscillation
in the ReR2007 scheme was smaller than that in the SLCL
scheme. This was also seen in the corresponding numeri-
cal error figures (see Figs. 4c and d). In the SLCL scheme,
there were several high-value areas of positive/negative errors
ranging from−0.016 to 0.016 near the unsmooth boundary
and the errors inside the cosine bell (namely, the smooth ar-
eas) were also very serious; while the ReR2007 scheme only
had small errors ranging from−0.004 to 0.004 near the un-
smooth boundary and the errors inside the cosine bell were

negligible. Hence, the ReR2007 scheme showed marked ad-
vantages over the SLCL scheme in reducing the spurious
oscillations in the unsmooth boundary.

To further inspect the damping effects in both schemes,
we compared the cross sections aty = 0 of the numerical
solution and the exact solution. Here, we defined the cross
section errors as the difference of the cross sections between
the numerical solution and the exact solution. As is clearly
shown in Fig. 5, negative values occur near the unsmooth
boundary of the cosine bell in both schemes. Meanwhile, it
should be noted that the maximum of the cosine bell in the
SL CL scheme was not more than 0.99 after a 2000-step in-
tegration, while the effect on this maximum in the ReR2007
scheme was negligible. Hence, it is easily concluded that
the damping effects in the ReR2007 scheme are dramatically
weakened in the 2D case compared with the SLCL scheme.

Figure 6 shows the normalized errors of both schemes.
Unlike the 1D test,L1,L2 andL∞ in the 2D test increased at
different rates along the integration time, and they increased
quickly at first but gently afterwards. The increase rate of
the normalized errors in the ReR2007 scheme was consis-
tently much smaller than those in the SLCL scheme. For
example, at the end of the integrationL1,L2 andL∞ in the
SL CL scheme were approximately 0.038, 0.023 and 0.016,
respectively, while the corresponding values in the ReR2007
scheme were roughly 0.008, 0.006 and 0.0045. The normal-
ized errors in the SLCL scheme were more than three times
larger than those in the ReR2007 scheme. Therefore, the
Re R2007 scheme achieved a distinctly higher accuracy.

From the 1D and 2D idealized tests in the rectangular
system with uniform grid cells, it can be concluded that the
Re R2007 scheme advantageously reduces the spurious os-
cillations of quantities and the damping effects due to the in-
terpolation as well as significantly improves the numerical
accuracy.

5. Solid-body rotation tests in the spherical co-
ordinate system with nonuniform grid cells

A 2D advection test of a solid body with a divergence-
free current was suggested by Williamson et al. (1992), and it
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Fig. 3. Normalized errors of the 1D sine wave experiment: (a) SLCL scheme; (b) ReR2007
scheme (solid line:L1; dotted line:L2; dashed line:L∞).
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is now commonly used to evaluate global advection schemes.
In this section, we report the results from performing solid-
body rotation tests in the latitude–longitude spherical coordi-
nate system with non-uniform grid cells, to evaluate the be-
havior of the ReR2007 scheme. For comparison, we also
make use of such terms as the numerical errors and normal-
ized errors defined by Eqs. (22)–(25), in which the domain
integralI( f ) is replaced by the global integralĨ( f )

Ĩ( f ) =

2π
∫

0

π
2

∫

− π
2

f (λ ,ϕ , t)cosϕdϕdλ , (29)

whereλ andϕ denote the longitude and latitude, respectively.
The initial distribution was a cosine bell like the 2D ide-

alized test, and in the latitude–longitude coordinate system it
can be written as (see Fig. 7):

f (λ ,ϕ ,0) =







1
2

(

1+cos
πr
R

)

r 6 R

0 r > R
, (30)

r = arccos[sinϕ0sinϕ +cosϕ0cosϕ cos(λ −λ0)] ,

(31)

whereR= 1/3, andr is the distance between (λ ,ϕ) on a great
circle, and the center of the cosine bell is (λ0,ϕ0) = (π/2,0).

The velocity components of the advecting wind field are
given by

u = u0(cosϕ cosα +sinϕ cosλ sinα) , (32)

v = −u0sinλ sinα , (33)

whereu0 = 2π/(12 days), andα is the angle between the axis
of the solid-body rotation and the polar axis of the spherical
coordinate system. The tests were run atα = 0 andα = π/2,
i.e., the cosine bell traveled along the Equator and across the
poles, respectively.

The spherical (λ ,ϕ) domain consisted of a 128× 64
uniform–resolution (2.8125◦) mesh. The time step (4050
s) was chosen such that the solid body took 256 time steps
to complete one revolution around the globe. To accurately
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Fig. 7. Initial distribution of the solid-body rotation tests.

locate the position of the departure point, the procedures of
the Ritchie and Beaudoin algorithm (Ritchie and Beaudoin,
1994) were used in the low-latitude regions (between 80◦S
and 80◦N), while the method of McDonald and Bates (1989)
was employed in the high regions (over 80◦S and 80◦N)
where the Ritchie and Beaudoin algorithm breaks down due
to the serious curvature effects near the poles.

Figures 8 and 9 show the numerical results and errors of
both schemes atα = 0 andα = π/2. It is noted that the
cosine bell has undergone a distinct stretching in the flow di-
rection in the SLCL scheme atα = 0 andα = π/2, while
the stretching effect in the ReR2007 scheme is not so seri-
ous. Meanwhile, the maximum value of the cosine bell in the
SL CL scheme was damped to 0.8 after one revolution, but
this value in the ReR2007 scheme remained at 0.9 like the
initial field. This distinction was also seen in the values of
the numerical errors (see Fig. 9). The errors mainly occurred
along the flow direction with several high-value areas of pos-
itive/negative errors, so we can observe the spurious oscilla-
tions near the unsmooth boundary along the flow direction.
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Fig. 8. Numerical results of the solid-body rotation tests (α = 0 andα = π/2): α = 0 for the (a) SLCL
scheme and (b) ReR2007 scheme;α = π/2 for the (c) SLCL scheme and (d) ReR2007 scheme.

For the same scheme (e.g., SLCL or Re R2007 scheme),
the numerical errors were generally at the same level when-
ever the cosine bell traveled along the equator or across the
poles. For example, the numerical errors range from−0.1
to 0.1 in the SLCL scheme, while they range from−0.02
to 0.02 in the ReR2007 scheme. In addition, for the flow
in the same direction (e.g.,α = 0 or α = π/2), the intensity
and size of the numerical errors in the ReR2007 scheme are
rather smaller than those in the SLCL scheme. For instance,
the maximum of the absolute errors of the ReR2007 scheme
(roughly 0.02) is only about one-fifth of that of the SLCL
scheme (roughly 0.1). Therefore, on the spherical grid mesh
with non-uniform grid cells, the ReR2007 scheme can also
effectively reduce the spurious oscillations in the discontinu-
ous areas and the effect of damping due to the interpolation.

Figure 10 shows the normalized errors of both schemes at
α = 0 andα = π/2. These results are similar to those in the
2D numerical test, and the normalized errors of the SLCL
scheme are approximately three times larger than those of the

Re R2007 scheme atα = 0 andα = π/2, so the ReR2007
scheme has a distinctly higher accuracy. In addition, to fur-
ther verify the ReR2007 scheme, we compared our numer-
ical results from the solid-body rotation tests with those of
other existing global advection schemes, such as the semi-
Lagrangian transport on a reduced grid (RG, Rasch, 1994),
the flux-form semi-Lagrangian scheme (FFSL, Lin and Rood,
1996), the cell-integrated semi-Lagrangian scheme (CISL,
Nair and Machenhauer, 2002) and the semi-Lagrangian in-
herently conserving and efficient scheme (SLICE, Zerroukat
et al., 2004). For convenience, we directly referred to the
numerical results of those schemes [see Table 1 and 2 of
Nair and Machenhauer (2002), Table 1 of Zerroukat et al.
(2004), and Table 4 of Li et al. (2008)], in which the MAX
and MIN errors are defined as Rasch (1994). Table 1 shows
that the ReR2007 scheme presents significant advantages
over the SLCL and RG schemes in all the error terms ex-
cept the MIN error of RG2.8-m atα = π/2. Compared with
the FFSL-3, FFSL-5 and CISL-M schemes, the ReR2007
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Fig. 10. Normalized errors of the solid-body rotation tests:α = 0 for the (a) SLCL scheme and
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Table 1. Error measures for solid-body rotation of a cosine bell after one revolution (256 steps). For comparison, results of other existing
global advection schemes are also presented. See the text for details.

α = 0 α = π/2

Scheme L1 L2 L∞ Max Min L1 L2 L∞ Max Min

Re R2007 0.083 0.051 0.036 −0.036 −0.021 0.089 0.051 0.038 −0.034 −0.021
SL CL 0.234 0.159 0.121 −0.132 −0.031 0.259 0.158 0.118 −0.130 −0.033
RG2.8 — — — — — 0.289 0.176 0.164 −0.150 −0.027
RG2.8-M — — — — — 0.181 0.158 0.196 −0.210 0.0
FFSL-3 — — — — — 0.078 0.079 0.124 −0.124 −0.001
FFSL-5 — — — — — 0.047 0.041 0.053 −0.053 −0.001
CISL-M 0.094 0.091 0.108 −0.052 0.0 0.084 0.084 0.109 −0.052 −0.0001
CISL-P 0.025 0.025 0.031 −0.014 0.0 0.059 0.045 0.048 −0.016 −0.003
SLICE-S 0.046 0.029 0.022 — — 0.079 0.048 0.039 — —

scheme also shows definite superiorities with respect to the
L2, L∞ and MAX terms (expect for theL2 term of FFSL-5
at α = π/2). On the contrary, the ReR2007 scheme cannot
effectively compete with the CISL-P and SLICE-S schemes
in most of the error terms. However, the accuracy of the
Re R2007 scheme is hardly affected by the flow directions,
which is indicated by the fact that the ReR2007 scheme
can achieve nearly the same level of the normalized errors at
α = 0 andα = π/2, while this is not the case for the CISL-P
and SLICE-S schemes.

6. Discussion and conclusions

In this paper, the ReR2007 scheme with the low- and
high-order B-spline interpolation function, in which a cor-
rection term is added by the low-order interpolation and has
a significant effect on the improvement of its numerical accu-
racy, has been presented. To evaluate the ReR2007 scheme
effectively, comparisons with the SLCL scheme in GRAPES
were made using 1D and 2D idealized tests in the rectan-
gular coordinate system with uniform grid cells, as well as
two solid-body rotation tests in the latitude–longitude spher-
ical coordinate system with non-uniform grid cells. It was
demonstrated that the ReR2007 scheme shows significant
advantages over the SLCL scheme and the conclusions are
as follows:

(1) The ReR2007 scheme can effectively reduce the spu-
rious oscillations near the discontinuous areas as well as the
damping effects due to the interpolation so that it can better
maintain the initial distribution of quantities. In all thetests,
the intensity and size of the spurious oscillations near thedis-
continuous areas in the ReR2007 scheme were dramatically
smaller than the SLCL scheme. Furthermore, the extrema
were damped a little or even negligibly in the ReR2007
scheme while the damping effects in the SLCL scheme were
relatively serious.

(2) The ReR2007 scheme can achieve an obviously
higher accuracy in comparison with the SLCL scheme. At
the end of the integration, the ratios of the normalized er-
rors in the SLCL scheme to those in the ReR2007 scheme
were roughly 7.5 and 3 in the 1D and 2D idealized tests, re-

spectively, indicating that the ReR2007 scheme has a higher
accuracy.

(3) In the solid-body rotation tests in the latitude–
longitude spherical coordinate system with non-uniform grid
cells, the ReR2007 scheme exhibited similar advantages
over the SLCL scheme as in the 2D idealized test, achieving
a nearly three-times higher accuracy. In addition, by compar-
ing the ReR2007 scheme with other existing global advec-
tion schemes, it can be seen that the ReR2007 scheme can
be competitive with some advection schemes in terms of ac-
curacy. It should be noted, at the same time, that the accuracy
of the ReR2007 scheme was hardly affected by flow direc-
tions in the tests, but this is not the case for the CISL-P and
SLICE-S schemes.

In the near future, the ReR2007 scheme will be incorpo-
rated into the operational NWP system of GRAPES at the
China Meteorological Administration. It is expected that
some 3D idealized tests and a series of simulations of real
cases will be performed to further investigate the feasibility
of the ReR2007 scheme in GRAPES.
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