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ABSTRACT

This study seeks to quantify the predictability of different forecast variables at various scales through spectral analysis of
the difference between perturbed and unperturbed cloud-permitting simulations of idealized moist baroclinic waves amplify-
ing in a conditionally unstable atmosphere. The error growth of a forecast variable is found to be strongly associated with its
reference-state (unperturbed) power spectrum and slope, which differ significantly from variable to variable. The shallower
the reference state spectrum, the more spectral energy resides at smaller scales, and thus the less predictable the variable since
the error grows faster at smaller scales before it saturates. In general, the variables with more small-scale components (such
as vertical velocity) are less predictable, and vice versa (such as pressure). In higher-resolution simulations in which more
rigorous small-scale instabilities become better resolved, the error grows faster at smaller scales and spreads to larger scales
more quickly before the error saturates at those small scales during the first few hours of the forecast. Based on the reference
power spectrum, an index on the degree of lack (or loss) of predictability (LPI) is further defined to quantify the predictive
time scale of each forecast variable. Future studies are needed to investigate the scale- and variable-dependent predictability
under different background reference flows, including real case studies through ensemble experiments.
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1. Introduction

Since the pioneering work on predictability by Lorenz
(1969) based on a low-order baroclinic model, a series of
large-scale predictability studies have been performed with
models that have varying degrees of complexity (e.g., Leith,
1965; Charney et al., 1966; Smagorinsky, 1969; Shukla,
1981; Lorenz, 1982). Based on some of these studies and the
theory of homogeneous turbulence, Tennekes (1978) drew
pessimistic conclusions concerning mesoscale predictability.
On the other hand, Anthes et al. (1985) found little forecast
divergence from simulations using different initial conditions
in a limited-area mesoscale model, which implied potentially
extended predictability, but their results were subsequently
found to arise from the perfectly known lateral boundary con-
ditions they employed (Errico and Baumhefner, 1987; Vu-
kicevic and Errico, 1990), or from the poor resolution of the
smaller scale instabilities (Zhang et al., 2002; Zhang and Sny-
der, 2003).

Analysis of observations indicates that the atmospheric
kinetic energy spectrum follows a−3 power law at synoptic

∗ Corresponding author: BEI Naifang
Email: bei.naifang@mail.xjtu.edu.cn

scales with a transition to a−5/3 power law within the
mesoscale (Nastrom and Gage, 1985; Cho et al., 1999).
Global and mesoscale model runs with high resolution
have produced the spectra with a similar transition in slope
(Koshyk and Hamilton, 2001; Skamarock, 2004; Zhang et al.,
2006; Skamarock and Klemp, 2008; Hamilton et al., 2008).
Spectra with a similar transition from−3 to −5/3 have
also been found using high-resolution quasigeostrophic (QG)
models (Tung and Orlando, 2003; Tulloch and Smith, 2006;
2009) and nonhydrostatic Boussinesq models (Bartello,
2010; Kitamura and Matsuda, 2010). An enstrophy down-
scale cascade from synoptic scales based on QG turbulence
suggested by Charney (1971) has been widely accepted as
the formation mechanism of the energy spectrum with−3
slope. The explanation of the mesoscale spectrum is more
complicated and controversial. Past interpretations for the
mesoscale spectrum can be divided into three categories: (1)
an inverse cascade of energy from the small scales (Gage,
1979; Lilly, 1983; Vallis et al., 1997); (2) a forward cascade
of nonlinearly interacting gravity waves (e.g., Dewan, 1979;
VanZandt, 1982; Yuan and Hamilton, 1994); (3) a direct cas-
cade of energy from the large scales (e.g., Koshyk and Hamil-
ton, 2001; Lindborg and Cho, 2001; Tung and Orlando, 2003;
Lindborg, 2006). Recently, Waite and Snyder (2013) found
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that the inclusion of moisture has a significant effect on the
mesoscale kinetic energy spectra of baroclinic waves, which
is also found in global model simulations (Hamilton et al.,
2008).

Faster error growth, especially at smaller scales in the
presence of parameterized moist convection, was first found
by Ehrendorfer et al. (1999). Zhang et al. (2002) and Zhang
and Snyder (2003) further explained the possible influence of
small-amplitude and small-scale initial errors on mesoscale
predictability of the “surprise” snowstorm of 24–25 January
2000. Tan et al. (2004) generalized the above-mentioned re-
sults through examining the error growth in idealized baro-
clinic waves amplifying in a conditionally unstable atmo-
sphere. They additionally demonstrated that there is little
error growth in the short-term forecasts without the effects
of moisture. The impacts of moist convection on the limit
of mesoscale predictability demonstrated in these studies are
consistent with what was foreseen in Lorenz (1969). In addi-
tion, Zhang et al. (2007) (hereafter, “Z07”) proposed a multi-
stage error growth conceptual model through exploring the
mesoscale error growth dynamics in idealized moist baro-
clinic waves with the model grid spacing down to 3.3 km.
Bei and Zhang (2007) studied the impacts of initial error
scale and amplitude on the mesoscale predictability of heavy
precipitation along the Mei-Yu front of China. They found
that larger-scale, larger-amplitude initial uncertainties gener-
ally led to larger forecast divergence than did uncertainties of
smaller scales and smaller amplitudes.

Hohenegger and Schär (2007) found much faster error
growth rates and much shorter error-doubling time in cloud-
resolving scales than those in synoptic scales. Rotunno and
Snyder (2008) generalized the Lorenz model (Lorenz, 1969)
and applied it to both the two-dimensional vorticity equation
(2DV, with a−3 spectrum) and the surface quasigeostrophic
equation (SQG, with a−5/3 spectrum) to produce examples
of flows with unlimited and limited predictability. Morss et
al. (2009) explored the link between spectral slopes and pre-
dictability behavior in a multilevel quasigeostrophic model
with three different model resolutions and mentioned that
the error growth rate varies with model resolution and model
forecast time.

Although a number of studies on the spatial scale and
model-resolution-dependent predictabilities have been con-
ducted as we mentioned above, few studies have comprehen-
sively investigated the predictability of different model fore-
cast variables at different scales using different model resolu-
tions. As an extension of Z07 and complementary to Morss
et al. (2009), this study seeks to quantify the predictability of
different forecast variables at different scales through explicit
simulations of idealized moist baroclinic waves amplifying
in a conditionally unstable atmosphere with different model
resolutions. An index named LPI [an index on the degree
of lack (or loss) of predictability] is defined to quantify the
predictability of forecast variables, and its physical meaning
is further examined through a two-dimensional (2D) spectral
decomposition. The experimental design is introduced in sec-
tion 2. The model effective resolution of the reference fore-

casts is discussed in section 3. The resolution and variable-
dependent error growth and predictability are discussed in
section 4. The scale and variable-dependent error growth and
predictability are included in section 5. Further interpreta-
tions of LPI in physical space are given in section 6. The
conclusions are summarized in section 7.

2. Experimental design

In this study, the fifth-generation Pennsylvania State
University–National Center for Atmospheric Research
Mesoscale Model (MM5) version 2 is used to simulate the
idealized moist baroclinic waves with model grid spacings of
90, 30, 10 and 3.3 km (Fig. 1). The model employs Carte-
sian coordinates and a constant Coriolis parameter. As in
Z07, we design the 90-km domain (D1) in a channel with a
length of 18 000 km in the east–west direction and a width
of 8010 km in the north–south direction. The 30-km domain
(D2) is centered at (9720 km, 3960 km) inside D1, with a
length of 8400 km in the east–west direction and a width of
4800 km in the north–south direction. The 10-km domain
(D3) is a sub-domain with a length of 5800 km and width of
2800 km inside D2, while the 3.3-km domain (D4) is 1933
km long and 1333 km wide inside D3. The physical pro-
cess parameterization schemes used in all domains include
the Medium-Range Forecast (MRF) scheme (Hong and Pan,
1996) for PBL processes and the simple ice microphysics
scheme (Dudhia, 1993). The cumulus parameterization of
Grell (1993) is used only in domains D1 and D2. The initial
conditions used in this study are the same as used in Z07
and Tan et al. (2004), in which a three-dimensional “bal-
anced” perturbation (Rotunno and Bao, 1996, p. 1057) was
added at the tropopause level of a two-dimensional baroclin-
ically unstable jet with plentiful moisture. For the control
experiment (CNTL), the model is integrated on D1 for 72
h using the above-mentioned initial conditions with fixed
lateral boundary conditions (named as CNTL-D1 hereafter).
We conduct three other experiments, including experiment
CNTL-D2 with the nested domains of D1 and D2, experiment
CNTL-D3 with the nested domains D2 and D3 initialized at

Fig. 1. The MM5 domains (D1, D2, D3 and D4). Also shown
are the D1 simulated surface potential temperature (thin line,
∆ = 6 K) and sea level pressure (thick line,∆ = 8 hPa) valid at
36 h of the coarsest grid (D1) forecast, which are used as the
initial conditions for the nested domains. The distance between
small tick marks is 90 km.
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36 h of the CNTL-D1 forecast, and experiment CNTL-D4
with the three nested domains D2, D3, and D4. In CNTL-
D4, two-way nesting is applied between domains D2 and D3
as well as between domains D3 and D4. The integration time
of domains D2 and D3 are 36 hours, while that of domain
D4 is 12 hours. In the perturbed runs, “grid-point (grid by
grid data set)”, random, Gaussian noises with zero mean and
a standard deviation of 0.2 K are added to the temperature
field at the initial time of domain D2 (T0 = 36 h, referred
to as CNTL-D2P). The initial perturbation used in domain
D2 is interpolated onto domains D3 and D4 (referred to as
CNTL-D3P, CNTL-D4P). For a more detailed description of
the model setups and relevant idealized moist baroclinic wave
simulations, refer to Z07.

Z07 performed an in-depth study on the error growth pro-
cesses of the idealized moist baroclinic waves amplifying in
a conditionally unstable atmosphere. They proposed a mul-
tistage error growth conceptual model, which included con-
vective instability and saturation (0–6 h), transition and ad-
justment (3–18 h) and linear baroclinic growth (beyond 12
h). For these three stages, Fig. 2 shows the 500-hPa merid-
ional wind (v) differences (between perturbed and unper-
turbed runs) at 3, 12, and 36 h along with the CNTL-D3 sim-
ulated 500-hPa height. It exemplifies rapid error growth in
magnitude and spatial coverage between perturbed and un-
perturbed runs from 3 to 36 h.

Complementary to Z07, the current study seeks to quan-
tify error growth of individual forecast variables. The two-
dimensional spectral analysis obtained by conventional dis-
crete Fourier transforms is used in this study. More specifi-
cally, for both reference and difference spectra calculations,
the transforms are first performed in both directions (zonal
and meridional) to obtain the 2D spectral coefficients with
respect to the wavenumbers of both directions (k, l) for each
variable at every model level (the decomposition domain is
assumed to be doubly periodic after linear detrending). The
2D spectra are then converted to a 1D spectra through bin-
ning the sum of the power spectral coefficients that has the
same global wavenumber(

√
k2 + l2). The spectra decompo-

sition is conducted on every grid for each variable and then
added together. The final power spectra analyzed here are av-
eraged vertically over the model vertical levels. To quantify
the error growth, we further define an index on the degree of
LPI as the ratio of the difference or forecast error (between
perturbed and unperturbed) spectral power to the reference
(unperturbed) spectral power at a given scale or a range of
scales. The time by which the LPI reaches 100% defines the
predictable time scale—the threshold at which the forecast
of this variable at a given scale no longer has predictive skill
when the difference error energy (noise) is equal to or out-
weighs the basic-state energy (signal) to be predicted. This
definition is consistent with Warner et al. (1983), who argued
that “given a perfectly predictable large scale atmospheric
structure, a measure of mesoscale predictability is the time
required for a specified error in the mesoscale structure of
one or more variables to cause the prediction of a specific
quantity to be sufficiently in error so that it has essentially

Fig. 2. The 500-hPa meridional wind difference (thin lines;
∆ = 2 m s−1; positive, red; negative, blue) between 10-km per-
turbed and unperturbed runs valid at (a) 3 h, (b) 12 h, and (c) 36
h of the nested-domain simulations plotted on a subdomain of
D2.

zero utility”. For a pure sinusoidal wave without amplitude
error, a 100% LPI amounts to a shift of the phase by 1/6 of
the wavelength, or a correlation coefficient between the ref-
erence and perturbed waves of 50%. The level of correlation
between the unperturbed and the perturbed fields is also often
used for predictability measures (e.g., Islam et al., 1993).
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3. Base-state power spectra and model effec-
tive resolution of the reference forecasts

Using the spectral analysis method described in section 2,
we first calculate the 2D power spectra of forecast variables
of the control run with different model grid spacings (30, 10
and 3.3 km) in domain D4.

Figure 3 shows the reference spectra of the selected fore-
cast variables at various model grid spacings and the corre-
sponding spectral slope (green solid line, obtained through
linear fitting) between 20 and 200 km wavelengths in the 3.3-
km control run. With the finer model grid spacing, the spec-
tra have a better-defined power-law regime for all variables.
The reference spectra at different grid spacings match well
at larger scales but differ at smaller scales for different vari-
ables. Skamarock (2004) first proposed the concept of the ef-
fective resolution of a model, in which they defined the effec-
tive resolution of a model as the wavelength where a model’s
spectrum begins to decay relative to the observed spectrum
or relative to a spectrum from a higher-resolution simulation
(which should resolve higher wavenumbers before numerical
dissipation leads to decay). It is the smallest scale that the
model can resolve with the present grid spacing. Figure 3
shows that the effective resolution of MM5 is around seven
times the model grid spacing, consistent with the results using
the Weather Research and Forecasting (WRF) model by Ska-
marock (2004). For example, in Fig. 3a, the minimum scale
at which the spectral power of the 30-km (10-km) grid spac-
ing forecast agrees with that from the 10-km (3.3-km) grid
spacing run is around 210 km (70 km). Clearly, the spectrum
of the reference state varies significantly with forecast vari-
ables and resolutions. Among the forecast variables, pressure
has the steepest power-spectrum slope (−2.05), while verti-
cal velocity has the shallowest (and a positive) slope (0.67).
The spectral slope of zonal wind (u wind), temperature and
pressure (−1.91,−1.96 and−2.05, respectively) are steeper
than−5/3 [mesoscale behavior, e.g., Gage (1979), Nastrom
and Gage (1985), Cho et al. (1999)]. The spectral slope of
meridional wind (v), water vapor, hydrometeors (cloud) and
precipitation (rain) (−1.73,−1.65,−1.50 and−1.68, respec-
tively) are all close to−5/3. The reference spectrum of any
given forecast variable reveals the strength of the spectral
power of this variable at different scales (in terms of different
wavenumber or wavelength), though it may not be an energy
variable itself. The shallower the spectrum, the more energy
at the smaller scales, and thus the less predictability for any
given variable since the error grows faster at smaller scales
before it saturates. Error saturation to the reference power
usually signals a total loss of predictability at that scale. For
example, cloud water has a shallow spectrum because it is di-
rectly related to smaller scale energy (directly associated with
convective instability), thus it is less predictable.

In addition, the power spectra for the velocity variables
(u, v andw) exhibit shallowing at scales of around 100 km
(shown in Figs. 3a, b and e), which means that the slope is
larger at larger scales but the slope becomes less steep from
100 km to smaller scales. The spectral slope here is a few

times smaller than that at the transition scales of 400–500 km
found in Hamilton et al. (2008) and Skamarock and Klemp
(2008), but is consistent with a recent study of moist baro-
clinic waves (Waite and Snyder, 2013) and an observational
study using aircraft data (Lindborg, 2007). For the pecu-
liarity of the rain spectra (Fig. 3h), we speculate that such
overlapping is due to the fact that the rain variable used in
the present study is 1-h accumulated rainfall, which is a 2D
time-integrated variable that is very different from the other
3D variables with instantaneous output.

4. Resolution and variable-dependent error
growth and predictability

Section 3 showed that the power spectra of forecast vari-
ables of the control runs differ from each other and change
with model resolution. In this section, we examine the pre-
dictability of forecast variables and their sensitivity to the
model resolution.

As in Zhang et al. (2002), we use the difference total en-
ergy (DTE),

DTE=
1
2 ∑(U ′2

i, j,k +V ′2
i, j,k + kT ′2

i, j,k) ,

to quantify the error growth between perturbed and unper-
turbed runs, whereU ′,V ′ andT ′ are the difference wind com-
ponents (zonal windu and meridional windv) and difference
temperature between the perturbed and unperturbed (control
or reference) simulations,k = cpT (control or reference) sim-
ulations,k = cp/Tr, in whichcp is the specific heat at a con-
stant pressure of 1005.7 J K−1 kg−1, Tr is the reference tem-
perature of 270 K, andi, j andk run overx,y andz grid points.

The spectrum of DTE is then compared to that of the
reference-state total energy[TE = ∑(U2 +V 2 + kT 2)/2] at
different resolutions. Figure 4 shows the DTE and TE spectra
at the model grid spacings of 30 and 10 km evaluated over the
domain D3 (10-km domain) (Figs. 4a and b), and the DTE
spectra at the model grid spacings of 10 and 3.3 km evaluated
over D4 (3.3-km domain) (Figs. 4c and d). The gap between
the green thin lines, which denotes difference spectra every
3 h (1 h), indicates the developing ratios of the error growth
in 3 h (1 h), so the bigger the gap the faster the error growth.
During the first several hours, according to the gap between
the green thin lines, the error grows more rapidly at smaller
scales and spreads to larger scales more quickly before the
error saturates at those small scales in the simulation with the
grid spacing of 10 km (see the green lines in Fig. 4b) in com-
parison with that of the 30-km simulation (see the green lines
in Fig. 4a). As a result, comparing the reference total energy
(solid lines—black for Fig. 4a and red for Fig. 4b), the DTE
error saturates earlier at smaller scales than at larger scales in
the higher-resolution simulations. The comparisons between
10 and 3.3 km (Figs. 4c and d) generally show the same re-
sults. As described in Zhang et al. (2007), this is consistent
with the multiscale error growth of Lorenz (1969), in which
the error first saturates at smaller scales, after which the error
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Fig. 3. The reference (total) spectra of different variables (m2 s−2) with the model grid spacings of 30, 10 and
3.3 km, and the corresponding slope (green) between 20- and 200-km wavelengths.

energy will have to grow upscale. This is also one of the in-
terpretations for the mesoscale spectrum, which is known as
an inverse cascade of energy from the small-scale turbulence

(Gage, 1979; Lilly, 1983; Vallis et al., 1997).
As defined in section 2, the loss of predictability index or

LPI is defined as the ratio of the difference power spectra to
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Fig. 4. (a, b) Spectra of difference total energy (green thin) and total energy (bold) with grid spacings of 30 and
10 km (red bold: 10 km; black bold: 30 km). (c, d) Spectra of difference total energy (green thin) and total
energy (bold) with grid spacings of 10 and 3.3 km (red bold: 10 km; blue bold: 3.3 km) averaged over the same
domain. The green lines (lower to upper) in (a–c) denote the difference spectra between lead times of 3 and 36
h at 3-h intervals. The green lines (lower to upper) in (d) denote the difference spectra between lead times of 1
and 12 h at 1-h intervals. The time sequence is denoted as digital numbers in the figures.

the reference-state power spectra. Thus, a larger (smaller)
value of the LPI means less (more) predictability. Since
the smallest resolvable scale of the model is seven times the
model grid spacing, we select the scale of 220 km (just above
the resolvable thresold for all three resolution runs) to com-
pare the predictability of forecast variables at different model
grid spacings. From the time evolution of the LPI of forecast
variables at the model grid spacings of 3.3 km, 10 km and
30 km over the same domain and scale (∼220 km) (Fig. 5),
the predictability of each variable varies with resolution. The
difference of the maximum LPI value for forecast variables is
remarkable around the scale of 220 km. In general, the differ-
ence in predictability estimates between the 10- and 3.3-km
simulations (both considered convection-permitting with no
parameterized convection) is smaller than those between the
30 and 10-km simulations (parameterized versus fully explict
convection). Figure 5 also shows that the LPI of most of the
variables with the grid spacing of 3.3 km is larger than those
with the grid spacings of 10 km and 30 km during the first
3-h model integration, which is attributed to more rapid er-
ror growth and faster error saturation in high-resolution sim-
ulations (see Fig. 4). After 6 h, the LPI of all the variables
with the grid spacing of 30 km is smaller than those with the

grid spacings of 3.3 km and 10 km because there is little er-
ror growth from both parameterized and explicit convection
in the 30-km simulation. In other words, the 30-km simula-
tion with a smaller LPI at the earlier times results from the
model’s deficiency in resolving smaller scale (convective) in-
stability at this resolution, and thus would lead to an overes-
timation of predictability. The 220-km scale is the marginal
scale which can be resolved in a 30-km grid-spacing simula-
tion, as evidenced in our reference power spectrum of Fig. 3,
and consistent with the “effective resolution” study of Ska-
marock and Klemp (2008). Since the 30-km simulation does
not explicitly permit moist convection or cannot directly re-
solve convective instability at smaller scales, it has a false
sense of lower error growth at the small scales, resulting in
an artificially lower LPI. Meanwhile, except for hydromete-
ors (cloud), the LPI of the other variables with the grid spac-
ing of 3.3 km is smaller than those with the grid spacing of 10
km. This relates more deeply to the representation of moist
convection by different resolutions since the convective in-
stability is usually triggered at the smallest resolvable scale
of the simulation (seven times the model grid spacing). The
experiment with the 10-km grid spacing begins to permit di-
rect simulation of the convective overturning [release of con-
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Fig. 5. Time evolution of LPI (%) for different forecast variables estimated from different grid spacings at the
wavelength of 220 km.

vective available potential energy (CAPE)] at around 70 km,
while the 3-km experiment maximizes the release of CAPE
at around 23 km. In other words, during the moist convec-

tion, smaller scale error grows fastest at around 70 km in the
experiment with the 10-km grid spacing, while error grows
fastest at around 23 km in the experiment with the 3.3-km
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grid spacing. Given the error for the 3.3-km grid spacing
simulation saturates first at a smaller scale than for the 10-
km grid-spacing simulation (23 km v.s. 70 km), it will take
a longer time for the 3.3-km grid-spacing simulation to grow
upscale and saturate at 70 km, and subsequently to impact the
predictability at the 220-km scale. We believe this is the pri-
mary reason why the 3.3-km grid-spacing experiment has a
lower LPI than the 10-km grid-spacing experiment, as shown
in Fig. 5.

We also compare the time evolution of the LPI of fore-
cast variables in the 10-km run and 30-km run at the same
larger domain during a longer time period (figure not shown).
The predictability difference between estimates with differ-
ent resolutions for the variables related to large-scale pro-
cesses (e.g.,u,v, temperature, pressure, water vapor) is gener-
ally smaller than that for the variables associated with small-
scale processes (e.g.,w, cloud hydrometeors), which indi-
cates that the predictability of the variables corresponding to
small (large)-scale processes is more (less) sensitive to model
resolution. Although all the variables (u,v, temperature, pres-
sure, water vapor,w, cloud, and rain) are related to both large-
and small-scale processes, the reference spectrum of each
forecast variable reveals the strength of the spectral power of
each variable at different scales. It is important to emphasize
that the predictability of a given variable is related to its refer-

ence spectra distribution: the more energy at smaller scales,
the less predictable that variable is, since smaller scale error
grows faster and saturates early.

5. Scale- and variable-dependent error growth
and predictability

In the previous section, we investigated the variability of
the predictability index of forecast variables and the sensitiv-
ity of predictability to model resolutions. Here, we focus on
the sensitivity of predictability to spatial scales (in terms of
wavenumber or wavelength) for each forecast variable, ex-
clusively using the pair of 10-km simulations. By definition,
when the LPI is equal to or greater than 100%, there is a com-
plete loss of predictability, while a forecast with a smaller LPI
of less than 100% at least has some degree of predictability.

Figure 6 presents the LPI of forecast variables at four
different scales, indicating that the predictability of forecast
variables is associated closely with their corresponding back-
ground (reference-state) spectra (see Fig. 3), varying signifi-
cantly with variables. As exemplified in the 200-km and 300-
km LPI (Figs. 6b and c), in general, the variables with more
small-scale components (such as vertical velocity and hy-
drometeors, shown in Figs. 3e and g, respectively) are less

Fig. 6. Time evolution of the LPI for the variablesu (red solid),v (green solid), temperature (blue solid), pres-
sure (black solid),w (red dashed),q (green dashed), cloud (blue dashed), and rain (black dashed) at the scales
of (a) 70 km, (b) 200 km, (c) 300 km, and (d) 540 km from the 10-km domain.
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predictable, and vice versa [e.g.,u,v, temperature (T ), and
pressure (P), shown in Figs. 3a–d, respectively]. For a par-
ticular variable, the LPI usually increases with forecast lead
time at a selected scale: the longer the lead time, the less
predictable the variable, which is consistent with Islam et al.
(1993, Fig. 5). The only exception is a high LPI value of vari-
able temperature (T ) during the first 6 h, because the only
initial perturbations between perturbed and reference simu-
lations are added toT , which will be initially adjusted. In
addition, the high LPI ofT during the first 6 h decreases as
the scale increases since “grid-point (grid by grid data set)”,
random, Gaussian noises with zero mean and a standard devi-
ation of 0.2 K are added to the temperature field at the initial
time in the perturbed runs. At the scale of 70 km (Fig. 6a),
the LPI of all variables reaches 100% after only a 5-h forecast
lead time. At the scale of 200 km (Fig. 6b), the LPI values
of all the variables become lower in comparison with those at
the scale of 70 km, which means higher predictability. The
variability of the predictability among forecast variables is
also larger. The LPI of vertical velocity and hydrometeors
are much larger than those of other variables, with the pre-
dictable times of 7 and 9 h at this scale, respectively. At the
scale of 300 km (Fig. 6c), variablesu,v, temperature, pres-
sure,q and rain (3-h precipitation) have a predictable time
of more than 36 h—roughly 72 h as estimated through the

current trend in Fig. 6c. The predictable time for vertical ve-
locity is about 15 h. At the scale of 540 km (Fig. 6d), all the
variables, including vertical velocity, have a predictable time
of more than 36 h.

The LPI time evolutions at different scales for the 3.3-km
run are shown in Fig. 7. In general, it is consistent with the
result from the 10-km run. For example, the LPI values of
variablesw and cloud are usually higher (and thus less pre-
dictable) than those of other variables at the scales for 200
km and 300 km. It is interesting to note that the LPI values of
all forecast variables in the 3.3-km run are lower (implying
a potentially more predictable estimate) than those estimated
by the 10-km run, despite the fact that the error grows faster
in the 3.3-km run (since LPI measures the related rate of er-
ror growth normalized by the reference state spectral power).
According to the definition of LPI (the ratio of the differ-
ence or forecast error spectral power to the reference spectral
power at a given scale or a range of scales), the value of LPI is
decided by both the difference and reference spectral power
at a given scale or range of scales. In section 4, we found the
error grows faster at smaller scales in higher-resolution sim-
ulations, but the reference spectral power at smaller scales
is also larger than that of lower-resolution simulations for a
given scale as shown in Fig. 4. Therefore, the LPI value for
a given scale can still be lower (indicating higher predictabil-

Fig. 7. Time evolution of the LPI for the variablesu (red solid),v (green solid), temperature (blue solid), pres-
sure (black solid),w (red dashed),q (green dashed), cloud (blue dashed), and rain (black dashed) at the scales
of (a) 70 km, (b) 200 km, (c) 300 km, and (d) 650 km from the 3.3-km domain.
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ity) than that of lower-resolution simulations, as shown in
Figs. 6 and 7.

6. Further interpretations of LPI in physical
space

In this section we provide further interpretations of the
LPI values in physical space (versus the wavenumber space
or spectral power described in previous sections). We use the
same 2D spectral decomposition (as introduced in section 2)
to divide the difference (between perturbed and unperturbed
runs) and total fields (unperturbed run) into five horizontal
scale bands (in the physical space through inverse 2D Fourier
transform, which include scales smaller than 200 km, from
200 to 500 km, from 500 to 1000 km, from 1000 to 2000
km, and larger than 2000 km. We concentrate on meridional
wind (v), which has more larger-scale spectral power, and
vertical velocity (w), which has more smaller-scale spectral
power. The 2D spectral decomposition in this section is con-
ducted with the model output from the D3 domain with the
grid spacing of 10 km.

Figure 8a shows the time evolution of the domain-
integrated DTE at these five scale bands. Before 9 h, the DTE
at scales smaller than 200 km contributes the most to the to-
tal DTE; while after 9 h, the DTE at scales from 200 and
500 km contribute the most to the total DTE. DTE at scales
smaller than 500 km account for more than 75% of the total
DTE during the whole simulation period. For the time evo-
lution of total energy (Fig. 8b), its magnitude increases with
scale. In addition, the difference power spectra at different
scales vary among variables. For example, the time evolu-
tion of the difference power spectra ofu,v, T andP are quite
similar (not shown). For vertical velocity (w) and hydromete-
ors (cloud), difference power spectra at scales below 500 km
account for more than 90% of the total difference power spec-
tra. The vertical distribution of difference power spectra also
varies remarkably among variables, indicating the variation
of the LPI (and thus difference in predictability) for differ-
ent variables at different altitudes. Since the trend of DTE is
similar at scales from 200 to 500 km and from 500 to 1000
km, we focus only on these three horizontal scale bands, in-
cluding scales smaller than 200 km, from 200 to 1000 km
and larger than 1000 km. The vertical distributions of the
domain-averaged LPI of variablesv andw at these scales are
shown in Fig. 9. The LPI varies with height and lead time
for different variables. For scales larger than 1000 km, the
LPI of variablev over all layers and the LPI of variablew at
layers under a height of 5 km is very small. However, the LPI
increases with decreasing scale. The LPI at upper layers is
generally much higher than that at lower layers.

In terms of the distribution of the physical field, the dif-
ference field can have similar (or larger) amplitude (spatial
coverage) with (than) the reference field when the LPI is
equals to or is larger than 100%, which means over-prediction
of magnitude or missing predictions of location in practical
prediction evaluation. For scales smaller than 200 km, the

Fig. 8. Time evolution of (a) DTE (m2 s−2) and (b) TE (total
energy: m2 s−2) at different scales.

difference field vs. the reference field ofv (at a height of
3.5-km),w (at a height of 5 km) at 3 h and 6 h are shown in
Fig. 10. At 3 h (Figs. 10a–d), the magnitude of the differ-
encev (w) component is comparable to the referencev (w)
component, while the spatial coverage is smaller. The related
domain-wide averaged LPI ofv (w) is 10% (50%) at 3 h. At 6
h (Figs. 10e–h), both the magnitude and distribution are very
similar between the difference and total fields. The related
domain-wide averaged LPI ofv (w) is 120% (170%) at 6 h,
showing that variablesv andw are completely unpredictable
at this scale (< 200 km) at the lead time of 6 h. There is a
similar evolution in other variables at this scale. For the scale
from 200 to 1000 km, the magnitude and spatial coverage of
difference fields are both smaller than those of the reference
field at a height of 3.5 km (v) and 5 km (w) (not shown). For
variablev, the domain-averaged predictability indices are 5%
at 6 h and 15% at 24 h. For variablew, the related domain-
averaged predictability indices are 20% at 6 h and 60% at 24
h. At the scale larger than 1000 km (not shown), for variable
v, the magnitude and spatial coverage of the difference field
are both smaller than those of the reference field. For vari-
ablew, the difference field has an obvious increase above a
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Fig. 9. Vertical profile of the predictability index (LPI) averaged over the entire domain for variablesv
(a, c, e) andw (b, d, f) at three scales (blue:< 200 km; green: 200–1000 km; red:> 1000 km).

height of 10 km. These results indicate that the value of the
LPI is dependent on the magnitude and spatial coverage of
difference variables.

7. Conclusions
In this study, we quantified and compared the predictabil-

ity of different forecast variables at various scales through
spectral analysis by using perturbed and unperturbed simu-
lation outputs of the idealized moist baroclinic waves am-
plifying in a conditionally unstable atmosphere with vary-
ing model grid spacing. An index named LPI was defined to
quantify the predictability of forecast variables based on the
reference spectrum of forecast variables. Further interpreta-
tions of the LPI in physical space were provided through a
two-dimensional spectral decomposition.

We first analyzed the slope of the spectrum represented
by different forecast variables and found that predictability of
forecast variables is closely associated with their correspond-
ing reference-state (unperturbed) power spectrum and slope,
which differ significantly from variable to variable. The shal-
lower the reference-state spectrum, the more spectral energy
resides at smaller scales, and thus the lower the predictability
for any given variable, since the error grows faster at smaller
scales before it saturates. In general, the variables with more

small-scale components (e.g., vertical velocity) are less pre-
dictable, and vice versa (e.g., pressure). For a specific vari-
able, the LPI generally increases with forecast lead time at the
same scale, and the longer the lead time, the less predictable
the variable, which is consistent with Islam et al. (1993), ex-
cept for the high LPI value of variableT during the adjust-
ment time in this study.

We further analyzed the spectral distribution of the fore-
cast variables in the reference simulation at different model
resolutions, showing that the spectrum of the reference state
differs significantly among forecast variables and with model
resolutions. The LPI values of all forecast variables estimated
by the grid spacing of 3.3 km are lower (indicating higher pre-
dictability) than those estimated by the grid spacing of 10 km,
despite the fact that the error grows faster in the 3.3-km run.
In terms of difference total energy, the error grows faster in
the higher-resolution simulations and spreads to larger scales
more quickly before the error saturates at those small scales
during the first few hours of the simulations. The maximum
values of LPI of forecast variables deviate notably from each
other and change with model resolution.

Lastly, we explained the meaning of the LPI in physi-
cal space through a 2D spectral decomposition. For the first
time, we showed the difference field vs the reference field of
the variablesv andw at the time with different LPI values.
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Fig. 10. The difference (a, c, e, g) and reference (b, d, f, h) fields of variablev (at 3.5 km)
andw (at 5 km) at scales below 200 km at 3 h and 6 h. Thex–y coordinates denote the
number of model grids in domain D3.The contours (solid: positive; dashed: negative)
are every 3 m s−1 (0.5 m s−1) for the difference and reference field of variablev (w).
The shading key in panel (a) denotes the magnitude of difference and reference fields of
variablesv andw, respectively. The digit numbers on x-axis and y-axis 90 km.
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Physically, the value of the LPI is dependent on the magni-
tude and spatial coverage of difference fields. An LPI value
at or above 100% denotes over-prediction of magnitude or a
missing prediction in practical prediction evaluations.

The current study on variable- and scale-dependent pre-
dictability was based only on simulations of one idealized
moist baroclinic wave life cycle. Further research based on
measurement case studies through ensemble experiments will
be very helpful for improving quantitative forecasts in opera-
tional forecasting. The LPI defined in this study can be used
in future operational forecasting.
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