
ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 31, SEPTEMBER 2014,1127–1135

Mapping Near-surface Air Temperature, Pressure, Relative Humidity and Wind

Speed over Mainland China with High Spatiotemporal Resolution

LI Tao1, ZHENG Xiaogu∗1, DAI Yongjiu1, YANG Chi1, CHEN Zhuoqi1, ZHANG Shupeng1,

WU Guocan1, WANG Zhonglei1, HUANG Chengcheng1, SHEN Yan2, and LIAO Rongwei2

1College of Global Change and Earth System Science, Beijing Normal University, Beijing100875
2National Meteorological Information Center, China Meteorological Administration, Beijing100081

(Received 17 September 2013; revised 31 December 2013; accepted 13 February 2014)

ABSTRACT

As part of a joint effort to construct an atmospheric forcingdataset for mainland China with high spatiotemporal reso-
lution, a new approach is proposed to construct gridded near-surface temperature, relative humidity, wind speed and surface
pressure with a resolution of 1 km×1 km. The approach comprises two steps: (1) fit a partial thin-plate smoothing spline
with orography and reanalysis data as explanatory variables to ground-based observations for estimating a trend surface; (2)
apply a simple kriging procedure to the residual for trend surface correction.

The proposed approach is applied to observations collectedat approximately 700 stations over mainland China. The
generated forcing fields are compared with the corresponding components of the National Centers for Environmental Predic-
tion (NCEP) Climate Forecast System Reanalysis dataset andthe Princeton meteorological forcing dataset. The comparison
shows that, both within the station network and within the resolutions of the two gridded datasets, the interpolation errors of
the proposed approach are markedly smaller than the two gridded datasets.
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1. Introduction

The availability of large-scale, long-term datasets of land
surface water and energy budgets is essential for understand-
ing the global environmental system and climatic change.
However, historical observation records of surface evapora-
tion, runoff, soil moisture, and soil temperature with high
spatial and temporal resolution are unavailable for the ma-
jority of continental regions. Running a land surface model
(LSM) to generate these variables has long been considered a
good option to reconstruct historical records (e.g., Dai etal.,
2003).

Meteorological forcings are required to perform off-line
LSM simulations. Generally, meteorological forcings com-
prise seven components: near-surface air temperature, rel-
ative humidity, wind speed, downward shortwave radiation,
downward longwave radiation, surface pressure, and precip-
itation. The actual number of forcing variables required by
LSMs varies; some LSMs require less or more than these
seven variables.
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The importance of meteorological forcings has been
demonstrated for land surface modeling efforts (Berg et al.,
2003; Fekete et al., 2004; Nijssen and Lettenmaier, 2004).
The results from the North American Land Data Assimilation
System (NLDAS) project (Mitchell et al., 2004) indicated
that first-order errors in a land surface simulation were largely
due to inaccurate meteorological forcings (Pan et al., 2003;
Robock et al., 2003). Other studies have also shown that land
surface simulations are very sensitive to meteorological forc-
ing accuracy (Berg et al., 2003; Fekete et al., 2004; Sheffield
et al., 2004).

Until now, global atmospheric forcing datasets have
mainly been derived from reanalysis datasets, such as
the Climate Forecast System Reanalysis (CFSR) reanalysis
dataset (Saha et al., 2010) and the Princeton forcing dataset
(Sheffield et al., 2006). However, observations from approx-
imately 200 stations only were offered by China for interna-
tional exchange to construct such datasets. Therefore, their
quality over the mainland of China is questionable. The spa-
tial resolutions of these forcing datasets are primarily from
0.3◦×0.3◦ to 1◦×1◦. These coarse resolutions are not suf-
ficient for catchment-scale hydrology and ecosystem studies,
in which a resolution of 1 km×1 km is generally preferable.
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Recently, more remote sensing datasets at this resolution
have become available, such as the MODIS (Moderate Res-
olution Imaging Spectroradiometer) LAI (leaf area index),
FPAR (fraction of photosynthetically active radiation) and re-
flectivity products. Forcing datasets with a resolution of 1
km×1 km are ideal for comparing with these remote sensing
datasets.

Over the past 60 years, China has collected more 6-hourly
observations than offered for international exchange. More-
over, there is a joint effort to construct an atmospheric forc-
ing dataset for mainland China with high spatial resolution
using these observations. Among these efforts, the National
Meteorological Information Center of China (NMIC) primar-
ily works on the precipitation dataset (e.g., Xie et al., 2007;
Shen et al., 2010; Xie and Xiong, 2011); the Institute of Ti-
betan Plateau Research, Chinese Academy of Sciences (ITP-
CAS) primarily works on the shortwave radiation and long-
wave radiation datasets (e.g., Chen et al., 2011); and the
Beijing Normal University (BNU) primarily works on the
near-surface air temperature, relative humidity, wind speed
and surface pressure datasets. The major objectives of this
study are (1) to introduce the methodology for generating
a gridded near-surface temperature, relative humidity, wind
speed and surface pressure dataset at a resolution of 1×1 km
(named the BNU dataset) by merging ground-based observa-
tions, orography and reanalysis data; and (2) to compare the
BNU dataset with other forcing datasets.

There are two popular approaches to constructing forc-
ing datasets with high spatial resolution. The first is to fit a
thin-plate smoothing spline model with the least generalized
cross-validation principle (e.g., Hutchinson, 1995, 1998a,
1998b; Basher and Zheng, 1998). An advantage of this ap-
proach is that the estimation errors in sparse data locations are
minimal because the least generalized cross-validation prin-
ciple is applied to optimize the spline model (Wahba, 1990).
However, the estimation error within the station network is
often substantially larger than the observational error. In this
situation, the interpolated surface often does not appear rea-
sonable in dense data areas.

The second approach is to use a reanalysis dataset as
a background field and apply a correction procedure to the
background field residual (e.g., Holdaway, 1996; Alsamamra
et al., 2009). An advantage of this approach is that the fitted
values closely resemble the observations in dense data areas
due to the correction of the residuals. However, the errors in
sparse data areas are typically larger than those produced us-
ing the first approach because the selected background field
provides a poorer trend surface than produced using the first
approach.

In this study, a new technique that uses the first approach
to modify the second is proposed. First, the trend surface is
changed from the background field to one constructed by a
partial thin-plate smoothing spline model with location, ele-
vation and reanalysis data as the covariates. Then, a simple
kriging is applied to the residuals. The estimates are addedto
the trend surface to yield the final residual-corrected surface.

The proposed approach is evaluated against the two tra-

ditional approaches. The results show that the proposed ap-
proach is indeed better than the other two algorithms; the er-
rors are reduced in both sparse and dense data regions. The
BNU dataset is also compared with the corresponding com-
ponents of the CFSR and the Princeton forcing datasets. The
BNU dataset estimation error is much smaller than produced
from the CFSR and the Princeton forcing datasets both within
the station network and on the CFSR and Princeton forcing
dataset grids.

The remainder of the paper is organized as follows. The
data used in the study are documented in section 2. The
methodologies are described in section 3. The main results
using the proposed methodologies are presented in section 4.
Finally, a discussion and conclusions are given in sections5
and 6, respectively.

2. Data

Observations at 0000, 0600, 1200 and 1800 UTC of 1.5-
m near-surface air temperature, relative humidity, surface
pressure and 10-m wind speed are collected from approxi-
mately 700 stations with elevation data on mainland China
for the year 2003. The station locations are shown in Fig. 1.
The dataset is supplied by the NMIC and is quality-controlled
to maintain errors less than 2% (CMA, 2003; Ren and Xiong,
2007). For computational efficiency, the dataset is divided
into four zones: west (W), mid-west (MW), northeast (NE)
and southeast (SE) (see Fig. 1 for more details).

Two gridded forcing datasets are used to verify the
methodology proposed in this study. The first is the CFSR
dataset (Saha et al., 2010), which has a 38-km (T382; ap-
proximately 0.3125◦ × 0.3125◦) global atmosphere resolu-
tion for 0000, 0600, 1200 and 1800 UTC. The second is the
1◦ × 1◦ Princeton meteorological forcing dataset (Sheffield
et al., 2006), which is a three-hourly dataset. However, only
0000, 0600, 1200 and 1800 UTC are used for verification pur-
poses. In fact, the Princeton forcing dataset is interpolated to
the other hours. Therefore, the data quality is not comparable
to that at 0000, 0600, 1200, and 1800 UTC.

Fig. 1. Locations of stations and the division of regions over
mainland China.
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3. Methodology

3.1. Estimating trend surfaces

Every six hours, the temperature,T, is assumed to sat-
isfy the following regression equation, which is similar to
Hutchinson et al. (2009):

T(x) = f (x)+ αz(x)+ βTcfsr(x)+ ε(x) , (1)

wherex represents a location in the domain;Tcfsr is the CFSR
temperature;f is a two-dimensional thin-plate smoothing
spline (i.e., Wahba, 1990; Zheng and Basher, 1995);z is the
elevation;α andβ are coefficients; andε is the residual with
zero mean and spatially invariant varianceσ2.

At each time step, Eq. (1) is trained using temperature
observations, station elevations, and CFSR temperatures that
are linearly interpolated from the grid points to the stations
with elevation adjustment (see section 3.3.1). These data are
used as input to the generalized additive model routine “gam”
in the general additive model computational vehicle “mgcv”
R statistical package (Wood, 2008, 2011; Wood et al., 2008)
to derive estimated values for̂f , α̂ , β̂ andσ̂2. The trend sur-
face at any site,x, is then estimated by

Tt(x) = f̂ (x)+ α̂z(x)+ β̂Tcfsr(x) , (2)

where the subscript “t” stands for “trend”. Specifically, for
estimating the mean temperature in a 1 km grid cell,x is the

center location,z(x) is the mean elevation of the grid cell,
andTcfsr(x) is the linearly interpolated CFSR temperature to
x with elevation adjustment.

For the relative humidity (q), wind speed (w) and surface
pressure (p), the trend surfaces are assumed to satisfy the fol-
lowing regression equations:

q(x) = f (x)+ αqcfsr(x)+ ε(x) ; (3)

w(x) = f (x)+ ε(x) ; (4)

p(x) = f (x)+s(z(x))+ ε(x) ; (5)

wheres is a one-dimensional smoothing spline function, and
the other notations are the same as those in Eq. (1). The esti-
mation procedures are the same as that for temperature.

3.2. Residual correction

In this study, simple kriging is applied to the residual
field. For the simple kriging, the covariance between resid-
uals ε(x) and ε(y), is assumed to only depend on the dis-
tance between locationsx andy. Therefore, there is a one-
dimensional covariance function,c, in which

cov(ε(x),ε(y)) = c(|x−y|) , (6)

where|x− y| is the Euclidean distance between locationsx
andy. At any location,x, the kriging estimateη(x) is

η(x) =





c(|x−x1|)
...

c(|x−xn|)





T 



c(|x1−x1|) · · · c(|x1−xn|)
...

. . .
...

c(|xn−x1|) · · · c(|xn−xn|)





−1





ε(x1)
...

ε(xn)






, (7)

wherex1, · · · ,xn are the observation site locations; the covari-
ance functionc in Eq. (6) is estimated using the “Krig” rou-
tine in the “fields”R package with inputε(xi), i = 1, · · · ,n.
Lastly, the residual-corrected forcing data (using temperature
as an example) is defined as

Tc(x) = Tt(x)+ η(x). (8)

3.3. Evaluation

3.3.1. Evaluation within the station network

An error statistic for evaluating a methodology is the root-
mean-square error (RMSE). Using temperature as an exam-
ple, the RMSE is defined as

RMSE≡

√

1
N

N

∑
i=1

[T̂(xi)−To(xi)]2 , (9)

wherexi represents a station location;N is the total number of
stations in the network over a certain period;To(xi) is the ob-
servation at locationxi , andT̂(xi) is an estimate at locationxi .
Moreover,T̂(xi) in Eq. (9) can represent the fitted trend value,
Tt(xi), or the linearly interpolated value from a gridded data to
locationxi . However, for gridded temperatures and pressures,
the bias caused by the orographic effect between locationxi

and a grid cell must be adjusted. For temperature, the gridded
data are transformed to sea level using a constant lapse rate,

i.e., 0.65◦C (100 m)−1. Then, the transformed gridded data
at sea level are linearly interpolated to locationxi . Lastly, the
interpolated temperature is transformed back from sea level
to the terrain height atxi using the same constant lapse rate.
The adjustment procedure for pressure is similar. The major
difference is to use the following formula:

p0(x) = p(x)

[

1.0+
0.0065z(x)

273.15+T(x)

]5.2568

, (10)

wherep andT represent the gridded pressure and tempera-
ture for transforming gridded data,p(x), to sea level. More-
over,

p(xi) = p0(xi)

[

1.0+
0.0065z(xi)

273.15+T(xi)

]−5.2568

, (11)

is used to transform the pressure at sea level,p0(xi), back to
the terrain height atxi .

Another error statistic for evaluating a methodology is
cross validation (CV), i.e.,

CV ≡

√

1
N

N

∑
i=1

[T̂−i(xi)−To(xi)]2 , (12)

whereT̂ representsTt or Tc and the subsctript−i indicates
that the value is estimated using all observations in the net-
work except the observationTo(xi).
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Both the RMSE and CV represent the goodness of fit.
However, observationTo(xi) is included for estimating the
value atxi in the RMSE, but this is not the case for CV. The
RMSE represents the fitted error in dense data areas, while
CV is used to assess the generality of statistical analysis re-
sults to an independent dataset.

3.3.2. Evaluation on the grid

The reduced variance of the newly estimated temperature
compared with the CFSR temperature can be estimated as
(see Appendix)
√

1
M

M

∑
m=1

[Tcfsr(m)−To(m)]2−
1
M

M

∑
m=1

[T−m(m)−To(m)]2 ,

(13)
wherem is a grid cell which contains observations;M is the
total number of these grid cells;To(m) is the observed mean
within m; Tcfsr(m) is the CFSR data inm; andT−m(m) is the
mean of the trend surface at the 1-km sub-grid centers within
m using all observations in the network except observations
within m.

4. Results

To verify the usefulness of the CFSR temperature and rel-
ative humidity dataset in producing a trend surface, spline
CVs [Eqs. (1) and (3)] are shown in the second rows of Ta-
bles 1 and 2, respectively. The results show that the spline
CVs with the CFSR data as a covariate are smaller than the
splines without the CFSR data as a covariate. This finding
suggests that the CFSR dataset has moderate contributions to
the temperature and relative humidity forcing fields.

To verify the usefulness of the CFSR wind speed and sur-
face pressure dataset in producing trend surfaces, the CFSR
data are added to Eq. (4) and Eq. (5), i.e.,

w(x) = f (x)+ αwcfsr(x)+ ε(x) , (14)

and
p(x) = f (x)+s(z(x))+ α pcfsr(x)+ ε(x) . (15)

The spline CVs [Eqs (14) and (15)] are shown in the sec-
ond rows of Tables 3 and 4, respectively. The results show
that using the CFSR data as a covariate does not reduce the
CVs. These facts suggest that the CFSR dataset has no con-
tribution to the pressure and wind speed forcing fields.

The simple kriging method specified in section 3.2 is ap-
plied to the residual,ε(x), in Eq. (1) and Eqs. (3)–(5). The
corresponding results are also listed in the third rows of Ta-
bles 1–4, respectively. For temperature and relative humid-
ity, the spline model CVs with residual correction are smaller
than those without residual correction. This finding suggests
that the correction method is effective for the temperatureand
relative humidity. However, for the pressure and wind speed,
the spline model CVs with residual correction and the trend
surface are the same, indicating that the residual correction
is unnecessary for the pressure and the wind speed forcing
fields.

Table 1. Cross validation [Eq. (12)] of air temperature (◦C) for the
zones and the spline model Eq. (1) with or without CFSR reanalysis
data as covariant and with or without residual Kriging. W: West,
MW: Middle West, NE: North East, SE: South East.

With CFSR Residual
W MW NE SE Allreanalysis as Kriging

zone zone zone zone zonecovariate? applied?

No No 2.96 2.09 1.88 1.49 2.10
Yes No 2.80 2.04 1.82 1.41 2.02
Yes Yes 2.76 2.01 1.78 1.34 1.97

Table 2. Similar to Table 1, but for relative humidity (%) and Eq.
(3).

With CFSR Residual
W MW NE SE Allreanalysis as Kriging

zone zone zone zone zonecovariate? applied?

No No 14.72 11.83 10.49 9.11 11.54
Yes No 14.12 11.54 10.25 8.91 11.20
Yes Yes 14.07 11.40 10.03 8.75 11.06

Table 3. Similar to Table 1, but for wind speed (m s−1) and Eq. (4).

With CFSR Residual
W MW NE SE Allreanalysis as Kriging

zone zone zone zone zonecovariate? applied?

No No 0.52 0.51 0.48 0.53 0.51
Yes No 0.52 0.51 0.48 0.53 0.51
Yes Yes 0.52 0.51 0.48 0.53 0.51

Table 4. Similar to Table 1, but for surface pressure (hPa) and Eq.
(5).

With CFSR Residual
W MW NE SE Allreanalysis as Kriging

zone zone zone zone zonecovariate? applied?

No No 1.78 1.75 1.15 1.17 1.46
Yes No 1.78 1.75 1.15 1.17 1.46
Yes Yes 1.78 1.75 1.15 1.17 1.46

5. Discussion

5.1. Comparison to the CFSR and Princeton datasets

The CFSR reanalysis and Princeton forcing datasets are
perhaps the two most popular atmospheric forcing datasets
for LSMs. In this section, these two datasets are compared
with the BNU dataset in the observation network and on a
grid with a spatial resolution analogous to the CFSR and
Princeton forcing datasets.

5.1.1. Within the observation network

In practical applications, coarse-resolution meteorolog-
ical forcing datasets are typically further interpolated onto
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a fine-resolution grid (e.g., Shi et al., 2011). Therefore, it
is useful to validate the interpolated CFSR and Princeton
datasets within the station network. The gridded CFSR data
are linearly interpolated to the observation sites; the eleva-
tion adjustments are performed for the temperature and pres-
sure fields (as described in section 3.3.1). The corresponding
RMSEs for the temperature, relative humidity, wind speed
and surface pressure are listed in Table 5. The corresponding
spline CVs are much larger, especially for the wind speed and
surface pressure fields.

Similarly, the Princeton forcing dataset is also linearly in-
terpolated to the observation sites; the corresponding RMSEs
for temperature, relative humidity, wind speed and surface
pressure are listed in Table 6. For temperature, relative hu-
midity and wind speed, the Princeton forcing dataset RMSEs
are larger than for the CFSR forcing data. However, this find-
ing is not surprising because the CFSR forcing dataset spa-
tial resolution is 0.3125◦, while the Princeton forcing dataset
spatial resolution is 1◦. It is surprising that the CFSR surface
pressure RMSE is much larger than for the Princeton forcing
dataset. This finding requires further investigation.

Overall, the spline CVs (the second rows in Tables 1 and
2 and the first rows in Tables 3 and 4) are much smaller than
the RMSEs for both the CFSR and Princeton forcing datasets,
indicating that the BNU dataset is better than these two grid-
ded datasets within the observation network. Moreover, sim-
ple kriging is applied on the residual fields for trend surface
correction in the BNU dataset. Then, the true BNU dataset
interpolation errors at the grid points nearest the observation
sites are even smaller.

5.1.2. On the grid

To verify whether the BNU product is better than the
CFSR data on the 0.3125◦ grid (the CFSR dataset resolu-
tion), the square root of the reduced variances for the BNU
forcing data over the CFSR reanalysis data [Eq. (13)] are cal-
culated and listed in Table 7. Table 7 shows that these values
are all positive and larger than the spline CVs listed in the
second rows of Tables 1 and 2 and in the first rows of Ta-
bles 3 and 4. This finding indicates that the BNU dataset at
the CFSR dataset resolution is much more accurate than the
CFSR dataset. The difference maps of interpolated meteo-
rological data and reanalysis data at 0200LST 3 January and
1400LST 3 July are shown in Fig. 2.

Similarly, the square root of the reduced variances for the
BNU forcing data compared with the Princeton forcing data
are calculated and listed in Table 8. The results indicate that
the BNU forcing data at the Princeton forcing dataset reso-
lution is also much more accurate than the Princeton forcing
dataset.

5.2. Discussion on the methodology

5.2.1. Elevation

Temperature and pressure are sensitive to elevation. For
temperature, the elevation covariate coefficient [α in Eq. (1)]
is an empirically determined, regionally averaged lapse rate
(Hutchinson, 1991). The daily average estimated lapse rates

Table 5. RMSE of CFSR dataset.

W MW NE SE All
zone zone zone zone zone

Temperature (◦C) 4.23 3.47 2.97 2.40 3.27
Humidity (%) 22.48 19.50 18.42 14.41 18.70
Wind speed (m s−1) 3.44 2.90 3.24 2.48 3.10
Pressure (hPa) 26.66 19.93 9.73 10.07 16.75

Table 6. RMSE of the Princeton dataset.

W MW NE SE All
zone zone zone zone zone

Temperature (◦C) 5.40 4.08 4.33 3.34 4.29
Humidity (%) 25.27 21.91 21.26 16.34 21.19
Wind speed (m s−1) 3.61 3.17 3.17 2.28 3.19
Pressure (hPa) 4.07 3.91 4.00 4.18 4.04

Table 7. The square root of the reduced variances of BNU forcing
data over CFSR reanalysis data [Eq. (13)].

W MW NE SE All
zone zone zone zone zone

Temperature (◦C) 4.48 3.53 2.39 2.12 3.14
Humidity (%) 17.60 16.02 15.48 11.12 15.16
Wind speed (m s−1) 3.40 2.85 3.20 2/42 3.06
Pressure (hPa) 39.79 32.55 14.75 19.05 26.79

Table 8. The same as Table 7, but for Princeton forcing data.

W MW NE SE All
zone zone zone zone zone

Temperature (◦C) 4.69 3.11 4.00 2.84 3.71
Humidity (%) 20.52 18.42 18.80 13.45 17.83
Wind speed (m s−1) 3.53 3.11 3.08 2.71 3.11
Pressure (hPa) 11.56 3.88 8.88 3.79 8.09

are shown in Fig. 3, demonstrating a pronounced seasonal
pattern with higher lapse rates during summer. This find-
ing coincides with the results of Rolland (2003), Blandford
et al. (2008) and Hutchinson et al. (2009) and indicates that
if a constant lapse rate is used in Eq. (1), the estimated sur-
face temperature accuracy decreases. To confirm this idea,
a comparative test is performed for zone W from January to
March because the daily lapse rates during this period are
much lower than 0.65◦C (100 m)−1. First, the NMIC obser-
vations and CFSR temperature data are transformed to sea
level using a constant lapse rate of 0.65◦C (100 m)−1. Then,
the trend surface is estimated using Eq. (1) without the co-
variatez. Lastly, the estimated surface value is transformed
back to the terrain height using the same constant lapse rate.
The corresponding CV is 4.35◦C, which is larger than the CV
of the newly proposed method (4.03◦C). The proposed eleva-
tion adjustment approach [Eq. (1)] is also tested against the
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Fig. 2. Maps of differences between interpolated meteorological data and CFSR reanalysis data at 0200 LST 3
January 2003 (left panel) and 1400 LST 3 July 2003 (right panel).

traditional algorithm in other seasons and zones. The results
show that the newly proposed adjustment approach contin-
ually produces smaller CVs than the traditional adjustment
approach. However, zone W produces the largest decrease in
CV from January to March.

A similar comparative test is also performed for pressure
in zone W from January to March in 2003. First, the pres-
sure at observation sitex is transformed to sea level using Eq.
(10). Then, the sea level trend surface is constructed using
Eq. (5) without the one-dimensional spline,s(z). Lastly, the
trend surface is transformed back to the terrain height using

Eq. (11). The resulting CV is 3.92 hPa, which is larger than
the CV estimated using Eq. (5) (1.46 hPa).

From the aforementioned comparative tests, the tem-
perature trend surface estimated using the newly proposed
methodology is better than the surface derived using a con-
stant lapse rate. A lapse rate of 0.65◦C (100 m)−1 can approx-
imately reflect the temperature–elevation relationship. How-
ever, the fixed value remains inadequate to accurately rep-
resent the temperature field. This finding is also true for
the pressure–elevation relationship presented in Eqs. (10) and
(11).
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Fig. 3. Estimated daily average lapse rate for temperature [−α in Eq. (1)].

5.2.2. Trend surface quality

The Princeton dataset (as the background field) is used
to demonstrate the importance of trend surfaces for the final
product. A simple kriging procedure is applied to the resid-
ual field for further correction. The estimated CVs for this
method are 3.4◦C, 15.9%, 1.3 m s−1 and 3.9 hPa for tem-
perature, relative humidity, wind speed and surface pressure,
respectively. These CVs are smaller than those without resid-
ual corrections (Table 6), indicating that the residual correc-
tion is effective. However, these CVs remain larger than those
from the newly proposed method (the third rows in Tables 1–
4). This finding is because the spline CVs are much smaller
than the Princeton dataset RMSE. Therefore, a higher quality
trend surface can lead to a better-corrected surface.

Recently, a new dataset was developed by ITPCAS using
the same observations that are implemented in this study (He,
2010; Chen et al., 2011). The CVs using their methodology
are 2.50◦C, 12.28%, 0.76 m s−1 and 3.06 hPa for near-surface
temperature, relative humidity, wind speed and surface pres-
sure, respectively, which are moderately larger than the CVs
proposed in this study, i.e., 1.97◦C, 11.06%, 0.51 m s−1 and
1.46 hPa, respectively. There may be several reasons for these
differences. For example, that ITPCAS methodology does
not use reanalysis data as a covariate, perform trend surface
correction, or adopt the elevation adjustment approaches for
temperature and pressure documented in section 3.3.1. More-
over, the ITPCAS methodology uses the Princeton forcing

dataset to determine the trend surfaces.
The trivariate thin-plate smoothing spline with elevation

as the third independent variable has been demonstrated as a
better approach than the bivariate thin-plate smoothing spline
for some datasets [e.g., maximum and minimum tempera-
tures in Canada (Hutchinson et al., 2009)]. This point is
tested using the temperature dataset for mainland China. The
CVs for the partial trivariate spline with CFSR data as the
covariate are 3.01◦C, 2.24◦C, 1.92◦C and 1.40◦C for zones
W, MW, NE and SE, respectively. These CVs are larger than
the bivariate spline CVs shown in the second row of Table 1
except for zone SE where the two CVs are nearly identical.
These differences may be because the temperature datasets
for zones W, MW and NE are not sufficiently dense. Poten-
tially, the trivariate spline function can model the lapse rate
spatial variability (Hutchinson et al., 2009). However, the
observation sites in zones W, MW and NE may be too sparse
to measure this spatial variability well. Therefore, a simpler
model is more preferable. Moreover, the observation sites in
zone SE are denser than in the other three regions. Therefore,
the trivariate spline and partial bivariate spline providesimi-
lar fits to the data. If the data were denser, the trivariate spline
would fit the data better.

5.2.3. Residual correction

Fitting a smoothing spline can cause the residuals to be
substantially larger than the observation error range, i.e., the
estimation error in dense data areas is too large. In this situa-
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Table 9. RMSE of the BNU dataset.

W MW NE SE All
zone zone zone zone zone

Temperature (◦C) 2.24 1.69 1.54 1.23 1.68
Humidity (%) 11.25 9.81 8.93 8.00 9.50
Pressure (hPa) 1.21 1.48 0.96 0.99 1.16
Wind speed (m s−1) 0.48 0.48 0.44 0.50 0.48

tion, the interpolated surface often appears physically unrea-
sonable in dense data areas. Unfortunately, this is the casefor
the temperature (average RMSE of 1.68◦C) and relative hu-
midity (average RMSE of 9.50%) fields in this study (Table
9). Therefore, residual correction is necessary and produces
reasonable results.

Generally, the residual field estimated using the smooth-
ing spline model is assumed to be statistically and spatially
independent. Therefore, a simple kriging correction proce-
dure seems unhelpful. However, this is often not the case in
practice, which is possibly related to the trend surface qual-
ity. For a relatively poor trend surface, the residuals are sub-
stantially larger than the observation error range, such asfor
the temperature and relative humidity fields. Therefore, the
residual fields may also contain some information that should
belong to the trend surfaces. This error may result in a cor-
related residual field. Therefore, residual correction is nec-
essary. This study on the temperature and relative humidity
fields supports this framework.

6. Conclusions

In this study, a new approach for generating near-surface
temperature, relative humidity, wind speed and pressure
fields is proposed. The proposed approach is applied to
the NMIC observations and the CFSR reanalysis dataset
for mainland China to generate a six-hourly 1-km gridded
dataset. The error in the constructed dataset using the pro-
posed scheme is smaller than the CSFR and Princeton mete-
orological forcing dataset errors, both within the stationnet-
work and on the CFSR and Princeton dataset grids.

This study is the first practical attempt at fitting a partial
thin-plate smoothing spline with reanalysis data as a covariate
to ground-based observations for generating a trend surface.
Moreover, this study is the first to suggest the importance of
using a residual kriging procedure to correct trend surfaces
estimated using smoothing spline models. It is further sug-
gested that a better trend surface can be derived by carefully
selecting spline model covariates.

Lastly, the proposed approach is applied to generate sur-
face temperature, relative humidity, pressure, wind speedand
precipitation at 1-km and three-hourly resolutions from 1958
to 2010 over mainland China. The dataset is available on re-
quest or downloadable from http://globalchange.bnu.edu.cn/.
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APPENDIX

Proof of Eq. (13)

Let T(m) be the true temperature value in gridm, and
suppose CFSR error,Tcfsr(m)−T(m), and observation error,
To(m)−T(m), are statistically independent. Then,

1
M

M

∑
m=1

[Tcfsr(m)−To(m)]2

≈
1
M

M

∑
m=1

[Tcfsr(m)−T(m)]2 +
1
M

M

∑
m=1

[T(m)−To(m)]2 .

Similarly,

1
M

M

∑
m=1

[T−m(m)−To(m)]2

≈
1
M

M

∑
m=1

[T−m(m)−T(m)]2 +
1
M

M

∑
m=1

[T(m)−To(m)]2 .

Therefore,

1
M

M

∑
m=1

[Tcfsr(m)−T(m)]2−
1
M

M

∑
m=1

[T−m(m)−T(m)]2

≈
1
M

M

∑
m=1

[Tcfsr(m)−To(m)]2−
1
M

M

∑
m=1

[T−m(m)−To(m)]2 .
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