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ABSTRACT

Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar, the principle
and performing steps of noise reduction by wavelet analysis are introduced in detail. Profiting from the multiscale analysis,
various types of noises can be identified according to their characteristics in different scales, and suppressed in different
resolutions by a penalty threshold strategy through which a fixed threshold value is applied, a default threshold strategy
through which the threshold value is determined by the noise intensity, or aΦDP penalty threshold strategy through which a
special value is designed forΦDP de-noising. Then, a hard- or soft-threshold function, depending on the de-noising purpose,
is selected to reconstruct the signal. Combining the three noise suppression strategies and the two signal reconstruction
functions, and without loss of generality, two schemes are presented to verify the de-noising effect by dbN wavelets: (1) the
penalty threshold strategy with the soft threshold function scheme (PSS); (2) theΦDP penalty threshold strategy with the soft
threshold function scheme (PPSS). Furthermore, the wavelet de-noising is compared with the mean, median, Kalman, and
finite impulse response (FIR) methods with simulation data and two actual cases. The results suggest that both of the two
schemes perform well, especially whenΦDP data are simultaneously polluted by various scales and types of noises. A slight
difference is that the PSS method can retain more detail, and the PPSS can smooth the signal more successfully.
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1. Introduction

Dual polarimetric weather radars will be widely used in
the coming years. One of the reasons is that these radars are
able to obtain the specific differential phase (KDP). KDP is de-
fined as the slope of the range profiles of the differential prop-
agation phase shift (ΦDP) between the horizontal (H) and ver-
tical (V ) polarization states (Seliga and Bringi, 1978; Jame-
son, 1985; Bringi and Chandrasekar, 2001), and it is immune
to rain attenuation, partial blockage and radar calibration Be-
sides,KDP has a nearly linear relationship with the rain in-
tensity, even in the presence of hail (Aydin et al., 1995; Zrnić
and Ryzhkov, 1996; Chandrasekar et al., 2008). For example,
the coefficientβ in the empirical formula

RDP = αKβ
DP

for rainfall RDP estimation byKDP is given as 0.9056, andα
as 44.806, 23.918 and 15.060 in S-, C- and X-band radars,
respectively (Zhang et al., 2001). These properties makeKDP

act as one of the important parameters of dual polarimetric
weather radar. The value ofΦDP is the difference between
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the horizontal- and vertical-direction phases, and its magni-
tude is one order of magnitude lower than the phase obtained
from only one direction. As a result,ΦDP is more easily af-
fected by system noise, random fluctuation, and ground clut-
ters, and hereinafter all non-realΦDP are collectively referred
to as noises that need to be identified and de-noised. In par-
ticular, in a small signal-to-noise ratio (SNR),ΦDP is always
noisy and unstable (Hu et al., 2012). Besides, the actual ra-
dial profile of the total differential phase (ΨDP) contains both
ΦDP and the differential backscatter phase shift (δ ). There-
fore, how to reduce theΦDP noise is crucial for polarimetric
radar applications, which need not only effectively suppress
all kinds of noises andδ , but also maintain the cloud and
precipitation information as much as possible.

In general, there are two considerations in de-noising, i.e.,
smoothness and similarity, and they are performed differently
in the time and frequency domains. For instance, using a me-
dian or mean filter in the time domain, the signal is more
likely to reflect the similarity rather than the smoothness. On
the other hand, using a Fourier transform in the frequency
domain, it is easy to make the signal infinitely smooth by fil-
tering out the high frequency noise, but some informative sig-
nals are inevitably filtered out for their small energy. For dual
polarimetric radar, it is usually the indications of the loca-
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tion of clutter and large reflectivity gradient that causesΦDP

to oscillate rapidly in several gates, which are important in
the clutter identification, and echo track algorithm, so they
should not be filtered out initially before the relevant tasks
have been finished.

The traditional techniques of noise reduction include
range filtering, linear fitting, and a combination of the two.
An iterative filtering technique separatingδ from the propa-
gation phase has been presented (Hubbert et al., 1993; Hub-
bert and Bringi, 1995). Wang and Chandrasekar (2009) pre-
sented an algorithm to unwrap phase wrapping and keep the
spatial gradients of rainfall for high-resolutionKDP. He et al.
(2009) introduced the Kalman filter method to separateΦDP

andδ components, and filter out the random noises. Hu et al.
(2012) combined theΦDP standard deviation with the hori-
zontal and vertical cross- correlation coefficient (ρHV) to ver-
ify the valid ΦDP value, and then smoothedΦDP using data
collected in field experiments.

Owing to the advantage of multiscale analysis, wavelet
analysis has recently become popular as a de-noising method.
The history of wavelets can be traced back to Harr’s work in
1909. However, from the modern viewpoint, wavelet analy-
sis was not practicable until Caldero introduced a prototype
in 1960, and the technique was not improved for 20 years
until the work of Grossmann and Morlet (1984). Wavelets
were widely used after 1986 because of the foundation de-
veloped by Meyer (1993), Mallat (1989, 1992), Daubechies
(1988), and other scientists. Subsequently, wavelet analysis
has rapidly developed and become an emerging subject that is
arguably the most significant achievement in signal process-
ing since Fourier analysis (Yang, 2007).

Wavelet analysis can localize a signal in both the time
and frequency domain, and enables one to perform multiscale
analysis to extract information effectively by means of signal
zoom and translation. The signal information is not lost dur-
ing the processes, only a new equivalent representation. Be-
cause the generating wavelet function is very flexible a suit-
able generating wavelet function can be selected to enlarge
and extract the interesting information from part of the sig-
nal, and lessen or keep the others for further analysis. Utiliz-
ing the multiresolution characteristic, the wavelet coefficients
in different scales can be verified as to whether they represent
useful information or meaningless noise by a certain thresh-
old. Wavelet-based noise reduction, especially the threshold
strategy, is currently a very active field, and has become the
most popular de-noising method for its simplicity and effec-
tiveness. Mallat and Hwang (1992) proposed a signal and
image multiscale edge representation technique accordingto
the signal singularity, and introduced a filtering method of
maximum module reconstruction based on the mathemati-
cal description of the Lipschitz exponent on the multiscale
signal, image and noise characteristics. Utilizing the signal
correlation among the scales, Xu et al. (1994) proposed a
spatially selective noise filtration (SSNF) algorithm. Donoho
(1995) presented the soft and hard threshold functions during
the signal reconstruction. In recent years, many new thresh-
old strategies and functions have been proposed, which have

greatly enriched the technique of wavelet de-noising.
However, the application of wavelet analysis in weather

radar is rare, except for the occasional use in radar im-
age recognition and processing. Jordan et al. (1997) devel-
oped an algorithm using wavelets to filter the ground clut-
ters and noises in wind profile radar. A wavelet-based ap-
proach that can improve the capability in mesocyclone dis-
crimination was reported by Desrochers and Yee (1999). Liu
et al. (2007) developed a wavelet-based algorithm to detect
tornadoes from Doppler weather radar radial velocity. De-
spite these applications, wavelet analysis is still rarelyused
in polarimetric radar de-noising.

In the second section of this paper, the principles of
wavelet noise reduction are introduced in detail, wherein a
ΦDP penalty threshold strategy is addressed according to its
characteristic. In the third section, the de-noising process is
described by means of a simulated radar beam that passes
through two rain cells of different size, and theΦDP is inter-
posed in the fluctuation in several gates to verify the ability of
identifying clutter, added some degrees in a short and a long
gates (distance) to contrast the de-noising effect to different
scalesδ noises. Furthermore, a white noise of SNR 15dB
is mixed intoΦDP to demonstrate the suppression to thermal
noise, respectively In the fourth section, the de-noising ef-
fects with wavelet analysis are contrasted with mean, median,
finite impulse response (FIR, Hubbert and Bringi, 1995), and
Kalman filters via two actual observational cases. Finally,a
summary and discussion of wavelet de-noising are presented
in the last section.

2. Wavelet analysis

The steps of wavelet de-noising are: an appropriate
wavelet function is selected to deconstruct a signal into mul-
tiresolution signals; the detail coefficients (from the high-
pass filter) that generally represent noises are suppressedby
a threshold strategy; and then the signal is reconstructed with
a threshold function.

2.1. Wavelet functions

Similar to a Fourier transform, if a set of functions that
is formed by a function that can be zoomed and translated
to constitute dense orthogonal bases, then a signal with finite
energy can be deconstructed into the bases. So, the signal is
separated into signals with different resolutions, and theinter-
esting parts in the signal can be observed in each resolution.
This type of function, which requires a compact support set,
i.e., quickly decays to zero in a limited region, is known as
the generating wavelet. The set of orthogonal bases formed
by the generating wavelet is defined as the wavelet function.

Definition: if ψ(t) ∈ L2(R) andψ̂(0) = 0, the functions
{ψa,b(t)}

ψa,b(t) = |a|1/2ψ
(

t −b
a

)

, b ∈ R , a ∈ R−{0} (1)

is called a continuous wavelet, whereψ(t) is the basic
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wavelet or generating wavelet in function spaceL2(R), t is
the variable in real number fieldR, a is the scale or striction
coefficientb is the translation factor, and satisfies the admis-
sible condition

Cψ =

∫ ∞

−∞

|ψ̂(ω)|2

ω
dω < ∞ , (2)

whereψ̂(ω) is the Fourier transform ofψ(t) at frequencyω .
If a signal f (t) is deconstructed into the function set, the

continuous wavelet transform(Wψ f ) is defined as

(Wψ f )(a,b) =< f ,ψa,b >= |a|1/2
∫ ∞

−∞
f (t)ψ̄

(

t −b
a

)

dt ,

(3)
where “< >” indicates the inner product;(Wψ f )(a,b) are
the coefficients of wavelet transform corresponding to scale
and location (a andb); ψ̄ represents the conjugations ofψ ;
This transform is known as a continuous wavelet transform
(CWT) whena and b are continuously changing, and as a
discrete wavelet transform (DWT) whena andb are discrete
points.

Typically, a andbare taken as power series:

a = a j
0 ; b = ka j

0b0 ; j,k ∈ Z . (4)

When a0 = 2 andb0 = 1, the scale and translation are
dyadic discrete and the dyadic wavelet is obtained:

ψ j,k(t) = 2j/2ψ(2− jt − k) . (5)

Hereafter, the DWT is represented as this dyadic wavelet
transform, and the DWT coefficients are

c j,k =
∫ ∞

−∞
f (t)ψ̄ j,kdt . (6)

c j,k is thekth largest value of the coefficients in thejth
deconstruction level;

The reconstruction formula is

f (t) = ∑
j∈Z

∑
k∈Z

c j,kψ j,k(t) . (7)

Different wavelet functions have different characteristics:
(1) Compact support, which denotes the attenuation of the
generating wavelet; the narrower the width of the support, the
faster the attenuation, and the better the localization. (2) Or-
thogonality, which indicates the continuously differentiable
number and the smoothness of the wavelet function; the bet-
ter the orthogonality, the faster the convergence. (3) Symme-
try, which relates to whether the wavelet filtering is in a lin-
ear phase that closely connects with the signal distortion after
reconstruction. (4) Vanishing moments, which can be physi-
cally regarded as a convergence rate when the wavelet func-
tion approaches a signal, i.e., when a signal is transformed
by the wavelet, the wavelet is required to have compact sup-
port or acute attenuation in both the time and frequency do-
mains; the higher the order of vanishing moments, the bet-
ter the smoothness, and the stronger the ability to mirror the

high-frequency details. (5) Regularity, which is related to the
smoothness of a signal; the greater the regularity index, the
smoother the signal, and the localization characteristicscan
be estimated according to the regularity index at each point
in a signal.

However, such a generating wavelet function, which not
only has compact support and symmetry but also has good
orthogonality and vanishing moments, does not exist. The
shorter the support width, the poorer the smoothness, so the
compact support and the smoothness are two contradictory
aspects. In addition, except for the Haar wavelet, which can
meet the orthogonal and symmetric conditions at the same
time but has poor localization performance, such a wavelet
with both orthogonality and symmetry does not exist either,
so orthogonality and symmetry are also contradictory.

2.2. Threshold strategies

(1) Penalty threshold strategy (Yang, 2007):
Given thatt∗ is the positive integer that makes function

f (t) minimum:

f (t) = −∑
k6t

c2
j,k +2σ2t[α + log(m/t)] , (8)

where variablet ∈ [1,m]; σ is the noise intensity of the sig-
nal; α is an experience value, which is a real number greater
than one; andm is the total number of coefficients; then the
threshold valueT corresponding to the valuet∗ is:

T = |c j,t∗ | . (9)

To avoid the impact of a boundary effect on the wavelet
coefficient calculation, the estimation of the standard devia-
tion of noise level is calculated by the absolute value of the
detail coefficients. When the signal is regular enough, the
details of the signal are concentrated into the minority of the
coefficients, so the penalty threshold is a suitable threshold
strategy.

(2) ΦDP penalty threshold strategy:
The largest deviation value ofΦDP in each deconstruc-

tion level can be estimated according to the scope of the po-
larmetric parameter in raindrop echoes, so the wavelet de-
tail coefficients larger than the deviation can be considered
as non-weather echoes, such as clutters,δ , or other noises,
which need to be filtered out. For C-band radar,KDP is gener-
ally not larger than 6◦ km−1, taking into account fluctuation,
and the detail coefficients in the first level will not exceed
8×0.3 = 2.4 (◦), where 21×0.15= 0.3 (km) is the resolu-
tion in the first level. Because the size of the time-frequency
window is constant to the wavelet function, the detail coeffi-
cients over 2.4◦ can be considered as noise in each level, and
theΦDP penalty threshold strategy is defined as:

T = 2.4 . (10)

(3) Default threshold strategy:
This is given by the formula

T =
√

2log(n)×σ , (11)

wheren is the length of the discrete signal.
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2.3. Threshold functions

After the detail coefficients are suppressed by a certain
threshold strategy, a threshold function is needed to recon-
struct the signal. Hard and soft threshold functions (Donoho,
1995) are commonly used:

Hard threshold function:

ĉ j,k =

{

c j,k , |c j,k| > T ,

0 , |c j,k| < T ;
(12)

Soft threshold function:

ĉ j,k =

{

sgn(c j,k)(|c j,k|−T ) , |c j,k| > T ,

0 , |c j,k| < T ,
(13)

where ˆc j,k are the coefficients after processing and sgn( ) is
the sign function.

3. The de-noising steps by wavelet analysis

3.1. Construct a simulation signal

To illustrate the performance of wavelet function de-
noising, two neighboring precipitation cells are simulated
with the gamma drop size distribution (DSD) (Ulbrich, 1983,
Chandrasekar et al., 1990, Scarchilli et al., 1993)

N(D) = N0Dµe−(3.67+µ)D/D0 , (14)

whereN is the raindrops number per unit volume per unit size
interval; D is the equivalent volume diameter of raindrops
(mm); N0 is the concentration parameter that is assumed to
have the value of 8×103 mm−1 m−3; µ is the distribution
parameter and is assumed to be zero; andD0 is the median
volume diameter, and is assumed to be

D0(r) = Dmaxe

[

−2 ln2
(

r−rmax/2
rmax

)2
]

, (15)

whereDmax is the maximum equivalent diameter of raindrops
and is assumed to be 0.2 cm;rmax represents the diameters of
cells, with the first one assumed to be 30 km and the next
15 km; andr is the distance between a raindrop to each cell
center.

Assume that the radar wavelength is 5.6 cm, and the gate
width is 150 m, so the beam passes through the simulation
rain area with 300 gates. The particle scattering is calculated
using the method of extended boundary conditions with the

consideration of the relationship between the drop size and
the ellipticity (Liu et al., 1989), and the range profiles of the
horizontal reflectivity factorZH andΦDP are shown in Fig. 1
(the radar is located at 0 km).

3.2. Mixed signal noise

Because radar does not measureΦDP directly, the total
differential phaseΨDP is estimated from the co-polar covari-
ance that consists of both forward propagation and backscat-
tering phase shifts,δ :

ΨDP(r) = ΦDP(r)+ δ (r) , (16)

Generally, ground clutters can cause severe change in
ΦDP over a very short distance, and large oblate raindrops and
melting hailstones can causeδ , which will increase the phase
shifts from several degrees to about 30◦ for C-band radar. To
simulate real situations, some phase shifts are intentionally
increased into theΦDP simulation signal in Fig. 1b, from 46
to 55 gates simulating clutters, from 96 to 105 gates simulat-
ing a long-distanceδ (hereafter referred to asδl), and from
249 to 252 gates simulating a short-distanceδ (hereafter re-
ferred to asδs). Simulating the short- and long-distanceδ
is for contrasting the de-noising effect to different scales of
noises by wavelet multiscale analysis. The added phase shift
values (units:◦) are listed in Table 1. For convenience, the
no-noiseΦDP signal in Fig. 1b is hereafter represented bys; s
polluted by clutters andδ is represented bysp; andsp further
mixed by 15 dB SNR white noise is represented bysn. In
actual radar observations, when the SNR is too small, the

Fig. 1. Images of the simulation results: (a)ZH and (b)ΦDP
range profile.

Table 1.The added phase shift values (◦) by clutters andδ at some gates ins to simulate an actual noisy signal.

Terms Values

Gates 46 47 48 49 50 51 52 53 54 55
Clutters (◦) −30 30 60 −60 30 −60 30 −30 −50 50
Gates 96 97 98 99 100 101 102 103 104 105
Long δ (◦) 10 10 15 10 20 30 15 30 15 10
Gates 249 250 251 252
Shortδ (◦) 10 20 30 15
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Fig. 2. Frequency distribution ofsn.

weak signals have no value because two receivers have diffi-
culty ensuring their consistency (Hu et al., 2012).

Figure 2 shows the results of the Fourier analysis ofsn. As
shown in Fig. 2, when the frequency is greater than 15, i.e.,
the distance is less than 3.0 km (300/15×150 m), the mag-
nitude of the Fourier coefficients is less than 30 dB, so these
high-frequency variations can be considered as noises that
need to be suppressed, and then the signal is reconstructed
by inverse Fourier transform. However, this method is too
drastic because a large amount of useful information is inhib-
ited and many energy components in the original signal are
lost.

3.3. Deconstruct and analyze the wavelet coefficients

Without loss of generality,sn is deconstructed into five
levels with the db5 wavelet, and the approximation and detail
coefficients in each level are shown in Fig. 3, wherein Figs.
3a and g aresp andsn, respectively; Figs. 3b–f are the approx-
imation coefficients represented bya1 to a5, respectively; and
Figs. 3h–l are the detail coefficients represented byd1 to d5

from levels 1–5, respectively.
First, let us analyze the behavior of the approximation

coefficients that represent the low-frequency change. The lo-
cation of clutters and twoδ are seen in the first- and second-
level approximation coefficients,a1 anda2. The twoδ are
obvious, and clutters can be vaguely identified ina3. The two
δ still have weak responses, but clutter almost disappears in
a4. The spatial scale in the fifth level is 25 = 32 gates; that is,
4.8 km, soa5 is smooth enough to approximates.

Continuing to analyze the detail coefficients that repre-
sent the high frequency change, to highlight the changes, note
that the scale of they-axis in each level is different. Because
the clutters are high-frequency changes, the energy of clut-
ters is much larger than that of other noise, so the location of
clutters can be observed very clearly in the first-level detail
coefficient,d1, but the twoδ , which are drowned in noise,
cannot be observed. The amplitude of the detail coefficients
d2 andd3 are reduced in the second and third levels, wherein
the clutter feature can still be identified, and the positionof
δs begins to emerge slightly, but theδl does not appear as its

lower frequency characteristic. The amplitude ofd4 andd5 is
further decreased, the position ofδl emerges obviously, and
the clutter andδs can be recognized roughly ind4. The detail
coefficientd5 reflects the fluctuations of the low-frequency
signal in which the twoδ can vaguely be identified, but the
clutter disappears completely.

By the above demonstration, the different types and scale
noises can be separated into each deconstruction level easily
for their different frequency characteristics, and conveniently
further processed.

3.4. The process of wavelet de-noising

As mentioned above, the basic noise model can be ex-
pressed as

sn(n) = s(n)+ σe(n) , (17)

wheree(n) is the noise;σ is the noise intensity that is gen-
erally determined by the standard deviation of coefficientsin
each deconstruction level; andn is the length of the discrete
signal. The goal of wavelet de-noising is to suppresse(n)
and restores(n). The steps of wavelet de-noising are gener-
ally performed as below:

(1) Deconstruction: a signal is deconstructed intoN lev-
els with a selected wavelet function.

(2) De-noising: the detail coefficients in each level are
suppressed with a selected threshold strategy.

(3) Reconstruction: the signal is reconstructed by means
of the approximation and the processed detail coefficients
with a selected threshold function.

According to the above discussion without loss of gener-
ality, hereafter the db5 wavelet function is used to deconstruct
a signal into five levels, and two de-noising schemes are de-
signed: (1) suppression by the penalty threshold strategy and
reconstruction by the soft threshold function scheme (PSS);
(2) ΦDP penalty strategy and soft function scheme (PPSS).

4. Analysis of two cases

A mobile C-band dual polarimetric weather radar
(POLC), which transmits and receives the horizontal and

Table 2.Main characteristics of POLC radar.

Parameters Values

Antenna Diameter 3.2 m
Gain 40 dB

Beam width 1.2◦

First side lobe < −25 dB
Isolation > 40 dB

Wavelength 5.5 cm
Pulse width 1.0/0.5 µs
Peak power > 250 kw

PRF 300–1200 Hz
Polarization Horizontal and vertical

Minimum detectable signal 6 −109 dBm
Receiver noise figure 6 3.0 dB

Receiver Dynamic range > 85 dB
Observation range 150 km
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Fig. 3. The result ofsn deconstructed into five levels with the db5 wavelet: (a)sp; (b–f) approximation
coefficients froma1 to a5; (g) sn; (h–l) detail coefficients fromd1 to d5.

vertical polarization signals simultaneously, was first devel-
oped in China in 2008. The radar operated at a frequency of
5.43 GHz and a 150-m gate width (Hu et al., 2012), and the
main characteristics of the radar are summarized in Table 2.
The following two representative actual cases are selectedto
examine the effects of noise reduction by the methods de-
scribed above. Because the height of the antenna is only
about 6.5 m, it is blocked by surroundings that cause some
missing beams in the PPIs.

4.1. Squall line case

A squall line was detected by POLC radar in the after-
noon of 17 July 2008 in Shouxian, Anhui Province. A total
of 200 gates (30 km) from 40 to 239 were analyzed in the
ΦDP radial data in the elevation of 1.5◦ and azimuth of 200◦

at 1828 LST. The radial profile ofZH along with the gates is

shown in Fig. 4.
The ΨDP values (Fig. 5a) from gates 86 to 89 are

−119.5,−106.58,−102.22 and−121.33, respectively. It is
shown that the values in gates 87 and 89 exhibited jumps of
13◦ and 19◦ due to backscatteringδ and that the values from
gates 105 to 108 exhibited jumps of over 20◦. The section
of the ΨDP signal is deconstructed into five levels with the
db5 wavelet, and then the detail coefficients are suppressed
by theΦDP penalty threshold. The detail coefficients before
and after suppression are shown in Fig. 5, where the images
of approximation coefficients are not shown.

Figure 6 shows the de-noising results of theΨDP sec-
tion using the PPSS, Kalman, mean (15 points), median (15
points) and FIR (once) filters. All these filters can de-noiseto
a certain extent, but the Kalman filter has a larger signal dis-
tortion, and the median is rougher than the others. Because
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Fig. 4. The range profile ofZH from gates 40–239 (slope dis-
tance of 6–36 km) at elevation 1.5◦ and azimuth 200◦ at 1828
LST on 17 July 2008.

the color-key resolution ofΦDP is about 30◦, it is hard to show
the differences among these methods, butKDP, obtained with
13-gate fitting, is selected to illustrate the differences (Figs.
7a–f). Figure 7 shows part of the PPI images of the squall
case at the same time and elevation angle as in Fig. 4, in

which the de-noising methods of Figs. 7a–f correspond to
Fig. 6, Figs. 7g and h are the rawZH andΦDP, respectively,
and the interval of the range ring is 15 km. From Fig. 7h,
theΦDP increases rapidly in the south-southwest. All the de-
noised pictures (Figs. 7b–f) are smoother than the raw image
(Fig. 7a). Focusing on the area between azimuth 240◦ and
270◦ and the range between 15 and 30 km, the PPSS (Fig.
7b), mean (Fig. 7d), and median (Fig. 7e) methods can pre-
serve more details. In other words, using these methods it is
still easy to determine the center of the heavy rainfall after
de-noising. The Kalman filter (Fig. 7c) method is smoother
than the others, but lost more details. The FIR approach has
a more obvious boundary effect (Fig. 7f), which can cause
great errors at the edges of rain clouds.

4.2. Typhoon Koppu case

The landing typhoon Koppu was observed by POLC
radar from 14 to 15 September 2009 in Zhuhai, Guangdong
Province, and it caused serious backscatter phase shiftδ be-
cause of carrying lots of large raindrops onΦDP measure-
ments. The beam at elevation 1.5◦ and azimuth 237◦ at
0443 LST passed through hills ranging from 15 to 25 km,

Fig. 5. The section of theΨDP signal in Fig. 6a is deconstructed into five levels with the db5
wavelet, and then the detail coefficients in each level are suppressed by theΦDP penalty thresh-
old. The left-hand panels (a–e) are the details without suppression, and the right-hand panels
(f–j) are after suppression.
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Fig. 6.The (a)ΨDP section corresponding to Fig. 4 and de-noised by the (b) PPSS, (c) Kalman,
(d) mean, (e) median, and (f) FIR filters, respectively.

Fig. 7. Part of theKDP PPI images of the squall case at the same time and elevation angle as in Fig. 4. The de-noising
methods of Figs. 7a–f corresponding to Figs. 6, 7g and h show the rawZH andΦDP, respectively, in which the interval
of the range ring is 15 km.

and through a heavy precipitation area from about 75 to 100
km behind the typhoon eye. Therefore, itsΦDP data are a
good example to illustrate the mitigation of multiscale mixed
noises. Since the maximum continuous contaminatedΦDP

distance can be more than 5 km in such a violent typhoon, the
ΦDP data are deconstructed into six levels with the wavelet
function db5; namely, the maximum distinguishable noise
scale is 26/2× 0.15 km = 4.8 km. The mean and median

filters are performed with 31 points (31× 0.15 km = 4.65
km). The pictures of wavelet deconstruction coefficients are
not shown. The radial profiles of rawZH , ΨDP, andΨDP after
de-noising by the above methods are shown in Fig. 8, and
their corresponding PPIs are shown in Fig. 9, in which the
interval of the range ring is 30 km.

As can be seen from Figs. 8a and b, the data ofZH and
ΨDP fluctuate drastically around the 100th gate for the ground
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Fig. 8. The range profiles of raw (a)ZH , (b) ΨDP, andΨDP after de-noising by the
(c) PPSS, (d) PSS, (e) Kalman, (f) mean, (g) median, and (h) FIR filters at elevation
1.5◦ and azimuth 237◦ at 0443 LST 15 September 2009.

Fig. 9. The PPI images corresponding to Fig. 8, in which the intervalof the range ring is 30 km, and mainly focusing on
the area enclosed with red ellipses in (b–h).

clutter. In the area between the 500th and 700th gates, ap-
proximately, theΨDP data have several peaks that influence

gates 5–30 byδ , and the measuredZH reaches about 40 with
the maximum value of 42 dBZ. The SNRs are smaller than 20
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dB behind the 700th gate, so the data quality becomes poor
and will not be discussed here. Figures 8c–h are the radial
profiles ofΨDP de-noising by the PPSS, PSS, Kalman, mean,
median, and FIR methods, respectively. It can be seen that
the PSS method retains the largest amount of clutter informa-
tion for further identification. Both PSS and PPSS de-noise
well, especially in the hybrid noise area behind the typhoon
eye, and this means that more effectiveKDP data can be ob-
tained. As in Fig. 6, the Kalman filter has larger distortion,
and the others have a few remains of pollution.

From Fig. 9, all the methods perform well, and at first
sight it seems there is no difference between these pictures
because the color-scale interval is too large to the change
value after de-nosing. However, when we focus on the area
enclosed by red ellipses in images ofΦDP (Figs. 9b–h) , the
features of color distribution and gradation in Figs. 9c andd
(PPSS and PSS) are more similar to Fig. 9b (rawΦDP) than
the other figures, which suggests that wavelets have less dis-
tortion. In particular, the clutters are almost coincidentbe-
tween Figs. 9b and d, which fully demonstrates the stronger
ability of retaining details by the PSS method compared to
the other ones. This is useful for further processing in some
dual radar algorithms, such as quantitative precipitationesti-
mation, to avoid the contamination of clutters and the location
of heavy rainfall.

5. Summary and discussion

As polarimetric parameters are easily affected by noise
effective applications of polarization radar have been limited
for many years and noise mitigation methods have been in-
troduced since the invention of polarization radar. This paper
introduces a wavelet multiscale analysis method, which has
been widely used in many other fields. Using simulations
and actualΦDP data as examples, the processes and results
of wavelet de-noising are presented in detail and, further,a
ΦDP penalty threshold strategy is proposed according to the
characteristics of the polarimetric parameter.

Owing to multiscale analysis, and depending on the pur-
pose of de-noising, wavelet analysis can not only smooth a
signal very well, but can also retain enough detail to accu-
rately indicate the clutters and strong echoes, even if they
have a small amount of energy in the frequency domain.

According to the characteristics of precipitation echoes,
the deconstruction scales typically do not overrun more than
five levels, which have a satisfactory de-noising effect, and
avoid causing extra errors when small-scale noises are de-
constructed into a large number of levels.

The noise reduction can be obviously influenced by the
selection of threshold strategies and functions. As described
in this paper, theΦDP penalty is a very effective strategy
for ΦDP data de-noising, which can retain more details af-
ter being combined with the hard-threshold function, but a
smoother signal with the soft one.

In this paper we have attempted to introduce the wavelet
analysis approach in polarimetric radar data quality control,

and the results are encouraging. With the swift development
of computing technology, a volume span data can be pro-
cessed within one minute by wavelet analysis with a personal
computer. Therefore, further work could be carried out in the
future to select, or even construct, a particular wavelet gener-
ating function, and design a pertinent threshold strategy and
function for better de-noising performance for each polari-
metric parameter.

Acknowledgements. This work was funded by National Nat-
ural Science Foundation of China (Grant No. 41375038), and
China Meteorological Administration Special Public Welfare Re-
search Fund (Grant No. GYHY201306040§GYHY201306075).

APPENDIX

The Coefficients of the FIR Method and Process of the
Kalman Filter

The coefficients of the FIR are shown in Table A1,
wherein the 20th-order filter is symmetric, and the coeffi-
cients are shown for the complex variableZ (Proakis and
Manolakis, 1988). The magnitude of the response of the FIR
filter is shown in Fig. A1.

Table A1. FIR filter coefficients.

Z order Coefficient Z order

Z0 1.625807356×10−2 Z−20

Z−1 2.230852545×10−2 Z−19

Z−2 2.896372364×10−2 Z−18

Z−3 3.595993808×10−2 Z−17

Z−4 4.298744446×10−2 Z−16

Z−5 4.971005447×10−2 Z−15

Z−6 5.578764970×10−2 Z−14

Z−7 6.089991897×10−2 Z−13

Z−8 6.476934523×10−2 Z−12

Z−9 6.718151185×10−2 Z−11

Z−10 6.800100000×10−2

Fig. A1. Magnitude of the response of the FIR filter used in the
de-noising.
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Table A2. Meaning of each term in Eq. (A1)–(A6).

Letter Meaning

X(r) System state
Z(r) Measured value

r At the distancer
A System matrix
B State transition matrix
C Measured matrix

d(r) Process noise, Gaussian Distribution with zero mean
andQ variance, i.e.p(d) ∼ N(0,Q)

V (r) Measurement noise, Gaussian Distribution with zero
mean andR variance, i.e.p(V ) ∼ N(0,R)

For ΦDP, the process and measurement equations of the
Kalman filter are:

X(r) = AX(r−1)+ Bd(r−1) , (A1)

Z(r) = CX(r)+V(r) , (A2)

X(r) =

[

ΦDP(r)
KDP(r)

]

, (A3)

A =

[

1 r
0 r

]

, (A4)

B =

[

r2/2
r

]

, (A5)

C =
[

1 0
]

, (A6)

where the meanings of each term in Eqs. (A1)–(A6) are listed
in Table A2 (He et al., 2009).
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