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ABSTRACT

The Global/Regional Assimilation and PrEdiction SystenRAPES) is the new-generation numerical weather predic-
tion (NWP) system developed by the China Meteorological Adstration. It is a fully compressible non-hydrostatical
global/regional unified model that uses a traditional skagrangian advection scheme with cubic Lagrangian intarpo
tion (referred to as the SCL scheme). The SICL scheme has been used in many operational NWP models, dnat th
are still some deficiencies, such as the damping effectsaltteetinterpolation and the relatively low accuracy. Based o
Reich’s semi-Lagrangian advection scheme (referred the®2007 scheme), the BR2007 scheme that uses the low- and
high-order B-spline function for interpolation at the depee point, is developed in this paper. One- and two-dirioerad
idealized tests in the rectangular coordinate system wiifiorm grid cells were conducted to compare the®R2007 scheme
and the SLCL scheme. The numerical results showed that: (1) the dayngfiiects were remarkably reduced with the
Re.R2007 scheme; and (2) the normalized errors of thdRR@07 scheme were about 7.5 and 3 times smaller than those of
the SLCL scheme in one- and two-dimensional tests, respectivalicating the higher accuracy of the 2007 scheme.
Furthermore, two solid-body rotation tests were conduatetie latitude—longitude spherical coordinate systentwitn-
uniform grid cells, which also verified the B@2007 scheme’s advantages. Finally, in comparison witbrajtobal advection
schemes, the RR2007 scheme was competitive in terms of accuracy and flogpeddence. An encouraging possibility for
the application of the R&R2007 scheme to the GRAPES model is provided.
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1. Introduction a larger time step length than Eulerian advection schemes,
which reduces the time taken to run the model and lowers

The transport process is of crucial importance in atm e computational cost. Robert (1981, 1982) proved that the

spheric movements. In numerical weather prediction (NW L . : .
. . : combination of the semi-Lagrangian treatment of advection
models, some discretized advection schemes need to be use oo L .

) ) . . nd the semi-implicit treatment of gravitational oscithais
to approximate the solution of the advection equations. The ~, | . . .

. - gould increase the maximum stable time step length by a fac-
accuracy of the advection scheme plays a key role in tfie . ) .
. 1or of six at some extra cost but without lowering the nu-
performance of NWP models. Therefore, lots of attention e . N
. : . merical accuracy. In addition, Staniforth and Coté (1991
has been paid to the study of advection schemes in the p(f?‘esrtnonstrated that the semi-Lagrangian advection scheme
decades. In the early NWP models, the Eulerian advection grang

. o : ._could achieve a computational accuracy comparable to the
scheme was widely used, but its time step length is stric . : o -
. o I ulerian scheme and that it also exhibited better efficiency
limited by the Courant—Friedrichs—Lewy condition for en- o .
and less dissipation of quantity. As expected, these advan-

suring the numerical stability of integration in NWP modelﬁa cous semi-Lagrangian advection schemes have been in-
In recent years, semi-Lagrangian advection schemes in<:t0|g

; A . ré)duced into many NWP models at operational meteoro-
porating the semi-implicit scheme have been widely used : )
os%cal centers, such as the European Center for Medium-

in operational weather and climate models because they lrJange Weather Forecasts (ECMWF), the UK Met Office, the
METEO FRANCE, the National Centers for Environmental
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GRAPES (Global/Regional Assimilation and PrEdiction During our tests of the R2007 scheme, it was found
System), the new-generation NWP model developed by ttat on the grid mesh with uniform grid cells, the factor of
China Meteorological Administration (CMA), adopted theyrid cell area had nothing to do with the whole computation
traditional semi-Lagrangian advection scheme with culdi€ Lsince it was offset in the interpolation process. Also, when
grangian interpolation (SICL scheme), since the cubic La-the R2007 scheme was applied to the grid mesh with non-
grangian interpolation represents a good compromise hmiform grid cells (e.qg., the latitude—longitude spherigéd
tween accuracy and computational cost (Staniforth ané,Cainesh), this factor of grid cell area could not guarantee the
1991). However, the SICL scheme damps the extrema o€onservativeness property in theory but also possibly ded t
guantities and incurs some spurious oscillations in the disumerical instability in the interpolation (e.g., when thed
continuous areas due to the interpolation (McDonald, 198ws across the poles). In this paper, we attempt to remove
1987), so it cannot preserve the shape of the initial fields Thhe factor of grid cell area in the R2007 scheme and only con-
behavior also indicates a potential problem in the tradélo sider the effect of the grid spacing in the interpolationdun
semi-Lagrangian advection scheme. The simple interpolatitions to make the R2007 scheme valid in a latitude—longitude
(e.g., linear interpolation) can reduce the computationat grid coordinate system. For convenience, the R2007 scheme
and smooth the spurious oscillations of quantities in tise diafter this revision is referred to as the JR2007 scheme. The
continuous areas but sacrifices the numerical accuracye whieasibility of the ReR2007 scheme was justified and com-
the complex interpolation (e.g., the high-order intergiola pared with the SLCL scheme on grid meshes with uniform
method) has higher accuracy but with expensive computaid non-uniform grid cells and the results were promising
tional costs and severe spurious oscillations of quastitie and encouraging.
the discontinuous areas. To suppress the spurious osgilat ~ The paper is organized as follows: Section 2 briefly dis-
in the discontinuous areas, Bermejo and Staniforth (199@)sses the semi-Lagrangian method and cubic Lagrangian in-
converted the traditional semi-Lagrangian advection sgheterpolation. Section 3 is devoted to the description and-ana
into the quasi-monotone semi-Lagrangian (QMSL) schergsis of the specific procedures of the_R&007 scheme. In
by combining the low- and high-order approximate solutionsection 4, the results from one-dimensional (1D) and two-
This kind of treatment in the QMSL scheme can effectivelgimensional (2D) numerical tests in the rectangular ceordi
control the oscillations and be easily incorporated intg amate system with uniform grid cells are presented and ana-
traditional semi-Lagrangian advection scheme. Howeverlyzed to compare the RR2007 and SLCL schemes. Section
should be noted that it reduces the numerical accuracy in thgives the results of solid-body rotation tests in theUalit
QMSL scheme. Therefore, it is expected to improve the nlongitude spherical coordinate system with non-uniforid gr
merical accuracy and simultaneously reduce the spuricus oslls in both schemes. Finally, some discussions and cenclu
cillations in the discontinuous areas in the semi-Lagramgisions about the RR2007 scheme are drawn in section 6.
advection scheme.

Based on the remapped particle-mesh (RPM) method and ) ) )
the forward trajectory algorithm, Cotter et al. (2007) de2. Semi-Lagrangian method and cubic La-
veloped the remapped particle-mesh semi-Lagrangian (RPM grangian inter polation

SL) advection s.cheme from the qontmuny equat|0n., in which Detailed descriptions of GRAPES can be seen in the work
the factor of grid cell area was introduced to the interpola-

tion function to ensure the conservativeness propertyief tﬁ)f Xue (2004), Xue ano_l Liu (2007), Chen etal. (20.08)’ Yang
scheme. It was found that the RPM SL scheme could thar_ld Shen (2011) and Liu et al. (2012). The key project for the
' .(?evelopment of GRAPES was launched in 2001, and it has

oretically keep the conservativeness property of qualsstitlbeen operationallv or auasi-oberationally imolementadesi
and simultaneously achieve the same accuracy as theLSL b Ay org P yimple
2004 at the national and regional meteorological centers of

scheme. However, f(_)rthe RPM SL scheme, atrl—d|agqnal I'H—fe CMA. GRAPES uses the SCL scheme to deal with the
ear system of equations needs to be solved at each time ste

- . . soPlJtion of the advection equations. For convenience,ithe d
and this increases the computational cost, especially when

the resolution is increased. To overcome this deficiency, Rgissionin this section focuses on the solution of the pure ad

ich (2007) employed a quasi-interpolation (Powell, 1981) vection problem (i.e., the forcing term in the advectionaqu

) : S . ion was ignored) in the 2D case. Then, the Lagrangian ad-
approximate the solution of the tri-diagonal linear syst&#fim vection equation for the scaldfe, 1) can be written as
equations in the RPM SL scheme and advanced the explicit q T,

RPM SL scheme based on the forward trajectory algorithm, df of
which, as has been proved, reduces the computational cost gt 3t +V.0f=0, (1)
without sacrificing the conservativeness property and mume di

ical accuracy of the RPM SL scheme. At the end of Reich’s gt
paper (see section 6 of his paper), he appropriately adjuste

the interpolation algorithm in the explicit RPM SL schemeayherez denotes the position vectdrthe time;V the wind
and applied it to the backward trajectory algorithm (hetexaf field; andO the gradient operator; antydt andd/dt are the
referred to as the R2007 scheme), but he did not verify thagrangian and Eulerian time derivatives, respectively.
feasibility of the R2007 scheme in practical tests. The semi-Lagrangian approximation to Eq. (1) is gener-

= V(:ivt) ) (2
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ally expressed as

j*+3
f(@a,t"Y) = f(&@p,t"), (3)
j+2.. O Y T .
wheret(" = nAt andt(™Y) = (n+ 1)At; nrepresents the num- . id
ber of the time step; anfit is the time-step length. The sub- i I\
X

the arrival point at time("1) | respectively.

Equation (3) reveals that for the pure advection problem,
the value at the arrival point at timi€+% is equal to that at
the departure point at tint€”). When it is applied on a regu-
lar grid mesh, the grid point is assumed to be the arrivaltpoin IR ¢ *
at timet(")_ Before the value at the grid point at tirtié+1) y
can be computed, the position of its corresponding departur 2.
point at timet(") must be located and its value estimated. This K i ; K E i
is the essence of the semi-Lagrangian method. In general, 2 1 w2 i
the departure point does not match a regular grid point; its
value needs to be computed by some interpolation method., , )

In GRAPES, the cubic Lagrangian interpolation method is‘Flg. 1. Interpolation schematic for the SCL and ReR2007
o . . schemes.
used and its interpolation procedures are described below.

pre-srge-edlai cubic Lagrangian interpolation polynomial is ©5f £ at point D is determined using the 1D cubic Lagrangian

integration with the values of at points a, b, c and d. The
(4) detailed interpolation procedures are presented below:

scripts “D” and “A’ denote the departure point at tii& and 1 . . ‘y .

f(x) = lo(X) fo+12(X) 1 +12(x) f2 +13(X) f3,

f = laofi—1i—1+latfii—1 +laxficri—1+ lasfirei—
wherex denotes the interpolated point(i = 0,1,2,3) are 0@ Ya) = laofi-vj-atlarfij 1 +lazficeja+lasfivzjoa,

the four distinct known points surrounding the interpatate (©)
point; andfi = f(x) andli(x) represent the value and cubic f (Xo,¥b) = lbofi—1j +1bafij +1b2fit1j +lbafiszj,  (10)
Lagrangian basis function at the corresponding point. Acf (Xe,Ye) = leoficnjratlcafijoa+leofive o +leafirojsa
cordingly,li(x) can be written as (11)
o(X) = (X —X1) (X— X2) (X — X3) ) f(Xd,¥d) = laofi—1j42-+Hlarfijr2+Hlazfirsjr2+lasfivzji2,
VT o —x) (0 —x2) (X0 —Xg) ’ (12)
(X =%0)(X=X2) (X —X3) f(X0,¥p) = Ipof (Xa,Ya) + Ip1f (X6, ¥b) + Ip2f (Xc, Ye) +

|1(X) - ) (6)

(X1 —X0) (X1 —X2) (X1 — X3) Ioaf (xa,Ya) , (13)

X—X1)(X— Xg) (X — X
(x( —xl))((x _XO))((X _3;2) ) (7) wherelg,lp,ld,lg andlpi(i = 0,1,2,3) are the cubic La-
(2 1)(2 XO)( 2 )3 grangian basis functions corresponding to the points g,d, ¢
__(X=Xx1)(X=X2)(X—Xo and D.
50 = T ) % 0 (56— %) &

In the 2D case, 16 points around the interpolated poigt Interpolation algorithm in the Re.R2007
are required to compute the value at the interpolated paxdnt, scheme )

cordingto Li et al. (2006). Figure 1 shows a regular grid mesh

with uniform grid spacing that was introduced to illustréte The ReR2007 scheme was developed during tests of the
specific procedures of the 2D cubic Lagrangian interpafati®2007 scheme. It removes the factor of the grid cell area in
method, where the Eulerian grid point and its corresponttie whole computation in the R2007 scheme and only allows
ing value are denoted hy; j = (x,y;) = (i-Ax, j-Ay) and for the effect of the grid spacing in the basis functions. So
fij=f(x,y),i=1...Mj=1..,NM(N) and Ax(Ay) its main approach and general procedure are consistent with
are the total grid number and the uniform grid spacingin those of the R2007 scheme and can be seen in the work of
direction. Point A represents any Eulerian grid point aigd siReich (2007). According to the work of Cotter et al. (2007)
nifies the arrival point in the semi-Lagrangian method, arahd Reich (2007), in this section we briefly describe the in-
point D is thought to be its corresponding departure point dierpolation algorithm of the RR2007 scheme in the 2D case
noted byxp = (Xp,yp). The value off at point D can be in the context of Fig. 1. It can be easily modified to the 1D
interpolated from the values dfat the surrounding 16 pointsform by adjusting the dimensions in the computation. In,fact
enclosed by the thick solid lines in Fig. 1. First, the valughe ReR2007 scheme associates the cubic B-spline function
of f at points a, b, c and d are computed using the 1D cubigth the linear B-spline function and takes advantage of the
Lagrangian interpolation along tixedirection, then the value low-order value to correct the high-order value, contiiitogit

|2(X) =
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to the higher accuracy of the BR2007 scheme. In Fig. 1,is putinto Eqg. (18) to compute the value bht the Eulerian

each Eulerian grid point; j. carries a bi-cubic and bi-lineargrid points (the approximate value at the Eulerian grid {in

B-spline function, which are defined as, respectively, referred to adap), there is an error betwee, and f5p at the
Eulerian grid points, which is defined & at any Eulerian

Rj(x) = s (ﬂ) Yes (y_yj) , (14) grid point:

Ax Ay
i = (52) w (D). M=ty S S FaRalmy). (0
ij(x) = “h ) = Tij— (i) -
ij Yis Ax Yis By ij = Tijj |:;1k;1 ij
wherex = (x,y) denotes the interpolated point agds(r)  To eliminate the effects of the error betweg andFap,
and yis(r) are the cubic and linear B-spline basis functiofihe linear combination of Egs. (19) and (20) are used to com-
respectively: pute the value of at pointD:
2 2, L3 i+2  i+2 j+1i+1
——rle+=Ir , r < 1 , ] 14+ J+H1i+
3 IPralt I fleo)= 3 3 FuPal@o)+y 3 AlQuleo).
Ue) =4 Lo (16) e =E
52—, 1<rf<2, (21)
0 5. Egs. (19)-(21) describe the interpolation procedures in
’ Ir>2; the ReR2007 scheme, the final value bfat pointD can be
1—1r|, r| <1, divided into two parts: one part is the first term on the right-
tis(r) = 0, | >1. (A7) hand side of Eq. (21), which is computed using the bi-cubic

B-spline function with the values ¢t at the surrounding 16

In Fig. 1, M x N Lagrangian particles are introduced.agrangian particles (i.e., the 16 points enclosed by tiok th
in the ReR2007 scheme. Based on the remapped particislid lines in Fig. 1); the other part is the second term on
mesh (RPM) method (Cotter et al., 2007), thlex N La- the right-hand side of Eq. (21), which is interpolated using
grangian particles are uniformly assigned ontol¢éhe N Eu- the bi-linear B-spline function with the values Aff at the
lerian grid points at the beginning of each time step. In trsurrounding four Eulerian grid points (i.e., the four psint
meantime, the value of the Lagrangian particles is definedexsclosed by the thin solid lines in Fig. 1). The numerical
Fi.j = F(x,y;), which is unknown. tests showed that, in practice, the second part is mainlg use

To estimate the value & of the Lagrangian particles, it to correct the first part, thus contributing to the improveme
is assumed that the value bfat the Eulerian grid points andin the accuracy of the RR2007 scheme. When the field of
the value ofF of the Lagrangian particles are related in thquantities is sufficiently smooth, the correction of the-sec
following way: ond part to the first part is very small, since the valué&gf
from Eq. (19) closely approximates the valudgffrom Eq.
(18), then the value ofAf can be almost negligible so that
the high-order interpolated value is sufficient to apprcagen
the value off at point D. However, if the field of quantities

Equation (18) indicates that the value bfat any Eule- s not sufficiently smooth, then the second part can influence
rian grid point can be interpolated from the value§ddt the the first part positively and significantly, since the valde o
surrounding 9 Lagrangian particles. In this case, consiger Af can be very important due to the relatively big error be-
the values off at all the Eulerian grid points (the exact valugween the value oFey from Eq. (18) and the value Gap
at the Eulerian grid points, referred to &s), Eq. (18) can from Eq. (19), then the linear interpolation with the value
constitute a linear system of equations about the vali of of Af can make a big difference in correcting the high-order
By solving this linear system of equations, we can obtain th&erpolated results.
value ofF of the Lagrangian particles (the exact value of the By comparing the interpolation procedures between the
Lagrangian particles, referred to Bs). Unfortunately, this S|_CL scheme and the RR2007 scheme, it was found that
treatment causes expensive computational cost. To avisid tthe ReR2007 scheme increased the computational cost rel-
a quasi-interpolation (Powell, 1981) is employed to approxatively for the extra efforts to compute andAf before the
mate the value oF of the Lagrangian particles (the approxinterpolation, while in the SICL scheme the value at the
imate value of the Lagrangian particles, referred td-g$, departure point could be directly interpolated from the val

1 i
fij="> > RaRu(@ij). (18)

I=]—1k=1-1

which is expressed as ues of f at the surrounding grid points. However, the nu-
L . merical tests showed that the extra computational costen th

Fj= 6(8&] —Fijr1—Fj-1); Re.R2007 scheme only increased a little more and could be
1 (19) acceptable under the existing computational capabilitp. O

Fj= 6(8fi,j —fiyej—ficyj) - the other hand, its remarkable accuracy would overcome the

deficiency in this aspect. Therefore, the_R2007 scheme
However, it should be noted that there exists an error k&ould be a good scheme to be incorporated into the numeri-
tweenFex from Eq. (18) andrsp from Eq. (19), so whefrsp, cal model.
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4. Numerical tests in the rectangular coordi- I(f) represents the domain integral defined by
nate system with uniform grid cells

N M
To evaluate the behavior of the BR2007 scheme, we I(f) = Z Z fij (26)
first compared it with the SICL scheme using two groups of I=1i=
numerical tests: the 1D and 2D idealized tests in the rect%ereM andN are the tota| number Of g”d points in tlxe
gular coordinate system with uniform grid cells. andy direction, respectively.
For the sake of contrasting the difference between the nu-
merical solution and the exact solution, we defined the nf-l. 1D sine wave test
merical error ag: Considering that the interpolation can incur some damp-
ing to the extrema of quantities, a sine wave was chosen in the
(22) 1D test to examine the damping effects in both schemes by
inspecting the effects on the peak and valley of a sine wave.
The initial distribution was:

0i,j = (fi,j)num— (fi,j)exa,

where the subscripts, () represents thigh andjth Eulerian

grid point, and the subscripts “num” and “exa” denote the f(x,0) =sin(mx), —1.0<x<1.0. (27)
corresponding numerical solution and exact solution,eesp
tively. In the test, the uniform grid spacing wads< = 0.02,

Meanwhile, to better illustrate the numerical accuracy, thhe time step wa#t = 0.01, and the constant velocity was
normalized errors were defined according to Williamson.et &= 1.0. The number of time steps was 2000 with the com-
(1992): pletion of 10 revolutions.

Figure 2 illustrates the numerical results (top figures) and
errors (bottom figures) of the SCL and ReR2007 schemes.

Ly(f) = I(|(f"1)””:_ (fij)exal) , (23) It was found that both advection schemes could favorably
(i jexd) maintain the initial distribution of the sine wave with neg-
Lo(f) = VI(Fi)num— (fi.j)exd?) (24) ligible deformation after a 2000-step integration. Howgve
([(fi,j)exd?) ’ the peak and valley of the sine wave in the_.SL scheme
(s (s were more seriously damped than in the [R2007 scheme.
Lo(f) = Mt |(fijJnum = (fi exa : (25) Figs. 2c and d show that the high-value errors mainly rest

maseij (i )exd near the peak and valley of the sine wave, and the maximum
_ of the absolute errors in the SCL scheme is roughly 0.0007,
where the relative parameters are the same as Eq. (22) @fle it is not more than 0.0001 in the BR2007 scheme.

SL.CL Re_R2007
1.0 L P T | 1.0 P | il M |
(a) 1(b)
05 - 05 -
0.0 - 0.0 5
-0.5 F o -051 F
T 1.0 F———>
-10 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0
SL.CL Re_R2007
0.0010 PRI T S S T SR S ks Y L 0.0010 L | I il NS R |
1(c) 1(d)
0.0005 | - 0.0005 -
0.0000 - 00000 +— — _f
~0.0005 - -0.0005 -
-0.0010 +———————————————————+F ~0.0010 F—————————————
-1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0

Fig. 2. Numerical results and errors of the 1D sine wave experinfdomerical results of the
(a) SLCL scheme and (b) RR2007 scheme; and numerical errors of the (c)@Lscheme
and (d) ReR2007 scheme.
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Figure 3 illustrates the normalized errors of both schemegligible. Hence, the RR2007 scheme showed marked ad-
showing the distinctly higher accuracy of the R2007 vantages over the SCL scheme in reducing the spurious
scheme. In both schemes, the three normalized errors dscillations in the unsmooth boundary.
creased at nearly the same rate, but the increase rate in theTo further inspect the damping effects in both schemes,
Re.R2007 scheme was much smaller than that in theC8L. we compared the cross sectionsyat 0 of the numerical
scheme. At the end of the integration, the ratio of the normalolution and the exact solution. Here, we defined the cross
ized errors in the SICL scheme to those in the BR2007 section errors as the difference of the cross sections keatwe
scheme was approximately0D0750.0001= 7.5. There- the numerical solution and the exact solution. As is clearly
fore, the ReR2007 scheme showed a 7.5-time higher accshown in Fig. 5, negative values occur near the unsmooth
racy than the SICL scheme in this respect. boundary of the cosine bell in both schemes. Meanwhile, it

) should be noted that the maximum of the cosine bell in the
4.2. 2D cosine bell test SL_CL scheme was not more than 0.99 after a 2000-step in-

The interpolation also easily incurs spurious oscillagiortegration, while the effect on this maximum in the_R2007
in the discontinuous areas, affecting the numerical acgurascheme was negligible. Hence, it is easily concluded that
For instance, in the initial field with all positive valueggt the damping effects in the Re2007 scheme are dramatically
ative values may occur after the interpolation. In the 2D, tesveakened in the 2D case compared with the@Lscheme.
we chose a cosine bell with an unsmooth boundary and all Figure 6 shows the normalized errors of both schemes.
non-negative values, to examine the spurious oscillatiensUnlike the 1D test];,L, andL. in the 2D test increased at
well as the damping effects of both schemes in the 2D casdifferent rates along the integration time, and they inseela

The initial distribution of the cosine bell is given by quickly at first but gently afterwards. The increase rate of

. the normalized errors in the HR2007 scheme was consis-
f(x,y,0) — 5(1.0+ Cosr—) ; IT<To (28) tently much smaller than those in the &l scheme. For
Y50 = 0 0 fer ’ example, at the end of the integratibfp, L, and L. in the
) 0

SL_CL scheme were approximately 0.038, 0.023 and 0.016,
wherer — \/(x— X0)2+ (Y— Yo0)2,10 = 0.5,%0 = Yo = 0.0. respectively, while the corresponding values in theHR2807
The test settings were as follows: the uniform grid spagcheme were roughly 0.008, 0.006 and 0.0045. The normal-
ing Ax = Ay = 0.02; the integration domaifi-1.0,1.0] x ized errors in the S_LCL scheme were more than three times
[—1.0,1.0], the time stept = 0.01; and the constant 2D ve-larger than those in the RR2007 scheme. Therefore, the
locity u=v = 1.0. This test was run with 2000 time steps t&1&-R2007 scheme achieved a distinctly higher accuracy.
complete 10 revolutions. From the 1D and 2D idealized tests in the rectangular
The numerical results (see Figs. 4a and b) indicate trstem with uniform grid cells, it can be concluded that the
both schemes developed obvious spurious oscillations nB§&R2007 scheme advantageously reduces the spurious os-
the unsmooth boundary. However, the size of the oscillati§Hlations of quantities and the damping effects due to the i
in the ReR2007 scheme was smaller than that in thec@L terpolation as well as significantly improves the numerical
scheme. This was also seen in the corresponding numé@&feuracy.
cal error figures (see Figs. 4c and d). In theSL scheme,
there were several high-value areas of positive/negatioese
ranging from—0.016 to 0.016 near the unsmooth bounda. Solid-body rotation testsin the spherical co-
and the errors inside the cosine bell (namely, the smooth ar- ordinate system with nonuniform grid cells
eas) were also very serious; while the RB007 scheme only
had small errors ranging from0.004 to 0.004 near the un- A 2D advection test of a solid body with a divergence-
smooth boundary and the errors inside the cosine bell wéfee current was suggested by Williamson et al. (1992), and i

SL_CL Re_R2007
0.0008 PRI SRR NS S S M S S ST S S 0.0008 PRI Lo Tl
N—u (a) r 1l—L, (b)
] L. [ It [
» 0.0006 -~ - @ 0.0006 "% =
g 1 Fog 1 ~
i ]
el b [ el b I
$ 0.0004 - & 0.0004 -
© 1 [ ®© 1 [
g E
o b I o b r
Z 0.0002 - Z 0.0002 4 r
0.0000 0.0000 4T
0 500 1000 0 500 1000 1500 2000
Time Steps Time Steps

Fig. 3. Normalized errors of the 1D sine wave experiment: (a)@Lscheme; (b) R&R2007
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is now commonly used to evaluate global advection schemes. 90N
In this section, we report the results from performing solid S PN e T \
body rotation tests in the latitude—longitude sphericairdo 2 : )
nate system with non-uniform grid cells, to evaluate the be-
havior of the ReR2007 scheme. For comparison, we also
make use of such terms as the numerical errors and normal-

ized errors defined by Egs. (22)—(25), in which the domain \ /QE%
integrall (f) is replaced by the global integrilf) 0° N ﬁ;}?" ‘,,E,.,1800E
on 3 S %J
()= [ [1.g.0cospdpcr . (29)
03

whereA and¢ denote the longitude and latitude, respectively. :
The initial distribution was a cosine bell like the 2D ide- e S B
alized test, and in the latitude—longitude coordinateesyst 90°

can be written as (see Fig. 7): mmlosloelwlos -

1 i
= (1+ cos—) r<R

f(A,9,00=¢ 2 R (30) Fig. 7. Initial distribution of the solid-body rotation tests.
0 r>R
r = arcco$singosing + cospocosp cogA — Ag)] , locate the position of the departure point, the procedufres o

the Ritchie and Beaudoin algorithm (Ritchie and Beaudoin,
1994) were used in the low-latitude regions (betweets80

whereR=1/3, andr is the distance between (¢) on a great and 80N), while the method of McDonald and Bates (1989)
circle, and the center of the cosine bell ks (o) = (77/2,0). Was employed in the high regions (over°80and 80N)
The velocity components of the advecting wind field ar@here the Ritchie and Beaudoin algorithm breaks down due

(31)

given by to the serious curvature effects near the poles.
Figures 8 and 9 show the numerical results and errors of
u = up(cos¢ cosa + sing cosA sina) | (32) both schemes ar = 0 anda = /2. It is noted that the
V = —UpSinA sina , (33) cosine bell has undergone a distinct stretching in the flow di

rection in the SLCL scheme atr = 0 anda = 11/2, while

whereup = 271/(12 days), andr is the angle between the axishe stretching effect in the RR2007 scheme is not so seri-
of the solid-body rotation and the polar axis of the sphéricaus. Meanwhile, the maximum value of the cosine bell in the
coordinate system. The tests were rumat 0 anda = 11/2, SL_CL scheme was damped to 0.8 after one revolution, but
i.e., the cosine bell traveled along the Equator and achess this value in the R&R2007 scheme remained at 0.9 like the
poles, respectively. initial field. This distinction was also seen in the values of

The spherical A,¢) domain consisted of a 12864 the numerical errors (see Fig. 9). The errors mainly occurre
uniform-resolution (2.812% mesh. The time step (4050along the flow direction with several high-value areas of pos
s) was chosen such that the solid body took 256 time stéfdge/negative errors, so we can observe the spuriouslascil
to complete one revolution around the globe. To accuratelgns near the unsmooth boundary along the flow direction.
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(b) Re_R2007, =0

(c) SL_CL, o=n/2 (d) Re_R2007, o=n/2
B A B AN
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Fig. 8. Numerical results of the solid-body rotation tests£ 0 anda = 11/2): o = 0 for the (a) SLCL
scheme and (b) RR2007 schemey = 11/2 for the (c) SLCL scheme and (d) RR2007 scheme.

For the same scheme (e.g., 8L or ReR2007 scheme), Re.R2007 scheme at = 0 anda = 11/2, so the ReR2007
the numerical errors were generally at the same level whestheme has a distinctly higher accuracy. In addition, te fur
ever the cosine bell traveled along the equator or across ther verify the ReR2007 scheme, we compared our numer-
poles. For example, the numerical errors range frefil ical results from the solid-body rotation tests with tho$e o
to 0.1 in the SLCL scheme, while they range from0.02 other existing global advection schemes, such as the semi-
to 0.02 in the R&R2007 scheme. In addition, for the flowLagrangian transport on a reduced grid (RG, Rasch, 1994),
in the same direction (e.g, = 0 or a = 11/2), the intensity the flux-form semi-Lagrangian scheme (FFSL, Lin and Rood,
and size of the numerical errors in the_R2007 scheme are 1996), the cell-integrated semi-Lagrangian scheme (CISL,
rather smaller than those in the SIL scheme. For instance,Nair and Machenhauer, 2002) and the semi-Lagrangian in-
the maximum of the absolute errors of the RB007 scheme herently conserving and efficient scheme (SLICE, Zerroukat
(roughly 0.02) is only about one-fifth of that of the SIL. et al., 2004). For convenience, we directly referred to the
scheme (roughly 0.1). Therefore, on the spherical grid meshmerical results of those schemes [see Table 1 and 2 of
with non-uniform grid cells, the RR2007 scheme can alsoNair and Machenhauer (2002), Table 1 of Zerroukat et al.
effectively reduce the spurious oscillations in the digcar  (2004), and Table 4 of Li et al. (2008)], in which the MAX
ous areas and the effect of damping due to the interpolatioand MIN errors are defined as Rasch (1994). Table 1 shows
Figure 10 shows the normalized errors of both schemedlaat the ReR2007 scheme presents significant advantages
a =0 anda = /2. These results are similar to those in thever the SLCL and RG schemes in all the error terms ex-
2D numerical test, and the normalized errors of the@L cept the MIN error of RG2.8-m at = 11/2. Compared with
scheme are approximately three times larger than those ofthe FFSL-3, FFSL-5 and CISL-M schemes, the R&007
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Table 1. Error measures for solid-body rotation of a cosine bellradtee revolution (256 steps). For comparison, results ofrogixisting
global advection schemes are also presented. See thenteetéils.

a=0 a=r/2

Scheme L1 Lo Leo Max Min L1 Lo Lo Max Min
Re R2007 0.083 0.051 0.036 —0.036 —-0.021 0.089 0.051 0.038 —-0.034 —0.021
SLCL 0.234 0.159 0.121  -0.132 -0.031 0.259 0.158 0.118 -0.130 —0.033
RG2.8 — — — — — 0.289 0.176 0.164 —-0.150 -0.027
RG2.8-M — — — — — 0.181 0.158 0.196 -0.210 0.0
FFSL-3 — — — — — 0.078 0.079 0.124 -0.124 -0.001
FFSL-5 — — — — — 0.047 0.041 0.053 -0.053 -0.001
CISL-M 0.094 0.091 0.108 —0.052 0.0 0.084 0.084 0.109 -0.052 —0.0001
CISL-P 0.025 0.025 0.031 -0.014 0.0 0.059 0.045 0.048 -0.016 —0.003
SLICE-S 0.046 0.029 0.022 — — 0.079 0.048 0.039 — —

scheme also shows definite superiorities with respect to #pectively, indicating that the RR2007 scheme has a higher
Lo, Lo and MAX terms (expect for thé, term of FFSL-5 accuracy.
ata = 1/2). On the contrary, the RR2007 scheme cannot  (3) In the solid-body rotation tests in the latitude—
effectively compete with the CISL-P and SLICE-S schemdsngitude spherical coordinate system with non-uniforid gr
in most of the error terms. However, the accuracy of theells, the ReR2007 scheme exhibited similar advantages
Re.R2007 scheme is hardly affected by the flow directionsyer the SLCL scheme as in the 2D idealized test, achieving
which is indicated by the fact that the BRR2007 scheme a nearly three-times higher accuracy. In addition, by campa
can achieve nearly the same level of the normalized errorsrag the ReR2007 scheme with other existing global advec-
a =0 anda = 11/2, while this is not the case for the CISL-Rion schemes, it can be seen that theR907 scheme can
and SLICE-S schemes. be competitive with some advection schemes in terms of ac-
curacy. It should be noted, at the same time, that the acgurac
) ) ) of the ReR2007 scheme was hardly affected by flow direc-
6. Discussion and conclusions tions in the tests, but this is not the case for the CISL-P and

In this paper, the R&®2007 scheme with the low- and>SLICE-S schemes. o
high-order B-spline interpolation function, in which a cor " the near future, the RR2007 scheme will be incorpo-
rection term is added by the low-order interpolation and h5&ted into the operational NWP system of GRAPES at the
a significant effect on the improvement of its numerical accirhina MeFeoro_IoglcaI Adm|n|strat|qn. It IS expgcted that
racy, has been presented. To evaluate th&®R@07 scheme SOMe 3D idealized tests and a series of_ S|mulat|on§ Qf_real
effectively, comparisons with the SCL scheme in GRAPES cases will be performed Fo further investigate the feasjbil
were made using 1D and 2D idealized tests in the rectdti-& ReR2007 scheme in GRAPES.
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