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ABSTRACT

Based on observations and 12 simulations from Coupled Model Intercomparison Project Phase 5 (CMIP5) models, cli-
matic extremes and their changes over China in the past and under the future scenarios of three Representative Concentration
Pathways (RCPs) are analyzed. In observations, frost days (FD) and low-temperature threshold days (TN10P) show a de-
creasing trend, and summer days (SU), high-temperature threshold days (TX90P), heavy precipitation days (R20), and the
contribution of heavy precipitation days (P95T) show an increasing trend. Most models are able to simulate the main char-
acteristics of most extreme indices. In particular, the mean FD and TX90P are reproduced the best, and the basic trends of
FD, TN10P, SU and TX90P are represented. For the FD and SU indexes, most models show good ability in capturing the
spatial differences between the mean state of the periods 1986–2005 and 1961–80; however, for other indices, the simulation
abilities for spatial disparity are less satisfactory and need to be improved. Under the high emissions scenario of RCP8.5,
the century-scale linear changes of the multi-model ensemble (MME) for FD, SU, TN10P, TX90P, R20 and P95T are−46.9,
46.0,−27.1, 175.4, and 2.9 days, and 9.9%, respectively; and the spatial change scope for each index is consistent with the
emissions intensity. Due to the complexities of physical process parameterizations and the limitation of forcing data, great
uncertainty still exists with respect to the simulation of climatic extremes.
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1. Introduction

Changes in climatic extremes have more serious impacts
on human society, the economy and ecosystems compared
to mean climate changes (Meehl et al., 2000). Great efforts
have been made to understand the physical mechanisms and
evolution of changes in climatic extremes under the global
warming background. In recent years, extensive research has
been conducted on the spatial distribution and temporal evo-
lution of extreme temperature and precipitation over China
using various statistical methods (Jiang et al., 1999; Zhai et
al., 1999; Yan and Yang, 2000; Zhai and Pan, 2003; Zhai et
al., 2005; Chen et al., 2009; Ren et al., 2010). Zhai et al.
(1999) used monthly observations of 369 stations to focus
mainly on the annual and seasonal changes, while Zhai et
al. (2005) used daily data of 740 stations to focus mainly on
the spatial distribution. Comprehensively, these studies have
mostly illustrated that both the annual average maximum
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and minimum temperature show increasing trends over the
whole of China, while the most significant warming tendency
is found over North China, with the largest warming ampli-
tude in winter. Furthermore, the frequency of extreme pre-
cipitation events has also increased. Ren et al. (2010) used an
extreme climate index to reveal a decrease in extreme events
related to anomalous cold conditions (e.g. frost days), and an
increase in extreme events related to anomalous warm con-
ditions (e.g. warming days). Based on the above-mentioned
investigations, coupled climate models have been used to ex-
plore future climate change scenarios with a focus on cli-
matic extremes (Gao et al., 2002; Jiang et al., 2004; Jiang
et al., 2007; Zhang et al., 2007; Jiang et al., 2012; Wang et
al., 2012; Lang and Sui, 2013). Jiang et al. (2012) evalu-
ated and projected some extreme indices over China using
Coupled Model Intercomparison Project Phase 3 (CMIP3)
models. Their results showed that the global coupled climate
models that they studied have the ability to reproduce the spa-
tial distribution and linear trends of the extreme indices, and
that the extreme precipitation index tends to increase in the
21st century.
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Important progress has been made through the develop-
ment of global coupled models and climate simulations. The
outputs of tens of models’ historical experiments and fu-
ture projections of the different Representative Concentration
Pathways (RCPs) are being supplied as part of the Coupled
Model Intercomparison Project Phase 5 (CMIP5). These out-
puts provide a good opportunity to evaluate the capacity of
coupled models in simulating extreme climate events over
China, as well as project their future changes. In the present
paper, the performances of CMIP3 models are also refer-
enced and discussed, giving us greater confidence in terms
of the future projections of extreme climate change based on
CMIP5 outputs.

The remainder of the paper is organized as follows. First,
the observations, CMIP5 model datasets, extreme indices,
and methods used in the study are described in section 2. In
section 3, model performances are validated by comparing
CMIP5 outputs with observations. Mean climate, temporal
evolution, and spatial distribution of six extreme indices are
considered in this study. CMIP5 results for 2006–99 are em-
ployed to project the changes in extreme climate under future
scenarios. Finally, a summary and discussion of the key find-
ings are given in section 4.

2. Datasets, extreme indices, and methodology

2.1. Datasets

The observations used to validate the simulation results
are 0.5◦ × 0.5◦ gridded daily maximum temperature (TX),

minimum temperature (TN), and precipitation (PRCT) over
China (Xie et al., 2007; Xu et al., 2009). The dataset covers
the period 1961–2005.

The coupled climate model outputs are taken from the
CMIP5 multi-model data archive (http://cmip-pcmdi.llnl.
gov/cmip5/index.html). In the study, the main focus is on
the 20th century historical experiments, and the projection
experiments under the RCP2.6, RCP4.5 and RCP8.5 scenar-
ios. In total, the outputs of 12 models are employed. As we
know, greenhouse gas emissions are the main cause of current
global warming. In order to better understand global change,
especially with respect to extreme climate, the changes in car-
bon dioxide (CO2) and sulfate aerosol (SO4) concentrations
in the past and future (under different RCPs) are presented in
Fig. 1. The data show a clear increase in the CO2 concen-
tration both in the past and in the future; while the historical
SO4 concentration in China shows an increasing trend, and a
future peak appears at around 2020–40, before decreasing to
the level of the mid-20th century by the year 2100. Table 1
provides detailed descriptions of the models examined in this
study. In order to facilitate the comparison of model results
with observations, the bilinear interpolation method is used
to re-grid the model outputs to 0.5◦

×0.5◦ grids, i.e. to bring
them in line with observations.

2.2. Extreme indices

The World Meteorological Organization (WMO) pro-
vides more than 30 extreme indices (Karl et al., 1999), and
considers China to be easily influenced by extreme events re-
lated to minimum/maximum temperature and heavy rain. For

Table 1. Model descriptions.

Resolution
Model Model Expansions Institution (lat×lon) References

BCC-CSM Beijing Climate Center Climate System
Model

Beijing Climate Center 2.8◦×2.8◦ Wu et al. (2010)

BNU-ESM Beijing Normal University Earth Sys-
tem Model

Beijing Normal University 2.8◦×2.8◦ Wu et al. (2013)

CanCM4 Canadian Centre for Climate Model-
ing and Analysis Coupled Climate
Model Version 4

Canadian Centre for Climate Model-
ing and Analysis

2.8◦×2.8◦ Flato et al. (2000)

CanESM2 Version 2 of Canadian Earth System
Model

Canadian Centre for Climate Model-
ing and Analysis

2.8◦×2.8◦ Gillett et al. (2012)

CCSM4 Version 4 of Community Climate Sys-
tem Model

National Center for Atmospheric
Research

0.9◦×1.25◦ Gent et al. (2011)

CNRM-CM5 Institute Pierre Simon Laplace Climate
Model Version 5

Centre National de Recherches Me-
teorologiques

1.4◦×1.4◦ Voldoire et al. (2011)

GFDL-ESM2M Geophysical Fluid Dynamics Labora-
tory Earth System Model

Geophysical Fluid Dynamics Labo-
ratory

2.0◦×2.5◦ Dunne et al. (2012)

GISS-E2-R Goddard Institute for Space Studies
Model E with Russell Ocean Model

Goddard Institute for Space Studies 2.0◦×2.5◦ Hansen et al. (1983)

HadCM3 Hadley Center Model Version 3 Hadley Centre for Climate Research 3.8◦×2.5◦ Collins et al. (2001)
IPSL-CM5A Institute Pierre Simon Laplace Climate

Model Version 5
Institut Pierre Simon Laplace 1.9◦×3.8◦ Marti et al. (2010)

MIROC-ESM Japan Agency for Marine-Earth Science
and Technology Earth System Model

Japan Agency for Marine-Earth Sci-
ence and Technology

2.8◦×2.8◦ Watanabe et al. (2011)

MRI-CGCM3 Meteorological Research Institute Cou-
pled General Circulation Model ver-
sion 3

Meteorological Research Institute 1.1◦×1.1◦ Yukimoto and Noda (2002)
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Fig. 1. Historical and future (under RCP scenarios) changes of
CO2 and SO4 concentrations over China.

example, heat waves can occur in summer, often resulting in
heat stroke or, in the worst-case scenario, death; while frost
can cause significant losses and disruption for agriculture and
transport, and heavy rain can cause floods. For this paper, we
selected four representative extreme temperature indices and
two representative extreme precipitation indices defined by
the WMO. Details regarding these extreme indices are given
in Table 2.

The six extreme indices consist of three defined by ab-
solute threshold (FD, SU and R20), and three defined by
percentage threshold (TN10P, TX90P and P95T), which to-
gether reflect the different perspectives of extreme climate
events. The chosen indices have been widely investigated
in the past through both observational and model simulation
studies, which provide useful information on understanding
whether the CMIP5 models have improved in terms of their
simulate and project skill.

2.3. Methodology

The methods used to calculate the extreme indices de-
fined by the percentage threshold are as follows. For the
TN10P and TX90P indexes: sort the daily data on the same
day of all years from the baseline period (1961–90) into as-
cending order; determine the percentile value; then calculate
the number of days of each year whose value is greater (for
TX90P) or smaller (for TN10P) than the corresponding per-
centile value. For the P95T index: sort the precipitation on
wet days (> 1.0 mm) into ascending order in the same year;

determine the 95% percentile value; then obtain the average
95% percentile value in the baseline period (1961–90); and
finally, calculate the contribution of annual total precipitation
that exceeds the average 95% percentile value.

The multi-model ensemble (MME) mean is calculated us-
ing the arithmetic mean, i.e., each model has the same weight.
The model relative error (E) is expressed as:

Ei, j =

Mi, j −O j

O j
×100%,

whereEi, j represents the relative error of theith model for
the jth index;Mi, j represents theith model result forjth in-
dex; andO j represents the observedjth index.

Non-parametric Mann-Kendal (MK) statistics (Mann,
1945; Kendall, 1948) were used to test linear trends.

3. Results

3.1. Mean values

Figure 2 shows the results of model simulations versus
observations for the regional and yearly averages of the six
extreme indices over the whole of China during 1961–2005.
As can be seen, the ability to simulate the indices differs
among the various models. In general, the characteristics of
the FD index are best represented by the models. Compared
to observations, theE of the FD and TX90P indexes for a
single model are in the range−7.6%–13.9% and−5%–5%,
respectively. However, they are only 1.7% and−1.0% for the
MME, which reflects the superiority of using the MME com-
pared to any single model. All the models underestimate the
SU index (Fig. 2b) but overestimate the TN10P index (Fig.
2c), and the correspondingE of the MME reach−28.8% and
12.9%, respectively. This result indicates that the majority
of the models underestimate both the absolute extreme max-
imum temperature and the threshold extreme minimum tem-
perature. Most of the models also underestimate the precipi-
tation index, R20 (Fig. 2e), which is consistent with CMIP3
results (Jiang et al., 2009). Despite the fact that most models
produce lower R20 index, theirE are very small. TheE for
the MME of R20 is only−3.8%, indicating that the disparity
is not too great, although the frequency of extreme precipita-
tion is underestimated. The E of the P95T index for a single
model is in the range−12.7%–11%, but for the MME it is
only 0.3%.

The magnitude of the absolute value of E is used as an
indication of a model’s performance relative to other models.

Table 2. Extreme index definitions.

Index name Definition Units

Frost days (FD) Total number of days when TN< 0◦C d
Summer days (SU) Total number of days when TX> 25◦C d
Low-temperature threshold days (TN10P) Percentage of days when TN< 10th percentile d
High-temperature threshold days (TX90P) Percentage of days when TX> 90th percentile d
Heavy precipitation days (R20) Total number of days when PRCT> 20 mm d
Heavy precipitation contribution (P95T) The contribution of annual total precipitation when PRCT> 95th percentile %
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Fig. 2. Observed and modeled multi-year average for each index (dashed line: observation).
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Fig. 3. Model simulation skill denoted by relative error order for each index.

Figure 3 shows the skill of the models in simulating the six
extreme climate indices. Their skill levels are ordered from
1 to 13 for each index. For each model, the lower the or-
der number, the higher its simulation skill. From Fig. 3 it
can be seen that CanESM2 performs best, with five indices
(all apart from P95T) ranking in the top six among the 12
models. Five indices (again, all apart from P95T) of CCSM4
also rank in the top six, while four indices (all apart from FD
and TN10P) of MIROC-ESM rank in the top six. MIROC-
ESM has the best ability to simulate the extreme precipita-
tion index. Overall, it appears that CCSM4, CanESM2 and
MIROC-ESM have the highest capabilities in reproducing the

mean index values. Figure 3 also indicates that the MME im-
proves the skill to some extent, but it definitely relies on the
capability of each single model.

3.2. Temporal evolution

To compare the temporal evolution of modeled and ob-
served indices, linear trends are calculated using the least-
squares method and trend significance is assessed using the
MK test at the 5% level. In addition, the time series for each
of the six indices are presented to evaluate and compare the
models’ abilities in reproducing the temporal evolution. The
linear trends and associated significance are given in Table 3.
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Table 3. Observed and simulated decadal trend for each index [units: (10 yr)−1]. Bold type indicates the trend is significant at the 5% level;
values in parentheses are the standard deviation of the models for each index.

Index

Model FD SU TN10P TX90P R20 P95T

BCC-CSM −2.0 1.3 1.3 3.2 −0.04 0.22
BNU-ESM −2.6 2.5 −3.4 4.5 −0.10 0.62
CanCM4 −2.1 2.0 −1.4 3.7 0.13 0.29
CanESM2 −3.0 2.7 −3.1 4.4 0.09 0.23
CCSM4 −2.3 2.0 −2.6 4.8 −0.03 0.22
CNRM-CM5 −1.3 0.6 0.4 2.4 0.20 0.67
GFDL-ESM2M −2.3 2.7 −0.3 4.8 0.01 0.44
GISS-E2-R −1.5 0.6 −0.5 3.2 −0.04 0.17
HadCM3 −1.7 1.5 −0.1 2.7 −0.05 0.32
IPSL-CM5A −2.8 2.6 −4.0 7.2 0.07 0.35
MIROC-ESM −1.1 −0.2 1.5 3.2 0.22 0.28
MRI-CGCM3 −1.5 0.6 1.5 4.5 −0.07 0.09
MME −2.0 (0.6) 1.6 (1.0) −1.1 (1.9) 4.1 (1.3) 0.04 (0.1) 0.33 (0.2)
OBS −3.1 1.8 −2.8 2.4 0.01 0.33

It is clear that the observed FD and TN10P show signifi-
cant decreasing trends, while the SU and TX90P index have
increasing trends. However, little change is found for R20
and P95T. Furthermore, these regional trend characteristics
are similar to those found at the global scale (Alexander et
al., 2006; Sillmann et al., 2013a). The models can basically
reproduce the time evolution of the extreme indices, espe-
cially for FD, SU, TN10P and TX90P (Fig. 4). A signifi-
cant decreasing trend of the FD index is found in all model
results, but the magnitude is less than that in the observa-
tion [−3.1 d (10 yr)−1]. The FD trend across the models’
results falls in the range−3.0 to −1.1 d (10 yr)−1, while
that of the MME is−2.0 d (10 yr)−1. Apart from MIROC-
ESM, the other 11 models are able to reproduce the trend
of the SU index in the same direction as the observed trend.
These simulated trends, as well as the MME trend, are sta-

tistically significant, except for those of CNRM-CM5, GISS-
E2-R and MRI-CGCM3. The SU trend in the observation
and MME result is 1.6 and 1.8 d (10 yr)−1, respectively.
Apart from CNRM-CM5, MIROC-ESM and MRI-CGCM3,
the other nine models agree with the observed decreasing
trend of the TN10P index. The simulated decreasing trend
of TN10P is statistically significant for most of the models.
The TN10P trend in the observation and MME result is−1.1
and−2.8 d (10 yr)−1, respectively. All the models are able
to reproduce the significant increasing trend of TX90P, but
overestimate the trend magnitude. The TX90P trend in the
observation is 2.4 d (10 yr)−1, while that of the MME is 4.1
d (10 yr)−1.

The observed trends of the extreme precipitation indices
are very small, and they are not statistically significant,
especially for R20. CanCM3, CNRM-CM5 and MIROC-

Fig. 4. Observed and modeled time series of each extreme index.
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ESM overestimate the linear trend of R20, while BNU-ESM,
CCSM4, HadCM3 and MRI-CGCM3 models give an oppo-
site trend. The models are in agreement with the observation
for the P95T trend.

Therefore, the models are able to simulate extreme tem-
perature indices better than extreme precipitation indices. In
addition, most of the models are generally able to reproduce
the temporal evolution and linear trend within a reasonable
range.

3.3. Spatial distribution

The spatial correlation between observed and modeled
extreme indices is calculated to quantify their similarity. Be-
fore calculating the correlation, the temporal average from
1961 to 2005 is first obtained for the six extreme indices. Fig-
ure 5 shows that there are great differences in spatial corre-
lation among the different indices. Overall, the top three in-
dices with high correlation coefficients are FD, SU, and P95T.
Their correlation exceeds 0.85, 0.6 and 0.5, respectively. Cor-
relations of the TN10P and TX90P indexes are lower, and
large dispersion exists among the different models. The re-
sults are not statistically significant for most models, and the
correlations of many of the models are even negative.

The spatial distribution of climatic extreme change can
be reflected by comparing the observed and modeled spatial
disparity between the last two decades (1986–2005) and the
first two decades (1961–80) of the historical period. Fig-
ure 6 indicates an observed decrease of the FD index in
most regions of China, especially the northeast. Apart from
CanCM4, MIROC-ESM and CNRM-CM5, the models are
able to capture this characteristic, but with smaller change
amplitude. The shortcoming of the models is that the ma-
jority of them (except BNU-ESM, CanCM4 and CanESM2)
show an increase in southern China, which did not happen
according to observations. The observed SU index changes
show a smaller spatial difference, and with amplitude in the

range 0–6 days. The BCC-CSM, CCSM4, GFDL-ESM2M,
HadCM3 and MRI-CGCM3 models, as well as the MME,
show good performance, while BNU-ESM, CanESM2 and
IPSL-CM5A overestimate the changes in Northeast China
(not shown). The observed TN10P and TX90P share the
same regional variation characteristics in that the changes
in North China are much larger than those in South China,
and CanESM2 and GFDL-ESM2M show good performance
in reproducing this phenomenon. The BNU-ESM, CNRM-
CM5, GFDL-ESM2M, GISS-E2-R, HadCM3 and MIROC-
ESM models magnify the amplitude of increase for the
TN10P index across the whole of China (not shown).

There are few and uniform changes across the whole of
China for the observed R20 index, but the models reflect a
larger spatial difference (Fig. 7). For example, the CNRM-
CM5, GFDL-ESM2M and HadCM3 models overestimate the
amplitude of decrease in the R20 index over Northeast China
and South China (Fig. 7). Furthermore, most of the model
results show significant regional variation for the P95T in-
dex (e.g. GFDL-ESM2M and CanCM4 show visible varia-
tion centered in Northeast China), which does not reflect the
observational results (not shown).

Therefore, it is relatively easy for the models to capture
the temporal average value for the FD and TX90P indexes,
and the MME is able to reduce the uncertainty, especially for
indices related to precipitation. The models are able to not
only reproduce the linear trend in the same direction as the
observation for the FD, SU, TN10P and TX90P indices, but
can also reflect the spatial distribution well for the FD, SU
and P95T indices. The model results regarding the spatial
difference between the first and last two decades of the his-
torical period (1986–2005 and 1961–80) are different among
the models for various indices. For the FD and SU indexes,
most of the models’ results (all apart from MIROC-ESM) are
consistent with the observed pattern. CanESM2 and GFDL-
ESM2M show a comparative advantage in reproducing the

Fig. 5. Spatial correlation coefficients between observed and modeled indices (solid black line: crit-
ical value with 0.05 significance levels).
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Fig. 6. Spatial distribution of the observed and modeled FD index change (averaged during 1986–2005 relative to 1961–80).

TN10P and TX90P spatial difference between the two pe-
riods. Generally speaking, each model has its own advan-
tages and disadvantages, and there is no perfect model for
reproducing all the six extreme indices. However, relatively
speaking, the CCSM4 and CanESM2 models perform best
according to this study.

3.4. Future projection

The future projection datasets for CanCM4 and HadCM3
only cover the period 2006–35. Furthermore, GISS-E2-R
provides data for RCP4.5 only. Considering these data limi-
tations, we use the other nine models (i.e. BCC-CSM, BNU-
ESM, CCSM4, CanESM2, GFDL-ESM2M, IPSL-CM5A,
CNRM-CM5, MIROC-ESM and MRI-CGCM3) to project
future changes of extreme climate. Figure 8 shows the
changes in extreme climate indices of the MME from 2006
to 2099 under RCP2.6, RCP4.5 and RCP8.5.

The extreme indexes based on minimum temperature (FD
and TN10P) show a decrease, while the indexes based on

maximum temperature (SU and TX90P), and precipitation
(R20 and P95T), show an increase in the future, all of which
are consistent with projections at the global scale (Sillmann
et al., 2013b). Obviously, the trend of TX90P is the largest.
Figure 8 also reveals that future trends of the extreme in-
dices range widely under different RCPs. Obviously, under
the high emissions scenario of RCP8.5, linear trends are the
largest. The trend difference between RCP4.5 and RCP2.6 is
relatively small.

The changes in FD, SU, TN10P, TX90P, R20 and P95T
based on the MME under the low emissions scenario of
RCP2.6 are−4.6, 5.1,−5.7, 17.5 and 0.6 d (100 yr)−1,
and 1.4% (100 yr)−1, respectively. Meanwhile, those under
RCP8.5 are−46.9, 46.0,−27.1, 175.4, and 2.9 d (100 yr)−1,
and 9.9% (100 yr)−1, respectively (Table 4). For FD and
TX90P, the changes under RCP8.5 are almost ten times those
under RCP2.6, indicating that the risk of extreme climate in-
creases markedly under a high emissions scenario. Under
RCP8.5, the models produce changes of FD, SU, TN10P,
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Fig. 7. The same as Fig. 6, but for R20 index.

Table 4. Linear trends of the extreme indices during 2006–99 under RCP8.5 [units: (100 yr)−1]. Values in parentheses are the standard
deviation of the models for each index.

Index

Model FD SU TN10P TX90P R20 P95T

BCC-CSM −45.5 45.5 −28.8 155.5 2.2 9.2
BNU-ESM −49.0 54.0 −26.4 198.1 3.5 8.8
CanESM2 −56.7 50.2 −22.5 215.1 3.9 10.3
CCSM4 −42.1 42.9 −27.1 178.7 2.2 7.6
CNRM-CM5 −40.9 33.1 −14.7 149.0 1.0 5.8
GFDL-ESM2M −36.0 37.6 −30.4 129.6 1.9 9.0
IPSL-CM5A −57.7 61.0 −26.0 266.7 1.1 9.4
MIROC-ESM −61.4 62.2 −23.4 278.7 2.3 9.4
MRI CGCM3 −43.2 33.2 −38.4 158.6 1.4 8.7
MME −48.0 (8.7) 45.7 (11.0) −25.0 (6.3) 192.2 (59.4) 1.8 (1.0) 8.7 (1.3)

TX90P, R20 and P95T in the ranges of−56.7 to−36.0, 37.6–
54.2,−30.4 to−22.5, 129.6–215.1, and 1.9–3.9 d (100 yr)−1,
and 9.2%–11.2% (100 yr)−1, respectively. It can be seen that
the degree of dispersion among the models in terms of their

prediction of extreme indices in the future is not large.
Next, we use the spatial disparity between the periods

2080–99 and 1961–80 to represent the spatial changes un-
der each scenario of each index. The results show a decrease
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Fig. 8. Projected (2006–99) annual time series of each index based on the MME under RCP2.6, RCP4.5, and RCP8.5.

Fig. 9. Relative spatial changes of FD index under RCP8.5 (averaged for 2080–99 relative to 1961–80).

in the FD index across China under the three RCPs and, de-
spite the magnitude of decrease in certain regions showing
large differences among the models, the pattern is similar,
with smaller changes in the northeast and south and larger
changes in the center of China. These characteristics are
particularly evident under the RCP8.5 scenario (see Fig. 9).

Smaller changes in the SU index are found in Northeast China
for most of the models (all apart from CanESM2 and IPSL-
CM5A) under the three RCPs; and, apart from BNU-ESM
and IPSL-CM5A, the models show smaller changes in the
north of Xinjiang (not shown). For the TN10P and TX90P
indexes, patterns among the models show larger differences.
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Fig. 10. The same as Fig. 9, but for R20 index.

For example, for TX90P, IPSL-CM5A and MIROC-ESM
show a larger amplitude of increase compared to the other
models under the three RCPs, with the northeast and cen-
ter of China having a more significant increase (not shown).
The change in R20 index is small and does not show a large
spatial difference, although the amplitude in the area of the
Bohai Sea is projected to grow as CO2 emissions grow (see
Fig. 10). The majority of the models reflect the pattern of
a small amplitude of increase for P95T index in the north of
Northeast China and in South China, and the changes in the
area of the Bohai Sea are similar to those of the R20 index
(not shown).

4. Summary and discussion

Extreme climate events have a serious impact on hu-
man society, the economy, and ecosystems. Thus, to be
able to cope with climate change is of great concern. Based
on CMIP5 results and observations, the spatial mean and
changes in historical extreme climate over China have been
analyzed in this paper, and then the projection of extreme
temperature and precipitation indices under future RCP sce-
narios have also been investigated.

The results show that the global coupled models have a
certain ability to reproduce the mean extreme indices, though
the performance differs among the models and various in-

dices. Most of the models perform well in simulating the
mean value of FD and TX90P, R20 and P95T. However,
the models’ skills in reproducing the mean value of SU and
TN10P need to be improved. The coupled models are also
able to simulate the temporal evolution reasonably. Under the
background of global warming, the trends of the extreme in-
dices in the China region are consistent with that at the global
scale; the model results reflect the decreasing trend of FD
and TN10P and the increasing trend of SU and TX90P, but
underestimate the magnitude of the FD trend while overesti-
mating that of TX90P. Most of the models are able to gener-
ate trends of the same sign as in the observation for R20 and
P95T, and have high spatial pattern correlation coefficients
with observations; among all the indices in this study, FD,
SU and P95T rank as the top three. To a certain extent, the
models are able to provide the spatial difference between two
mean states (1986–2006 and 1961–80) for the six indices. In
particular, the models reproduce the spatial changes of the
FD and SU indexes well, but most of the models need to im-
prove their ability to reproduce the TN10P and TX90P spatial
change patterns. The models are unable to reflect the uniform
spatial change pattern for the R20 and P95T indexes.

In terms of future projection (2006–99), the FD and
TN10P indexes show a decrease under RCP2.6, RCP4.5 and
RCP8.5, while the SU, TX90P, R20 and P95T indices show
an increase. Under the high emissions scenario of RCP8.5,
the changes over the coming century based on the MME for
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FD, SU, TN10P, TX90P, R20 and P95T are−46.9, 46.0,
−27.1, 175.4, and 2.9 days, and 9.9%, respectively. The fu-
ture spatial variation of the amplitude for each index is con-
sistent with the emissions intensity. These results provide
us with a useful and clear picture of future changes in cli-
matic extremes over China, and to deal with the expected in-
creases in extreme climate events, reductions of greenhouse
gas emissions are crucial.

Compared to CMIP3 results (Jiang et al., 2012), the
model skill in reflecting the mean FD and P95T value has
been improved. Such improvements are reflected in theE
for FD and P95T, which are much smaller in CMIP5 than in
CMIP3. The future trend sign for FD and P95T is consis-
tent with CMIP3 results. The linear trend magnitude under
RCP2.6 is smaller than that of the B1 (lower emissions) sce-
nario in CMIP3 results, but the linear trend magnitude under
RCP8.5 is larger than that of the A2 (higher emissions) sce-
nario.

Despite extreme climate events being shorter in duration
and smaller in terms of their spatial scale, it is clear that
global coupled climate models are able to basically capture
their statistical characteristics. However, even though the his-
torical and future model experiments are run under the stan-
dard framework supplied by CMIP5, large differences among
the model results are still apparent, possibly as a result of in-
dividual features of the models themselves. For instance, the
complexities of dynamic frameworks and physical process
parameterizations of models; the different simulated climate
sensitivities to climate forcings, such as changes in CO2 or
aerosol concentrations; or even the different ocean heat up-
take efficiencies in the models. Therefore, great uncertainty
still exists with respect to projecting extreme climate events
in the future. However, by improving the parameterizations
of physical processes in models, or working towards perform-
ing dynamic downscaling with more confidence, or by carry-
ing out further ensemble simulations, we have the potential
to reduce this uncertainty and improve the future projection
of extreme climate events.
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