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ABSTRACT

Using numerical simulation data of the forward differential propagation shifi] of polarimetric radar, the principle
and performing steps of noise reduction by wavelet analysis are introduced in detail. Profiting from the multiscale analysis,
various types of noises can be identified according to their characteristics in different scales, and suppressed in different
resolutions by a penalty threshold strategy through which a fixed threshold value is applied, a default threshold strategy
through which the threshold value is determined by the noise intensitypgipgenalty threshold strategy through which a
special value is designed fdipp de-noising. Then, a hard- or soft-threshold function, depending on the de-noising purpose,
is selected to reconstruct the signal. Combining the three noise suppression strategies and the two signal reconstruction
functions, and without loss of generality, two schemes are presented to verify the de-noising effect by dbN wavelets: (1) the
penalty threshold strategy with the soft threshold function scheme (PSS); @ptheenalty threshold strategy with the soft
threshold function scheme (PPSS). Furthermore, the wavelet de-noising is compared with the mean, median, Kalman, and
finite impulse response (FIR) methods with simulation data and two actual cases. The results suggest that both of the two
schemes perform well, especially wh@pp data are simultaneously polluted by various scales and types of noises. A slight
difference is that the PSS method can retain more detail, and the PPSS can smooth the signal more successfully.
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1. Introduction the horizontal- and vertical-direction phases, and its magni-
.tude is one order of magnitude lower than the phase obtained

the coming years. One of the reasons is that these radarsrf]felorm only one direction. As a resullop is more easily af-

able 1o obtai thespecfcdierential phaked). Kop s de- o010 Py SYSem n0is, andorn ltuation, and ground cut
fined as the slope of the range profiles of the differential pr ’ P y

op- ) ) o .
. . . 0 as noises that need to be identified and de-noised. In par-
a}gatlon phasg Sh'.m(DP) between.the hor|zolnta_+K) and yer- ticular, in a small signal-to-noise ratio (SNR)pp is always

tical (V) polarization states (Seliga and Bringi, 1978; ‘]am%_oisy and unstable (Hu et al., 2012). Besides, the actual ra-
son, 1985; Bringi and Chandrasekar, 2001), and it is immu Ny ' '

e ) . . .
to rain attenuation, partial blockage and radar calibration BH'E’1 I profile of the total differential phas&#p) contains both

sides,Kpp has a nearly linear relationship with the rain in; pp and the differential backscatter phase shit. (There-

tensity, even in the presence of hail (Aydin et al., 1995; Zrnfgre’ how to reduce th@pp noise is crucial for polarimetric

and Ryzhkov, 1996; Chandrasekar et al., 2008). For examﬁ%qqr appllcatlgns, which need not oqu e-ffect|vely SUppress
- ) - all’kinds of noises and, but also maintain the cloud and
the coefficien{3 in the empirical formula

precipitation information as much as possible.

Rop = aKgp In general, there are two considerations in de-noising, i.e.,

smoothness and similarity, and they are performed differently

for rainfall Rpp estimation byKpp is given as 0.9056, and i, the time and frequency domains. For instance, using a me-
as 44.806, 23.918 and 15.060 in S-, C- and X-band radajfan or mean filter in the time domain, the signal is more
respectively (Zhang et al., 2001). These properties ri@ke |ikely to reflect the similarity rather than the smoothness. On
act as one of the important parameters of dual polarimetiie other hand, using a Fourier transform in the frequency
weather radar. The value @fpp is the difference betweendomain, it is easy to make the signal infinitely smooth by fil-
tering out the high frequency noise, but some informative sig-
nals are inevitably filtered out for their small energy. For dual
polarimetric radar, it is usually the indications of the loca-
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tion of clutter and large reflectivity gradient that causes greatly enriched the technique of wavelet de-noising.
to oscillate rapidly in several gates, which are importanti However, the application of wavelet analysis in weather
the clutter identification, and echo track algorithm, soytheadar is rare, except for the occasional use in radar im-
should not be filtered out initially before the relevant wskage recognition and processing. Jordan et al. (1997) devel-
have been finished. oped an algorithm using wavelets to filter the ground clut-
The traditional techniques of noise reduction includiers and noises in wind profile radar. A wavelet-based ap-
range filtering, linear fitting, and a combination of the twaproach that can improve the capability in mesocyclone dis-
An iterative filtering technique separatidgfrom the propa- crimination was reported by Desrochers and Yee (1999). Liu
gation phase has been presented (Hubbert et al., 1993; Hetbal. (2007) developed a wavelet-based algorithm to detect
bert and Bringi, 1995). Wang and Chandrasekar (2009) pternadoes from Doppler weather radar radial velocity. De-
sented an algorithm to unwrap phase wrapping and keep Hpite these applications, wavelet analysis is still raredgd
spatial gradients of rainfall for high-resolutié@p. He et al. in polarimetric radar de-noising.
(2009) introduced the Kalman filter method to separbie In the second section of this paper, the principles of
andd components, and filter out the random noises. Hu et alavelet noise reduction are introduced in detail, wherein a
(2012) combined th&pp standard deviation with the hori- ®pp penalty threshold strategy is addressed according to its
zontal and vertical cross- correlation coefficieny) to ver- characteristic. In the third section, the de-noising pssds
ify the valid ®pp value, and then smootha&bbp using data described by means of a simulated radar beam that passes
collected in field experiments. through two rain cells of different size, and tihgp is inter-
Owing to the advantage of multiscale analysis, wavelpbsed in the fluctuation in several gates to verify the ahilit
analysis has recently become popular as a de-noising methiddntifying clutter, added some degrees in a short and a long
The history of wavelets can be traced back to Harr’s work gmates (distance) to contrast the de-noising effect to rdiffe
1909. However, from the modern viewpoint, wavelet analgcalesd noises. Furthermore, a white noise of SNR 15dB
sis was not practicable until Caldero introduced a protetys mixed into®pp to demonstrate the suppression to thermal
in 1960, and the technique was not improved for 20 yeamsise, respectively In the fourth section, the de-noisifig e
until the work of Grossmann and Morlet (1984). Waveletects with wavelet analysis are contrasted with mean, nmedia
were widely used after 1986 because of the foundation darite impulse response (FIR, Hubbert and Bringi, 1995), and
veloped by Meyer (1993), Mallat (1989, 1992), Daubechiégalman filters via two actual observational cases. Finally,
(1988), and other scientists. Subsequently, wavelet aisalysummary and discussion of wavelet de-noising are presented
has rapidly developed and become an emerging subject thatithe last section.
arguably the most significant achievement in signal precess
ing since Fourier analysis (Yang, 2007). ]
Wavelet analysis can localize a signal in both the timé.  \Wavelet analysis

and frequency domain, and enables one to perform multiscale The steps of wavelet de-noising are: an appropriate
analysis to extract information effectively by means ofsiy . 5 elet function is selected to deconstruct a signal inté mu

z0om and translation. The signal |nf0rmat|0n Is not IO,SPdu{iresqution signals; the detail coefficients (from the g
ing the processes, only a new equivalent representation. Bﬁss filter) that generally represent noises are supprégsed

cause the generating wavelet function is very flexible a suf threshold strategy; and then the signal is reconstrudited w
able generating wavelet function can be selected to enlagagﬁ’nreshold function

and extract the interesting information from part of the sig
nal, and lessen or keep the others for further analysisizUtil2.1. Wavelet functions
ing the multiresolution characteristic, the wavelet co#ffits Similar to a Fourier transform. if a set of functions that

in different scales can be verified as to whether they reptesg, ¢ty med by a function that can be zoomed and translated
u;sdeful |nfo|rmabt|on((j)r m_eamné;les_s noise by a”cezcam&hristg constitute dense orthogonal bases, then a signal wit fini
old. Wavelet-based noise reduction, especially the tiulélsho o0y can be deconstructed into the bases. So, the signal is
strategy, Is currently avery active f|e_ld, gnd ha}s become arated into signals with different resolutions, andittes-

most popular de-noising method for its simplicity ar_ld eﬁecesting parts in the signal can be observed in each resolution
tiveness. Mallat and Hwang (1992) proposed a signal agf}is tyne of function, which requires a compact support set,
image multiscale edge representation technique accotding o ickly decays to zero in a limited region, is known as
the signal singularity, and introduced a filtering method Gf,e generating wavelet. The set of orthogonal bases formed

maximum module reconstruction based on the mathemajl; \ne generating wavelet is defined as the wavelet function.
cal description of the Lipschitz exponent on the multiscalé 5afinition: if Y(t) € L’(R) and(0) = 0, the functions
signal, image and noise characteristics. Utilizing thmalgégab(t)} ' '

correlation among the scales, Xu et al. (1994) propose

spatially selective noise filtration (SSNF) algorithm. Dbio t—b

(1995) presented the soft and hard threshold functionsguri  Yan(t) = a2y (?) , beR, acR—-{0} (1)
the signal reconstruction. In recent years, many new thresh

old strategies and functions have been proposed, which havealled a continuous wavelet, wherg(t) is the basic
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wavelet or generating wavelet in function spac¢R), t is  high-frequency details. (5) Regularity, which is relatedte
the variable in real number fielR, a is the scale or striction smoothness of a signal; the greater the regularity index, th
coefficientb is the translation factor, and satisfies the admismoother the signal, and the localization characteristics

sible condition be estimated according to the regularity index at each point
- 2 in a signal.
Cy= / de <o, 2) However, such a generating wavelet function, which not
Jow W only has compact support and symmetry but also has good

orthogonality and vanishing moments, does not exist. The
hghorter the support width, the poorer the smoothness, so the
compact support and the smoothness are two contradictory
aspects. In addition, except for the Haar wavelet, which can
o _/t—b meet the orthogonal and symmetric conditions at the same
Wy f)(a,b) =< f,yap >= |<'31|l/2/00 fty <T>dt »  time but has poor localization performance, such a wavelet
- (3) with both orthogonality and symmetry does not exist either,
where “< >" indicates the inner productWy f)(a,b) are SO orthogonality and symmetry are also contradictory.
the coeffi_cients of wave_let transform corres_pondjng toescaé_z_ Threshold strategies
and location & andb); ¢ represents the conjugations pf
This transform is known as a continuous wavelet transform (1) Penalty threshold strategy (Yang, 2007):
(CWT) whena andb are continuously changing, and as a Given thatt* is the positive integer that makes function
discrete wavelet transform (DWT) wharandb are discrete f(t) minimum:

where()(w) is the Fourier transform af(t) at frequencyw.
If a signal f(t) is deconstructed into the function set, t
continuous wavelet transforiVy, f) is defined as

points. f(t)=—S ¢, +20%[a +log(m/t 8
Typically, a andbare taken as power series: ® kzgt bk [ oM/ ©)
a— a(‘) - b= ka(j)bo . jkez. (4) where variablé € [1,m]; o is the noise intensity of the sig-

nal; o is an experience value, which is a real number greater
Whenag = 2 andbg = 1, the scale and translation arg¢han one; andn is the total number of coefficients; then the
dyadic discrete and the dyadic wavelet is obtained: threshold valug corresponding to the valuéis:

Wi(t) = 229 (27it — k) . ) T=lcje|- ©)

To avoid the impact of a boundary effect on the wavelet
efficient calculation, the estimation of the standardalev
tion of noise level is calculated by the absolute value of the

o0 _ detail coefficients. When the signal is regular enough, the
Cik= '/700 F(t)djdt - (®)  details of the signal are concentrated into the minorityhef t

coefficients, so the penalty threshold is a suitable thiesho
Cjk is thekth largest value of the coefficients in thth  strategy.

Hereafter, the DWT is represented as this dyadic wavel:eot
transform, and the DWT coefficients are

deconstruction level; (2) ®pp penalty threshold strategy:
The reconstruction formula is The largest deviation value @bpp in each deconstruc-
tion level can be estimated according to the scope of the po-
f(t) = j;kgzciﬁkwiﬂk(t) : ™) Jarmetric parameter in raindrop echoes, so the wavelet de-

tail coefficients larger than the deviation can be consitlere

Different wavelet functions have different charactecisti @s non-weather echoes, such as clutt@rsr other noises,
(1) Compact support, which denotes the attenuation of théich need to be filtered out. For C-band radyp is gener-
generating wavelet; the narrower the width of the suppoet, tally not larger than 6km~2, taking into account fluctuation,
faster the attenuation, and the better the localizationOg2 and the detail coefficients in the first level will not exceed
thogonality, which indicates the continuously differanlie 8 x 0.3 = 2.4 (°), where 2 x 0.15= 0.3 (km) is the resolu-
number and the smoothness of the wavelet function; the bén in the first level. Because the size of the time-freqyenc
ter the orthogonality, the faster the convergence. (3) Sgmnyindow is constant to the wavelet function, the detail ceeffi
try, which relates to whether the wavelet filtering is in a lincients over 24° can be considered as noise in each level, and
ear phase that closely connects with the signal distorfien a the ®pp penalty threshold strategy is defined as:
reconstruction. (4) Vanishing moments, which can be physi- T—24

10
cally regarded as a convergence rate when the wavelet func- (10)
tion approaches a signal, i.e., when a signal is transformed (3) Default threshold strategy:
by the wavelet, the wavelet is required to have compact sup- This is given by the formula
port or acute attenuation in both the time and frequency do- T—/2logi) x 0, (11)

mains; the higher the order of vanishing moments, the bet-
ter the smoothness, and the stronger the ability to mirrer tivheren is the length of the discrete signal.
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2.3. Threshold functions consideration of the relationship between the drop size and

After the detail coefficients are suppressed by a certdf# ellipticity (Liu et al., 1989), and the range profiles ¢t
threshold strategy, a threshold function is needed to reciprizontal reflectivity factozy and®pp are shown in Fig. 1
struct the signal. Hard and soft threshold functions (DanoHthe radar is located at 0 km).

1995) are commonly used:

3.2. Mixed si | noi
Hard threshold function: xed sighat noise

Because radar does not measdgs directly, the total

R Cik, [Cikl =T, differential phaséVpp is estimated from the co-polar covari-
Cjk= 0 cil <T: (12)  ance that consists of both forward propagation and backscat
’ Ik : tering phase shifts):
Soft threshold function: Wpp(r) = ®pp(r) + () , (16)
R sgncj ) (Cjk| —=T), Icjul =T, Generally, ground clutters can cause severe change in
Cik= 0 G <T (13) @ppovera very short distance, and large oblate raindrops and
’ ], )

melting hailstones can caudewhich will increase the phase
wherec] x are the coefficients after processing and sgn( ) §ifts from several degrees to about 36r C-band radar. To
the sign function. §|mulate rgal 5|tuat|on_s, some ph_ase s_hlft_s are interijona
increased into thépp simulation signal in Fig. 1b, from 46
to 55 gates simulating clutters, from 96 to 105 gates simulat
3. The de-noising steps by wavelet analysis ing a long-distanc® (hereafter referred to &%), and from
) ) ) 249 to 252 gates simulating a short-distadcghereafter re-
3.1. Construct a simulation signal ferred to asd). Simulating the short- and long-distande
To illustrate the performance of wavelet function deis for contrasting the de-noising effect to different ssadé
noising, two neighboring precipitation cells are simutatenoises by wavelet multiscale analysis. The added phage shif
with the gamma drop size distribution (DSD) (Ulbrich, 1983;alues (units:®) are listed in Table 1. For convenience, the

Chandrasekar et al., 1990, Scarchilli et al., 1993) no-noisePpp signal in Fig. 1b is hereafter representedshy
_(367+1)D/D polluted by clutters and is represented bsy; ands; further
N(D) = NoDHe™ = TH=/Po | (14) mixed by 15 dB SNR white noise is representedsgy In
i , ) . actual radar observations, when the SNR is too small, the
whereN is the raindrops number per unit volume per unit size 40 —
interval; D is the equivalent volume diameter of raindrops — a
N : : N 35
(mm); N is the concentration parameter that is assumed to o
have the value of & 10° mm~1 m~3; u is the distribution = 30
parameter and is assumed to be zero; Bgds the median N 25 —
volume diameter, and is assumed to be 20 I I O B
2\ 2 0 50 100 150 200 250 300
[72|n2(W) } Gat
Do(r) = Dmaxe ) (15) 100 — b ates
whereDpaxis the maximum equivalent diameter of raindrops iy gg :
and is assumed to be 0.2 crgax represents the diameters of 3{ 40 —
cells, with the first one assumed to be 30 km and the next S 20 —
15 km; andr is the distance between a raindrop to each cell 0

S L L B B
0 50 100 150 200 250 300
Gates

center.

Assume that the radar wavelength is 5.6 cm, and the gate
width is 150 m, so the beam passes through the simulation
rain area with 300 gates. The particle scattering is calledla Fig. 1. Images of the simulation results: (@) and (b)®pp
using the method of extended boundary conditions with therange profile.

Table 1. The added phase shift values by clutters and at some gates iato simulate an actual noisy signal.

Terms Values
Gates 46 47 48 49 50 51 52 53 54 55
Clutters () -30 30 60 —60 30 —60 30 -30 -50 50
Gates 96 97 98 99 100 101 102 103 104 105
Longd (°) 10 10 15 10 20 30 15 30 15 10
Gates 249 250 251 252

Shorts (°) 10 20 30 15
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60 lower frequency characteristic. The amplitudelgfndds is
further decreased, the position §femerges obviously, and
the clutter andds can be recognized roughly dy. The detall
coefficientds reflects the fluctuations of the low-frequency
signal in which the twad can vaguely be identified, but the
clutter disappears completely.

By the above demonstration, the different types and scale
noises can be separated into each deconstruction levBl easi
for their different frequency characteristics, and corneptty
further processed.

40

20

Magnitude (dB)

-20 L R B B R 3.4. The process of wavelet de-noising

0 50 100 150 As mentioned above, the basic noise model can be ex-

Frequency pressed as
$n(n) = s(n) + oe(n) , 17

wheree(n) is the noise;o is the noise intensity that is gen-
q{ally determined by the standard deviation of coefficiamts

weak S|gna_ls havg no va_Iue because two receivers have d'ez!fch deconstruction level; ands the length of the discrete
culty ensuring their consistency (Hu et al., 2012).

Figure 2 shows the results of the Fourier analysis 0As signal. The goal of wavelet de-naising is to suppresy

shown in Fig. 2, when the frequency is greater than 15, i.gnd restore(n). The steps of wavelet de-noising are gener-

the distance is less than 3.0 km (308 x 150 m), the mag- ally performed as b.e'OYV- . : .

. : o N (1) Deconstruction: a signal is deconstructed iNtéev-
nitude of the Fourier coefficients is less than 30 dB, so these * :

. o . . S, with a selected wavelet function.
high-frequency variations can be considered as noises that

. . c§2) De-noising: the detail coefficients in each level are
need to be suppressed, and then the signal is reconstructe .
suppressed with a selected threshold strategy.

by inverse Fourier transform. However, this method is too o . .

. : . ..~ - (3) Reconstruction: the signal is reconstructed by means
drastic because a large amount of useful information isinhi L . .
ited and many energy components in the original signal a%the approximation and the processed detail coefficients
lost with a selected threshold function.

' According to the above discussion without loss of gener-
3.3. Deconstruct and ana|yze the wavelet coefficients allty, hereafter the db5 wavelet function is used to decorst
a signal into five levels, and two de-noising schemes are de-

Without loss of generalitys, is deconstructed into five . . .
levels with the db5 wavelet, and the approximation and Ueta§1'|gned' (1) suppression by the penalty threshold strategy a

coefficients in each level are shown in Fig. 3, wherein Figreconstructlon by the soft threshold function scheme (PSS)

3aand g ars, ands», respectively; Figs. 3b—fare the approx-&) ®dpp penalty strategy and soft function scheme (PPSS).

imation coefficients represented ayto as, respectively; and
Figs. 3h-l are the detall_ coefficients representedpio ds 4. Analysis of two cases
from levels 1-5, respectively. _ _ .

First, let us analyze the behavior of the approximation A mobile C-band dual polarimetric weather radar
coefficients that represent the low-frequency change. @he (POLC), which transmits and receives the horizontal and
cation of cIut_ters_and two are seen in the first- and second%able 2 Main characteristics of POLC radar.
level approximation coefficient®; anda,. The twod are
obvious, and clutters can be vaguely identifiedinThe two Parameters Values
o still have weak responses, but clutter almost disappears-in

Fig. 2. Frequency distribution o,.

as. The spatial scale in the fifth level i$ 2 32 gates; that is, Amenga Diameter 4S'§Bm
4.8 km, soas is smooth enough to approximate Bean?lvr:/idth 19
Contm_umg to analyze the detall_ co_eff|C|ents that repre- First side lobe < _25dB
sent the high frequency change, to highlight the changes, no Isolation <~ 40 dB
that the scale of thg-axis in each level is different. Because Wavelength 5.5 cm
the clutters are high-frequency changes, the energy of clut Pulse width 10/0.5 us
ters is much larger than that of other noise, so the location o Peak power > 250 kw
clutters can be observed very clearly in the first-level ileta PRF 300-1200 Hz
coefficient,d;, but the twod, which are drowned in noise, Polarization Horizontal and vertical
cannot be observed. The amplitude of the detail coefficienfénimum detectable signal < —109dBm
d» andds are reduced in the second and third levels, wherein Receiver noise figure <30dB
the clutter feature can still be identified, and the positién Receiver Dynamic range >85d8B
Observation range 150 km

Js begins to emerge slightly, but tlgdoes not appear as its.




830 WAVELET ANALYSIS IN DIFFERENTIAL PROPAGATION PHASE SHIFT [E-NOISING VOLUME 31

120 120

80 — @ 80 — 9
a 40 — < 40 —
? 0 ? 03
-40 — -40 —
-80 -80
120 M IREBLEBLE BN R 0
ﬂl}n 0; .Blno__:
-40_: 5 —
-80 -10
120 NN RLELE LR B 0
g PN ]
4 = x
S 5 T 0 —
-40 — -5 —
-80 -10
Pttt rrr ot
120 — 20 —
gg—_d 10 —
40 — -10 —
-80 — -20
12 N DL L L DL L 20
e
80 — 10
tuc\,4gE bmo
40 — -10 —
-80 — -20
"TTTTTT"TTT 7 N L LN EBEEEBE
120—_f 80 — |
80 — 40 —
© g 3 T 0
-40 — -40 —
80 — -80
N LN BN BB BB D
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Gates Gates

Fig. 3. The result ofs, deconstructed into five levels with the db5 wavelet:gg)(b—f) approximation
coefficients fromey to as; (g) sn; (h—1) detail coefficients frond; to ds.

vertical polarization signals simultaneously, was firstale shown in Fig. 4.

oped in China in 2008. The radar operated at a frequency of The Wpp values (Fig. 5a) from gates 86 to 89 are
5.43 GHz and a 150-m gate width (Hu et al., 2012), and thel195,—-106.58,—10222 and—121.33, respectively. It is
main characteristics of the radar are summarized in Tableshown that the values in gates 87 and 89 exhibited jumps of
The following two representative actual cases are seldoted.3” and 19 due to backscattering and that the values from
examine the effects of noise reduction by the methods dgtes 105 to 108 exhibited jumps of over20rhe section
scribed above. Because the height of the antenna is oafythe Wpp signal is deconstructed into five levels with the
about 6.5 m, it is blocked by surroundings that cause somle5 wavelet, and then the detail coefficients are suppressed

missing beams in the PPlIs. by the ®pp penalty threshold. The detail coefficients before
. and after suppression are shown in Fig. 5, where the images
4.1. Squallline case of approximation coefficients are not shown.

A squall line was detected by POLC radar in the after- Figure 6 shows the de-noising results of #fgp sec-
noon of 17 July 2008 in Shouxian, Anhui Province. A totaion using the PPSS, Kalman, mean (15 points), median (15
of 200 gates (30 km) from 40 to 239 were analyzed in thints) and FIR (once) filters. All these filters can de-ntdse
®pp radial data in the elevation of X.%and azimuth of 200 a certain extent, but the Kalman filter has a larger signal dis
at 1828 LST. The radial profile &y along with the gates is tortion, and the median is rougher than the others. Because
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40 —
30 —
N -
om
T 20 —
N 7

10 —

o

40 80 120 160 200 240

Gates

Fig. 4. The range profile oZy from gates 40-239 (slope dis-
tance of 6-36 km) at elevation .Bnd azimuth 200at 1828

LST on 17 July 2008.

the color-key resolution abpp is about 30, itis hard to show

the differences among these methods Ky, obtained with
13-gate fitting, is selected to illustrate the differendeigs.

7a—f). Figure 7 shows part of the PPl images of the squalents.

831

which the de-noising methods of Figs. 7a—f correspond to
Fig. 6, Figs. 7g and h are the ray and®pp, respectively,
and the interval of the range ring is 15 km. From Fig. 7h,
the ®pp increases rapidly in the south-southwest. All the de-
noised pictures (Figs. 7b—f) are smoother than the raw image
(Fig. 7a). Focusing on the area between azimutif 24l
270 and the range between 15 and 30 km, the PPSS (Fig.
7b), mean (Fig. 7d), and median (Fig. 7e) methods can pre-
serve more details. In other words, using these methods it is
still easy to determine the center of the heavy rainfallrafte
de-noising. The Kalman filter (Fig. 7c) method is smoother
than the others, but lost more details. The FIR approach has
a more obvious boundary effect (Fig. 7f), which can cause
great errors at the edges of rain clouds.

4.2. Typhoon Koppu case

The landing typhoon Koppu was observed by POLC
radar from 14 to 15 September 2009 in Zhuhai, Guangdong
Province, and it caused serious backscatter phasedshét
cause of carrying lots of large raindrops @pp measure-
The beam at elevation 1.&nd azimuth 237 at

case at the same time and elevation angle as in Fig. 4,043 LST passed through hills ranging from 15 to 25 km,

i
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Fig. 5. The section of théPpp signal in Fig. 6a is deconstructed into five levels with thé db
wavelet, and then the detail coefficients in each level gpprmssed by thépp penalty thresh-
old. The left-hand panels (a—e) are the details without eggion, and the right-hand panels

(f—j) are after suppression.
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Fig. 6. The (a)Wpp section corresponding to Fig. 4 and de-noised by the (b) P@p&alman,
(d) mean, (e) median, and (f) FIR filters, respectively.
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Fig. 7. Part of theKpp PPl images of the squall case at the same time and elevatipe asin Fig. 4. The de-noising
methods of Figs. 7a—f corresponding to Figs. 6, 7g and h shewawZy and®pp, respectively, in which the interval
of the range ring is 15 km.

and through a heavy precipitation area from about 75 to 1fillers are performed with 31 points (340.15 km = 4.65

km behind the typhoon eye. Therefore, fbpp data are a km). The pictures of wavelet deconstruction coefficienés ar
good example to illustrate the mitigation of multiscale edx not shown. The radial profiles of rady, Wpp, andWpp after
noises. Since the maximum continuous contaminggd de-noising by the above methods are shown in Fig. 8, and
distance can be more than 5 km in such a violent typhoon, tiheir corresponding PPIs are shown in Fig. 9, in which the
®pp data are deconstructed into six levels with the wavelgtterval of the range ring is 30 km.

function db5; namely, the maximum distinguishable noise As can be seen from Figs. 8a and b, the datZ.pfnd
scale is 8/2 x 0.15 km = 4.8 km. The mean and medianWpp fluctuate drastically around the 100th gate for the ground
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Fig. 8. The range profiles of raw (&4, (b) Wpp, andWpp after de-noising by the
(c) PPSS, (d) PSS, (e) Kalman, (f) mean, (g) median, and ghfikérs at elevation
1.5° and azimuth 237at 0443 LST 15 September 2009.

PhiDP(deg)

Fig. 9. The PPl images corresponding to Fig. 8, in which the inteofdhe range ring is 30 km, and mainly focusing on
the area enclosed with red ellipses in (b-h).

clutter. In the area between the 500th and 700th gates, gptes 5-30 by, and the measuréed reaches about 40 with
proximately, theWpp data have several peaks that influenade maximum value of 42 dB The SNRs are smaller than 20
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dB behind the 700th gate, so the data quality becomes paad the results are encouraging. With the swift development
and will not be discussed here. Figures 8c—h are the radilcomputing technology, a volume span data can be pro-
profiles of Wpp de-noising by the PPSS, PSS, Kalman, meacessed within one minute by wavelet analysis with a personal
median, and FIR methods, respectively. It can be seen thamputer. Therefore, further work could be carried out & th
the PSS method retains the largest amount of clutter infornfature to select, or even construct, a particular waveleege
tion for further identification. Both PSS and PPSS de-noisg¢ing function, and design a pertinent threshold strategly a
well, especially in the hybrid noise area behind the typhoduanction for better de-noising performance for each pelari
eye, and this means that more effecti{tg> data can be ob- metric parameter.
tained. As in Fig. 6, the Kalman filter has larger distortion,
and the others have a few remains of pollution. Acknowledgements. This work was funded by National Nat-

From Fig. 9, all the methods perform well, and at firafral Science Foundation of China (Grant No. 41375038), and
sight it seems there is no difference between these pictu@sna Meteorological Administration Special Public WedfaRe-
because the color-scale interval is too large to the changgmarch Fund (Grant No. GYHY20130604@YHY201306075).
value after de-nosing. However, when we focus on the area
enclosed by red ellipses in images®bp (Figs. 9b-h) , the
features of color distribution and gradation in Figs. 9c énd APPENDIX
(PPSS a”‘?' PSS) are more similar to Fig. 9b (fayp) than The Coefficients of the FIR Method and Process of the
the other figures, which suggests that wavelets have less dis Kalman Eilter
tortion. In particular, the clutters are almost coincidbat
tween Figs. 9b and d, which fully demonstrates the stronger The coefficients of the FIR are shown in Table Al,
ability of retaining details by the PSS method compared {gherein the 20th-order filter is symmetric, and the coeffi-
the other ones. This is useful for further processing in soraints are shown for the complex varialde(Proakis and
dual radar algorithms, such as quantitative precipitagigit  Manolakis, 1988). The magnitude of the response of the FIR
mation, to avoid the contamination of clutters and the liocat filter is shown in Fig. Al.
of heavy rainfall.

Table Al. FIR filter coefficients.

5. Summary and discussion Z order Coefficient Z order

S . .70 1.625807356¢ 102 z=20
As polarimetric parameters are easily affected by noise;_; 5 230852545 10-2 7-19
effective applications of polarization radar have beeritéch > 2 896372364« 10-2 7-18
for many years and noise mitigation methods have been in,-3 3595993808 102 7-17
troduced since the invention of polarization radar. Thisgga 7-4 4.298744446¢ 10-2 7-16
introduces a wavelet multiscale analysis method, which hag-5 4.971005447% 10~2 715
been widely used in many other fields. Using simulationsz—6 5578764970« 102 z-14
and actuakbpp data as examples, the processes and resultz—’ 6.08999189% 102 z 13
of wavelet de-noising are presented in detail and, further, =8 6.476934523< 1072 z712
®pp penalty threshold strategy is proposed according to th<~:Z o 6.718151185¢ 10~2 z 1
characteristics of the polarimetric parameter. 6.800100000< 102

Owing to multiscale analysis, and depending on the pur-
pose of de-noising, wavelet analysis can not only smooth a
signal very well, but can also retain enough detail to accu-
rately indicate the clutters and strong echoes, even if they
have a small amount of energy in the frequency domain.

According to the characteristics of precipitation echoes,
the deconstruction scales typically do not overrun mora tha
five levels, which have a satisfactory de-noising effect] an
avoid causing extra errors when small-scale noises are de-
constructed into a large number of levels.

The noise reduction can be obviously influenced by the
selection of threshold strategies and functions. As desdri
in this paper, thePpp penalty is a very effective strategy
for ®pp data de-noising, which can retain more details af- 0
ter being combined with the hard-threshold function, but a
smoother signal with the soft one.

In this paper we have attempted to introduce the wavelet:ig. A1. Magnitude of the response of the FIR filter used in the
analysis approach in polarimetric radar data quality @ntr de-noising.
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Table A2. Meaning of each term in Eq. (A1)—(A6). Hu, Z. Q., L. P. Liu, and L. R. Wang, 2012: A quality assur-
ance procedure and evaluation of rainfall estimates for C-
band polarimetric radardv. Atmos. Sci., 29(1), 144-156,

Letter Meaning

X(r) System state doi: 10.1007/s00376-011-0172-y.
Z(r) Measured value Hubbert, J., and V. N. Bringi, 1995: An iterative filteringcte
r At the distance nique for the analysis of copolar differential phase and-dua
A System matrix frequency radar measuremenis Atmos. Oceanic Technal.,
B State transition matrix 12, 643-648.
C Measured matrix Hubbert, J., V. Chandrasekar, V. N. Bringi, and P. Meischt@93:
d(r) Process noise, Gaussian Distribution with zero mean  Processing and interpretation of coherent dual-polariaeelr
andQ variance, i.ep(d) ~ N(0,Q) measurements. Atmos. Oceanic Technoal., 10, 155-164.
V(r) Measurement noise, Gaussian Distribution with zeroJameson, A. R., 1985: Microphysical interpretation of rpakt
mean andR variance, i.ep(V) ~ N(O,R) rameter radar measurements in rain. Part Ill: Interpi@ati
and measurement of propagation differential phase shift be
For dpp, the process and measurement equations of the tween orthogonal linear polarizatiords Atmos. <ci., 42, 607—
Kalman filter are: 614.
Jordan, J. R., R. J. Lataitis, and D. A. Carter, 1997: Remov-
X(r) = AX(r—1)+Bd(r—-1), (A1) ing ground clutters and intermittent clutters contamiorati
Z(r) =CX(r)+V(r), (A2) from wind profiler signal using wavelet transfornds Atmos.
Oceanic Technal., 14, 1280-1297.
®pp(r) Liu, L. P, B. X. Xu, and Q. M. Cai, 1989: The effects of at-
X(r) = Kpp(r) | (A3) tenuation by precipitation and sampling error on measuring
- 1 accuracy of 713 type dual linear polarization radéateau
A= r} , (A4) Meteorology, 8(2), 181-188. (in Chinese)
_0 r Liu, S., M. Xue, and Q. Xu, 2007: Using wavelet analysis to
I r2/2 detect tornadoes from Doppler radar radial-velocity oleser
| r } ’ (AS) tions.J. Atmos. Oceanic Technal., 24, 344-359, doi: 10.1175/
N JTECH1989.1.
C= [1 0} ) (AB) Mallat, S., 1989: A theory for multi-resolution signal degposi-
where the meanings of each term in Egs. (A1)—(A6) are listed ~ tion: The wavelet representatiofEEE Transactions on Pat-
in Table A2 (He et al., 2009). tern Analysis and Machine Intelllgencez 1](7),.674—693:
Mallat, S., and W. L. Hwang, 1992: Singularity detection and
processing with wavelet$EEE Transactions on Information
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