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ABSTRACT

As part of a joint effort to construct an atmospheric forctaaset for mainland China with high spatiotemporal reso-
lution, a new approach is proposed to construct gridded-sigdace temperature, relative humidity, wind speed amfhsel
pressure with a resolution of 1 kid km. The approach comprises two steps: (1) fit a partial phate smoothing spline
with orography and reanalysis data as explanatory vasablground-based observations for estimating a trendcyr(2)
apply a simple kriging procedure to the residual for trendasie correction.

The proposed approach is applied to observations collettegpproximately 700 stations over mainland China. The
generated forcing fields are compared with the correspgraimponents of the National Centers for Environmental ieved
tion (NCEP) Climate Forecast System Reanalysis dataseharf@rinceton meteorological forcing dataset. The corspari
shows that, both within the station network and within theotetions of the two gridded datasets, the interpolatioarsrof
the proposed approach are markedly smaller than the twdegtidatasets.
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1. Introduction The importance of meteorological forcings has been
demonstrated for land surface modeling efforts (Berg et al.

n2003; Fekete et al., 2004; Nijssen and Lettenmaier, 2004).

_surface water and energy budgets is essentia_l for _unddrstaﬂ]e results from the North American Land Data Assimilation
ing the glol_aal e_nvwonmenta_l system and climatic Ch"mggystem (NLDAS) project (Mitchell et al., 2004) indicated
However, historical observation records of surface e\Aarpthalt first-order errors in a land surface simulation wergehy

tion, runoff, soil moisture, and soil temperature with hig . . :

. . ; ue to inaccurate meteorological forcings (Pan et al., 2003
spatial and temporal resolution are unavailable for the ma- :
o 2 i . obock et al., 2003). Other studies have also shown that land
jority of continental regions. Running a land surface mode

(LSM) to generate these variables has long been consideresclilQ{ace simulations are very sensitive to meteorologaatf

good option to reconstruct historical records (e.g., Dailet ing accuracy (Berg et al., 2003; Fekete et al., 2004; Sheffiel
2003). etal., 2004).

. . ; . Until now, global atmospheric forcing datasets have
Meteorological forcings are required to perform off-line__. . .
LSM simulations. Generally, meteorological forcings co rpamly been derived from reanaIyS|s.datasets, such as
’ ’ nlh? Climate Forecast System Reanalysis (CFSR) reanalysis

prise seven com_ponents: near-surface air temperatl_JFe_, {ataset (Saha et al., 2010) and the Princeton forcing datase
ative humidity, wind speed, downward shortwave rad|at|0_ heffield et al., 2006). However, observations from approx

downward longwave radiation, surface pressure, and IC}recnlrguately 200 stations only were offered by China for interna-

ftation. The gctual number of fo_rcmg variables required b[}/onal exchange to construct such datasets. Thereforie, the
LSMs varies; some LSMs require less or more than these

seven variables quality over the mainland of thna is questionaple. The spa-
' tial resolutions of these forcing datasets are primaribnfr
0.3 x 0.3° to I° x 1°. These coarse resolutions are not suf-
* Corresponding author: ZHENG Xiaogu ficient for catchment-scale hydrology and ecosystem ssudie
Email: x.zheng@bnu.edu.cn in which a resolution of 1 ka1 km is generally preferable.

The availability of large-scale, long-term datasets oflla
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Recently, more remote sensing datasets at this resolutiitional approaches. The results show that the proposed ap-
have become available, such as the MODIS (Moderate Rpseach is indeed better than the other two algorithms; the er
olution Imaging Spectroradiometer) LAl (leaf area index)prs are reduced in both sparse and dense data regions. The
FPAR (fraction of photosynthetically active radiationplae- BNU dataset is also compared with the corresponding com-
flectivity products. Forcing datasets with a resolution of fonents of the CFSR and the Princeton forcing datasets. The
kmx 1 km are ideal for comparing with these remote sensiBNU dataset estimation error is much smaller than produced
datasets. from the CFSR and the Princeton forcing datasets both within
Over the past 60 years, China has collected more 6-houithg station network and on the CFSR and Princeton forcing
observations than offered for international exchange. eMordataset grids.
over, there is a joint effort to construct an atmosphericfor  The remainder of the paper is organized as follows. The
ing dataset for mainland China with high spatial resolutiottata used in the study are documented in section 2. The
using these observations. Among these efforts, the Ndtionzethodologies are described in section 3. The main results
Meteorological Information Center of China (NMIC) primar-using the proposed methodologies are presented in section 4
ily works on the precipitation dataset (e.g., Xie et al., 200Finally, a discussion and conclusions are given in secttons
Shen et al., 2010; Xie and Xiong, 2011); the Institute of Tand 6, respectively.
betan Plateau Research, Chinese Academy of Sciences (ITP-
CAS) primarily works on the shortwave radiation and long-
wave radiation datasets (e.g., Chen et al., 2011); and the Data

Beijing Normal University (BNU) primarily works on the  gpqeryations at 0000, 0600, 1200 and 1800 UTC of 1.5-
hear-surface air temperature, relative hu_m'd'ty' Wl_ndesbem. near-surface air temperature, relative humidity, serfac

and surface pressure datasets. The major objectives of_ H}‘éssure and 10-m wind speed are collected from approxi-
study are (1) to introduce the methodology for generating .o, 700 stations with elevation data on mainland China
a gridded near-surface temperature, relative h‘%m'd'mﬂw‘ for the year 2003. The station locations are shown in Fig. 1.
speed and surface pressure datasgt ataresolutiondkin - g yataset is supplied by the NMIC and is quality-contrblle

(.named the BNU dataset) by rr_1erg|ng ground-based Obserl?ﬁ"‘maintain errors less than 2% (CMA, 2003; Ren and Xiong,
tions, orography and reanalysis data; and (2) to compare 87y - For computational efficiency, the dataset is divided

BNU dataset with other forcing datasets. _ into four zones: west (W), mid-west (MW), northeast (NE)
There are two popular approaches to constructing for&ﬁd southeast (SE) (see Fig. 1 for more details).

ing datasets with high spatial resolution. The firstis to fita |, gridded forcing datasets are used to verify the

thin-platg sm.oothin.g s_pline model with _the least genewlizmethodology proposed in this study. The first is the CFSR
cross-validation principle (e.g., Hutchinson, 1995, 1252_98(1(,3\,[(,31Set (Saha et al., 2010), which has a 38-km (T382; ap-
1998b; Basher and Zheng, 1998). An advantage of this 3 imately 03125 x 0.3125) global atmosphere resolu-
proach is that the estimation errors in sparse data locaion tion for 0000, 0600, 1200 and 1800 UTC. The second is the
minimal begause thellegst generglized cross-validation pryo . 1o pringeton meteorological forcing dataset (Sheffield
ciple is applied to. optl_mlze the SF’"r?e model (Wahba, 1999& al., 2006), which is a three-hourly dataset. Howevely onl
However, the estimation error within the station network 000, 0600, 1200 and 1800 UTC are used for verification pur-
often substantially larger than the observational ermthls - <oq 1 fact, the Princeton forcing dataset is interpaléd
situation, the interpolated surface often does not apEar e other hours. Therefore, the data quality is not comperab

sonable in dense data areas. _ to that at 0000, 0600, 1200, and 1800 UTC.
The second approach is to use a reanalysis dataset as

a background field and apply a correction procedure to the
background field residual (e.g., Holdaway, 1996; Alsamamr:
et al., 2009). An advantage of this approach is that the fitte(so n -
values closely resemble the observations in dense data are
due to the correction of the residuals. However, the errors i y S
sparse data areas are typically larger than those prodiseed 140 N£7 =™ "
ing the first approach because the selected background fie N
provides a poorer trend surface than produced using the fir:
approach.
In this study, a new technique that uses the first approac
to modify the second is proposed. First, the trend surface i ,
changed from the background field to one constructed by i~
partial thin-plate smoothing spline model with locatiotg-e
vation and reanalysis data as the covariates. Then, a simp
kriging is applied to the residuals. The estimates are atited
the trend surface to yield the final residual-correctedssigf  Fig. 1. Locations of stations and the division of regions over
The proposed approach is evaluated against the two tramainland China.
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3. Methodology center locationz(x) is the mean elevation of the grid cell,
andTesr(X) is the linearly interpolated CFSR temperature to
x with elevation adjustment.

Every six hours, the temperaturg, is assumed to sat-  For the relative humidityd), wind speedy) and surface
isfy the following regression equation, which is similar tgyressureg), the trend surfaces are assumed to satisfy the fol-

3.1. Edtimating trend surfaces

Hutchinson et al. (2009): lowing regression equations:

wherex represents a location in the domali; is the CFSR w(x) = f(X)+&(X) ; (4)
temperature;f is a two-dimensional thin-plate smoothing () = F() +5(200)) +£(x) ®)
spline (i.e., Wahba, 1990; Zheng and Basher, 1985)the PO = '

elevation;a andfs are coefficients; and 'thé‘e residual with \heres is a one-dimensional smoothing spline function, and
zero mean and spatially invariant varia the other notations are the same as those in Eq. (1). The esti-

At eaph time step, Ea. ,(1) is trained using temperatupg,ion procedures are the same as that for temperature.
observations, station elevations, and CFSR temperatuaes t

are linearly interpolated from the grid points to the stasio 3.2. Residual correction

with elevation adjustment (see section 3.3.1). These dataa |, this study, simple kriging is applied to the residual
used as input to the generalized additive model routine "gaf.|4. For the simple kriging, the covariance between resid-
in the general additive model computational vehicle “mgmﬁ'msg(
R statistical package (Wood, 2008, 2011; Wood et al.,
to derive estimated values fdér &, 3 and&2.
face at any sitey, is then estimated by

T(X) = f(X) + a2(X) + BTersr(X) ) cov(g(x), (y)) = c(Ix—¥l) , (6)

x) and (y), is assumed to only depend on the dis-
2008hce between locationsandy. Therefore, there is a one-
The trend sur- gimensional covariance functioq,in which

where the subscript “t” stands for “trend”. Specificallyr fowhere|x —y| is the Euclidean distance between locatians
estimating the mean temperature in a 1 km grid cei, the andy. At any locationy, the kriging estimate (x) is

cllx—xal)\ " fe(xa—xal) - c(x—xa))\ T [EC0)
n(x) = : : : : : (7)

c(|X— Xa) cfa—xal) - (%—Xnl) £(Xn)

wherex, - - - , x, are the observation site locations; the covarie., 0.65C (100 m)y 1. Then, the transformed gridded data
ance functiort in Eq. (6) is estimated using the “Krig” rou- at sea level are linearly interpolated to locatipnLastly, the
tine in the “fields”R package with inpug(x),i = 1,---,n. interpolated temperature is transformed back from sed leve
Lastly, the residual-corrected forcing data (using terapge to the terrain height at; using the same constant lapse rate.
as an example) is defined as The adjustment procedure for pressure is similar. The major
difference is to use the following formula:
Te(X) = Te(X) +n(x). 8)

0.0065(x) ]>%°%®
3.3. Evaluation po(X) = p(x) {1.0—1— x) }

27315+ T(x)
3.3.1. Evaluatl.on_wnhm the st_atlon network _ wherep andT represent the gridded pressure and tempera-
An error statistic for evaluating a methodology is the rootyre for transforming gridded datp(x), to sea level. More-
mean-square error (RMSE). Using temperature as an exajer,

ple, the RMSE is defined as

, (10)

0.0065(x;) } 52968 1)

27315+ T(x)

is used to transform the pressure at sea lgxgb; ), back to
the terrain height at;.

Another error statistic for evaluating a methodology is
cross validation (CV), i.e.,

1N P(Xi) = Po(Xi) [1.0—1—
TSR \/N 2,100 = Talx))%, ©)

wherex; represents a station locatidd js the total number of
stations in the network over a certain peridglx;) is the ob-
servation at locatior;, andT (x) is an estimate at locatiof.
Moreover,T (x) in Eq. (9) can represent the fitted trend value, 1 N

Ti(x), or the linearly interpolated value from a gridded data to Cv= \/N _Z[Tfi (%) —To(x)]2, (12)
locationx;. However, for gridded temperatures and pressures, =

the bias caused by the orographic effect between locationwhereT representd; or T, and the subsctripti indicates
and a grid cell must be adjusted. For temperature, the gtiddbat the value is estimated using all observations in the net
data are transformed to sea level using a constant lapse ratark except the observatiof (X;).
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Both the RMSE and CV represent the goodness of fifgble 1. Cross val.idation [Eq. (12)] of air temperatur%q) for the
However, observatio,(x;) is included for estimating the zones and the_spllne moqel Eq. (.1) with or_wnthout_C_FSR el

. . data as covariant and with or without residual Kriging. W:stye
value atx; in the RMSE, but this is not the case for CV. Th o ) )

. . AW: Middle West, NE: North East, SE: South East.

RMSE represents the fitted error in dense data areas, while
CV is used to assess the generality of statistical analgsis rwith CFSR  Residual
sults to an independent dataset. reanalysisas  Kriging W MW NE SE All

covariate? applied? zone zone zone zone zone

3.3.2. Evaluation on the grid

The reduced variance of the newly estimated temperature yeos ';% 22%% 22%3 11?32 11'15; 22%)2
((:Soergpfpr)ggnv(\gitxh) the CFSR temperature can be estimated as Vos Ves 276 201 178 134 197
1M 1M
M > [Tetsr(m) — To(M)J2 — M [T_m(m) —To(M)]2,  Table2. Similar to Table 1, but for relative humidity (%) and Eq.
m=1 m=1 3).

(13)
wherem s a grid cell which contains observationd;is the  with CFSR  Residual
total number of these grid cell$;(m) is the observed mean reanalysisas  Kriging W MW  NE SE All
within m; chsr(m) is the CFSR data im; andT_p,(m) is the covariate? applied? zone zone zone zone zone
mean of the trend surface at the 1-km sub-grid centers within
musing all observations in the network except observations v
within m.

No 1472 11.83 1049 911 1154
No 1412 1154 10.25 8.91 11.20
Yes Yes 14.07 11.40 10.03 8.75 11.06

4. Results . .
Table 3. Similar to Table 1, but for wind speed (Mm% and Eq. (4).
To verify the usefulness of the CFSR temperature and rel-

ative humidity dataset in producing a trend surface, splin/ith CFSR  Residual
CVs [Egs. (1) and (3)] are shown in the second rows of Té:eanaly&s?as K”Q'”go W MW NE SE Al
bles 1 and 2, respectively. The results show that the splin€°variate?  applied? zone zone zone zone zone

CVs with the CFSR data as a covariate are smaller than the No No 052 051 048 053 051
splines without the CFSR data as a covariate. This finding Yes No 0.52 051 048 053 051
suggests that the CFSR dataset has moderate contribudionst Yes Yes 052 051 048 053 051

the temperature and relative humidity forcing fields.
To verify the usefulness of the CFSR wind speed and sur-

face pressure dataset in producing trend surfaces, the CHSRe 4. Similar to Table 1, but for surface pressure (hPa) and Eq.

data are added to Eq. (4) and Eq. (5), i.e., 5).
w(X) = f(X) + awersr(X) + £(X) (14) WithCFSR  Residual
reanalysisas  Kriging W MW  NE SE All
and covariate? applied? zone zone zone zone zone
X)=f(X)+s(z(x)) +a X) 4+ £(X) . 15
PO = F(x) +S(2(x)) + & Porsr(X) + £(x) (15) No No 178 175 115 117 1.46
The spline CVs [Eqgs (14) and (15)] are shown in the sec- Yes No 1.78 175 115 117 1.46
ond rows of Tables 3 and 4, respectively. The results show Yes Yes 178 175 115 117 1.46

that using the CFSR data as a covariate does not reducethe
CVs. These facts suggest that the CFSR dataset has no con-
tribution to the pressure and wind speed forcing fields. 5
The simple kriging method specified in section 3.2 is ap-
plied to the residualg(x), in Eg. (1) and Egs. (3)—(5). The5.1. Comparison to the CFSR and Princeton datasets

corresponding results are also listed in the third rows ef Ta  The CFSR reanalysis and Princeton forcing datasets are
bles 14, respectively. For temperature and relative humigbrhaps the two most popular atmospheric forcing datasets
ity, the spline model CVs with residual correction are semall for | SMs. In this section, these two datasets are compared
than those without residual correction. This finding sut®esyith the BNU dataset in the observation network and on a

that the correction method is effective for the temperaime grig with a spatial resolution analogous to the CFSR and
relative humidity. However, for the pressure and wind speegkinceton forcing datasets.

the spline model CVs with residual correction and the trend ) )

surface are the same, indicating that the residual coorectP-1-1. Within the observation network

is unnecessary for the pressure and the wind speed forcingln practical applications, coarse-resolution meteorolog
fields. ical forcing datasets are typically further interpolatetta

Discussion
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a fine-resolution grid (e.g., Shi et al., 2011). Therefore, 2PI€5. RMSE of CFSR dataset.
is useful to validate the interpolated CFSR and Princeton W MW  NE SE All
datasets within the station network. The gridded CFSR data szone  zone  zone  zone  zone
are linearly interpolated to the observation sites; theaele
tion adjustments are performed for the temperature and prJ§m99fa“gre°(C) 423 347 297 240 327
sure fields (as described in section 3.3.1). The correspgnd'HliJ::j'(i';éég’)(mSl) Zg'jf 129'958 138'24j 1242;1 138;)0
RMSEs for the temperatu.re, rglatlve humidity, wind spee\éiessure (hPa) 26.66 1993 9.73 1007 16.75
and surface pressure are listed in Table 5. The correspgndin
spline CVs are much larger, especially for the wind speed and
surface pressure fields.

Similarly, the Princeton forcing dataset is also lineanty i
terpolated to the observation sites; the correspondingRMS w MW NE SE All
for temperature, relative humidity, wind speed and surface zone zone zone  zone  zone
pressure are listed in Table 6. For temperature, relative ili%

Table 6. RMSE of the Princeton dataset.

midity and wind speed, the Princeton forcing dataset RMS irr?]?;st;f) © 255'23 2‘_,11'%81 2?3236 136332 241'2199
are larger than for the CFSR forcing data. However, this fingy - 4 speed (m'sh) 361 317 317 298 319
ing is not surprising because the CFSR forcing dataset spgasgre (hPa) 407 391 400 418 4.04
tial resolution is 0.3125 while the Princeton forcing dataset
spatial resolution is< It is surprising that the CFSR surface
pressure RMS.E '? much ".”“ger than fpr the.Pnnceton forc"%%ble 7. The square root of the reduced variances of BNU forcing
dataset. This finding requires further investigation. data over CFSR reanalysis data [Eq. (13)].

Overall, the spline CVs (the second rows in Tables 1 and

2 and the first rows in Tables 3 and 4) are much smaller than W MW NE SE All

the RMSEs for both the CFSR and Princeton forcing datasets, zone zone zone  zone  zone

'dndo'lcgt't”g trt'at t.rt'ﬁ. B{\:]U d‘;‘taset .t§ bettet(Nth"’l‘(n f\;‘ese WO g herature’C) 448 353 239 212 3.14
ed datasets within the observation network. Moreover, siny i (o) 1760 16.02 1548 1112 1516

ple kriging is applied on the residual fields for trend suefacyyinq speed (msl) 340 285 320 2/42 3.06
correction in the BNU dataset. Then, the true BNU datasgtessure (hPa) 3979 13255 14.75 1905 26.79
interpolation errors at the grid points nearest the obsierva
sites are even smaller.

5.1.2. On the grid Table 8. The same as Table 7, but for Princeton forcing data.

To verify whether the BI_\IU product is better than thé W MW NE SE Al
CFSR data on the 0.312%rid (the CFSR dataset resolu- sone  zone  zone  zone  zone
tion), the square root of the reduced variances for the BNU
forcing data over the CFSR reanalysis data [Eq. (13)] are cdlemperature‘C) 469 311 400 284 371
culated and listed in Table 7. Table 7 shows that these valyggmidity (%) 20.52 1842 18.80 1345 17.83

; 1
are all positive and larger than the spline CVs listed in th :gsss'i’:e(gégs) 3i51356 3.%%188 3'?3888 2'2179 3';109
second rows of Tables 1 and 2 and in the first rows of Ta- >+ i ' ' i '
bles 3 and 4. This finding indicates that the BNU dataset at

the CFSR dataset resolution is much more accurate than thg shown in Fig. 3, demonstrating a pronounced seasonal
CFSR dataset. The difference maps of interpolated mete@stern with higher lapse rates during summer. This find-
rological data and reanalysis data at 0200LST 3 January 3Rd coincides with the results of Rolland (2003), Blandford
1400LST 3 July are shown in Fig. 2. . et al. (2008) and Hutchinson et al. (2009) and indicates that
Similarly, the square root of the reduced variances for the; constant lapse rate is used in Eq. (1), the estimated sur-
BNU forcing data compared with the Princeton forcing dai@ce temperature accuracy decreases. To confirm this idea,
are calculated and listed in Table 8. The results indicate th, comparative test is performed for zone W from January to
the BNU forcing data at the Princeton forcing dataset resgrarch because the daily lapse rates during this period are
lution is also much more accurate than the Princeton forcigg,cn jower than 0.6 (100 my L. First, the NMIC obser-

dataset. vations and CFSR temperature data are transformed to sea
5.2. Discussion on the methodology level using a const.ant quse rate qf 065100 mjl. Then,
) the trend surface is estimated using Eqg. (1) without the co-

5.2.1. Elevation variatez. Lastly, the estimated surface value is transformed

Temperature and pressure are sensitive to elevation. Back to the terrain height using the same constant lapse rate
temperature, the elevation covariate coefficieniri Eq. (1)] The corresponding CV is 4.36, which is larger than the CV
is an empirically determined, regionally averaged lapse raf the newly proposed method (4@3. The proposed eleva-
(Hutchinson, 1991). The daily average estimated lapss ratien adjustment approach [Eq. (1)] is also tested agairest th
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Fig. 2. Maps of differences between interpolated meteorologiatd dnd CFSR reanalysis data at 0200 LST 3
January 2003 (left panel) and 1400 LST 3 July 2003 (right pane

traditional algorithm in other seasons and zones. Thetsesiq. (11). The resulting CV is 3.92 hPa, which is larger than
show that the newly proposed adjustment approach contihe CV estimated using Eq. (5) (1.46 hPa).
ually produces smaller CVs than the traditional adjustment From the aforementioned comparative tests, the tem-
approach. However, zone W produces the largest decreaspamature trend surface estimated using the newly proposed
CV from January to March. methodology is better than the surface derived using a con-
A similar comparative test is also performed for pressustant lapse rate. A lapse rate of 026100 m) ! can approx-
in zone W from January to March in 2003. First, the pregmately reflect the temperature—elevation relationshipwH
sure at observation siteis transformed to sea level using Eqever, the fixed value remains inadequate to accurately rep-
(10). Then, the sea level trend surface is constructed usiegent the temperature field. This finding is also true for
Eq. (5) without the one-dimensional splirg¢z). Lastly, the the pressure—elevation relationship presented in EqsaiD
trend surface is transformed back to the terrain heightgusi(ll1).
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Fig. 3. Estimated daily average lapse rate for temperatuie in Eq. (1)].
5.2.2. Trend surface quality dataset to determine the trend surfaces.

The Princeton dataset (as the background field) is used The trivariate thin-plate smoothing spline with elevation

. a5 the third independent variable has been demonstrated as a
to demonstrate the importance of trend surfaces for the fina o ; -
etter approach than the bivariate thin-plate smoothifigesp

product. A simple kriging procedure is applied to the resi%r some datasets [e.g., maximum and minimum tempera-
ual field for further correction. The estimated CVs for thi1$.ures in Canada (Hu';ci.{inson et al., 2009)]. This point is

0 1 -
method are 34, 15.9%, 1.3 m's" and 3.9 hPa for tem tested using the temperature dataset for mainland Chirea. Th

perature, relative humidity, wind speed and surface press A . .
respectively. These CVs are smaller than those withOLcllJre;C Vs for the partial trivariate spline with CFSR data as the

; L : covariate are 3.0C, 2.24C, 1.92C and 1.40C for zones
ual corrections (Table 6), indicating that the residuateor .
L . . W, MW, NE and SE, respectively. These CVs are larger than
tionis effective. However, these CVs remain larger thas¢ho

. ; he bivariate spline CVs shown in the second row of Table 1
from the newly proposed method (the third rows in Tables i_xcept for zone SE where the two CVs are nearly identical.

4). This finding is because the spline CVs are much smal hese differences may be because the temperature datasets

than the Princeton dataset RMSE. Therefore, a higher gual%r zones W, MW and NE are not sufficiently dense. Poten-
trend surface can lead to a better-corrected surface. . I . .
tially, the trivariate spline function can model the lapa&er

Recently, a new dataset was developed by ITPCAS using

the same observations that are implemented in this study ( atial variability (Hutchinson et al., 2009). Howevere th
P Y USBservation sites in zones W, MW and NE may be too sparse

2010; Chen et al., 2011). The CVs using their methodolo%/ measure this spatial variability well. Therefore, a dienp

0, -
are 2.50C, 12.28%, 0.76 m's' and 3.06 hPa for near Surfacemodel is more preferable. Moreover, the observation sites i

temperature, .relatlve hum|d|ty, wind speed and surfacs-pre ne SE are denser than in the other three regions. Therefore
sure, respectively, which are moderately larger than the C o ) S : s
the trivariate spline and partial bivariate spline provsitai-

proposed in this s_tudy, le., 1.92, 11.06%, 0.51 m§' and lar fits to the data. If the data were denser, the trivaridiaesp
1.46 hPa, respectively. There may be several reasons &# the :
differences. For example, that ITPCAS methodology dog\lsOUId fitthe data better.

not use reanalysis data as a covariate, perform trend surfa.3. Residual correction

correction, or adopt the elevation adjustment approaddres f  Fitting a smoothing spline can cause the residuals to be
temperature and pressure documented in section 3.3.1-Mgjfigbstantially larger than the observation error range,the

over, the ITPCAS methodology uses the Princeton forcirgtimation error in dense data areas is too large. In thia-sit
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and the Fundamental Research Funds for the Central Urtiesrsi
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tion, the interpolated surface often appears physicaltgamn

sonable in dense data areas. Unfortunately, this is thefaase

the temperature (average RMSE of P68and relative hu- APPENDIX

midity (average RMSE of 9.50%) fields in this study (Table Proof of Eq. (13)

9). Therefore, residual correction is necessary and pexluc

reasonable results. . . _ Let T(m) be the true temperature value in grig and
Generally, the residual field estimated using the smootuppose CFSR errdFys(m) — T(m), and observation error,

ing spline model is assumed to be statistically and spgatiah“o(m) — T(m), are statistically independent. Then,
independent. Therefore, a simple kriging correction proce

dure seems unhelpful. However, this is often not the case in 1 M T 5
practice, which is possibly related to the trend surfacd-qua M Z cfsr(M) — To(M)]
ity. For a relatively poor trend surface, the residuals ate s

Temperature°C) 2.24 1.69 1.54 1.23 1.68
Humidity (%) 1125 981 893 800 9.50
Pressure (hPa) 1.21 1.48 0.96 0.99

Wind speed (mst) 0.48 048 044 050 0.48

?

stantially larger than the observation error range, sudbras 1 % [Tefr(M 2 1 % )]2_
the temperature and relative humidity fields. Therefore, th M & M m=1
residual fields may also contain some information that sihmg milar]
belong to the trend surfaces. This error may result in a cor- Y
related residual field. Therefore, residual correctionds-n
essary. This study on the temperature and relative humidity Z To(m)]?
fields supports this framework. m=1
1M , 1M )

_ ~M Z T(m)] Y] > [T(m) = To(m)]=.

6. Conclusions m=1 m=1
In this study, a new approach for generating near-surfateerefore,

temperature, relative humidity, wind speed and pressure, 1M
fields is proposed. The proposed approach is applied to— z [Tersr(M) — T(mM))2 — = z m) — T(m)]?
the NMIC observations and the CFSR reanalysis dataset” m=1 M &
for mainland China to generate a six-hourly 1-km gridded 1 M 2 1 M )
dataset. The error in the constructed dataset using the prg® M mzl[chsr(m) Y rer To(m)]=.

posed scheme is smaller than the CSFR and Princeton mete-

orological forcing dataset errors, both within the statnet-
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