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ABSTRACT

The breeding method has been widely used in studies of data assimilation, predictability and instabilities. The bred
vectors (BVs), which are the nonlinear difference between the control and perturbed runs, represent the time-evolvingrapidly
growing errors in dynamic systems. The Lorenz (1963) model (hereafter Lorenz63 model) has chaotic dynamics similar to
weather and climate. This study investigates the features of BVs of the Lorenz63 model and its impact on regime prediction
of the Lorenz63 model. The results show that the Lorenz63 model has two different BVs for each breeding cycle, and the
two BVs approach being identical when growth rate is high. The duration of the current and next regime is associated with
the relative directions between the BV with high growth rateand the model trajectory.
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1. Introduction

The breeding method proposed by Toth and Kalnay
(1993, 1997) is designed to estimate dynamic forecast er-
rors and produce perturbations for ensemble forecasting. The
steps of breeding are adding a small random initial perturba-
tion to a control run, integrating forward, and periodically
rescaling the difference between the perturbed and control
runs to the size of initial perturbation at the end of each fixed
rescaling interval. The difference between the perturbed and
control runs is called the bred vector (BV) and the process
during a fixed rescaling interval is called a breeding cycle.

The breeding method generates time-evolving perturba-
tions in directions where errors have grown fast. It is easy
to apply and computationally inexpensive, and thus it has
been used not only in data assimilation (e.g., Kalnay, 2003;
Yang et al., 2006; Yang et al., 2009) but also in other appli-
cations. For example, it has been used for producing initial
perturbations for operational ensemble forecasts at the Na-
tional Centers for Environmental Prediction (NCEP) since
December 1992 (Toth and Kalnay, 1997). Besides this, it
was employed to study the “error of the day” (e.g., Kalnay
and Toth, 1994; Kalnay, 2003), to investigate the structure
of background error covariance (Corazza et al., 2003; Yang
et al., 2009), and to discover the intrinsic predictabilityand
instabilities of chaotic systems, such as the atmosphere of
Mars (Newman et al., 2003; Greybush et al., 2013), baro-
clinic rotating annulus (Young and Read, 2008), and global
upper ocean (Hoffman et al., 2009).
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The Lorenz (1963) model (hereafter Lorenz63 model)
was designed to represent forced dissipative hydrodynamic
flow. The equations of the model are
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= a(y− x) ,
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= rx− y− xz ,

dz
dt

= xy−bz ,

where the original valuesa = 10,b = 8/3 andr = 28 are cho-
sen for chaotic behavior (Lorenz, 1963). The trajectory of
the Lorenz solutions in three-dimensional (3D) phase space
exhibits a “butterfly” shape and the two wings of the butter-
fly attractor are regarded as “warm” (x > 0 andy > 0) and
“cold” (x < 0 andy < 0) regimes, respectively. Transitions
between the two regimes take place aperiodically. The solu-
tions of the equations are also nonperiodic and sensitive to
small changes in initial conditions. Hence, due to its chaotic
dynamics, similar to those of weather and climate, this model
has been widely used for predictability studies in meteorol-
ogy.

Evans et al. (2004) studied the possible prediction of
regime transitions in the Lorenz63 model using breeding and
found two rules: (1) regime transitions happened after the ap-
pearance of high BV growth rate [indicated by the red stars in
Fig. 4 of Evans et al. (2004)], and (2) the duration of the new
regime was proportional to the number of red stars [as shown
in Fig. 5 of Evans et al. (2004)]. This study was carried out
on the basis of one BV for each breeding cycle. However, is
it possible that this 3D model has more than one BV for each
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breeding cycle? Moreover, if so, do they perform differently
in predicting regime transitions? These questions have not
been previously studied.

The goal of the present study is to examine whether the
Lorenz63 system has more than one BV for each breeding
cycle and how those BVs affect the prediction of regime tran-
sitions. The remainder of the paper is organized as follows:
The experiment design is described in section 2. In section 3,
we examine whether the Lorenz63 system has more than one
BV for each breeding cycle and the impacts of those BVs on
predicting regime transitions. Finally, the results are summa-
rized in section 4.

2. Experiment design

There are three key parameters in breeding: the rescaling
interval, size of initial perturbation, and direction of initial
perturbation. In the nonlinear breeding method, the pertur-
bation initially grows linearly and then becomes saturated.
Hence, for a short rescaling interval and/or small initial per-
turbation, the linear growth dominates; whereas, for a long
rescaling interval and/or large initial perturbation, thelinear
growth of the perturbation will saturate and then nonlinear
growth will dominate.

The Lyapunov exponents (LEs), which quantitatively es-
timate the stability properties of a dynamic system, are 0.906,
0, and−14.572 for the Lorenz63 system under the given
parameters (Wolf et al., 1985; Wolfe and Samelson, 2007).
The first positive LE is associated with the leading Lyapunov
vector and the second LE with the second Lyapunov vector.
When an instability exists in a system, all initial perturbations
will converge to the fastest-growing leading Lyapunov vector.
The Lyapunov vectors with finite amplitude in finite time, i.e.
local Lyapunov vectors (LLV), could be extended nonlinearly
by several methods, such as BVs (Kalnay and Toth, 1996) and
the nonlinear local Lyapunov vectors (Feng et al., 2014) ori-
ented from the nonlinear local Lyapunov exponent (Ding and
Li, 2007; Li and Wang, 2008; Li and Ding, 2011).

In order to check how many BVs the Lorenz63 model has
for each breeding cycle, a series of sensitivity experiments
has been designed by randomly changing the direction of ini-
tial perturbation but fixing the rescaling interval to eighttime
steps (dt = 0.01 is one time step) and the size of the initial
perturbation to 1 for primary focus. If there is only one BV
for each breeding cycle, i.e., one leading LLV (Kalnay and
Toth, 1996; Kalnay, 2003), no matter which direction you
add to the initial perturbation, after a finite period, all the per-
turbations will converge to the direction of the leading LLV
or, equivalently, its opposite direction. Otherwise, perturba-
tions might not merge into just one direction. The direction
of the initial perturbation has been altered 14 times, so as to
cover most of the 3D space. The model has been integrated
for a long time for all the 14 experiments, after spinning up
hundreds of time steps from its initial position. Two seriesof
similar sensitivity experiments with the same 14 initial per-
turbations but shorter rescaling intervals (four and two time
steps) and smaller amplitudes of initial perturbations (0.5 and

0.1) have also been carried out to represent more linear cases,
in which the BVs have less nonlinear growth than in the pri-
mary experiments. The results reported below are from the
primary experiments unless otherwise stated.

3. Results

3.1. Case of two BVs for each breeding cycle existing in
the Lorenz63 system

The BV growth rates of the 14 experiments merge into
two lines after integrating several hundred time steps: tenof
them merge into one line and the other four merge into the
other line. Hence, 14 BVs for each breeding cycle in these
experiments converge towards two BVs, denoted by BV1 and
BV2 respectively. All BV1s and BV2s in the figures are com-
posited of the ten BV1 experiments and of the four BV2 ex-
periments, respectively.

The 3D attractors with both BV1 and BV2 colored with
their growth rates are shown in Figs. 1a and b. The BV for
every breeding cycle (i.e., every eight time steps) is indicated
by a line segment originating from a filled colored circle on
the trajectory and its direction is from the filled colored cir-
cle on the trajectory to the unfilled black one. The arrows
denote the moving direction of the trajectory. One difference
between the two figures is obvious; that is, for each breeding
cycle, the BV1 points to different directions from the corre-
sponding BV2 and they tend to be opposite when the colored
head is red (growth rate> 6.4), even on the same trajectory.
To clearly present this difference, a few BV1s (denoted by
thick line segments) at the bottom of the warm regime are
added in Fig. 1b. Hence, it is suggested that BV1 and BV2
are distinct; otherwise, they would point to exactly the same
or opposite directions.

In order to further verify if BV1 and BV2 for each breed-
ing cycle really are two different BVs, the exact angle be-
tween them during the whole integration period is calculated,
as shown in Fig. 2a. None of the angles (colored with the
growth rate of BV1) exactly equals 0◦ or 180◦, even for more
linear cases (shorter rescaling interval and smaller initial per-
turbation). Overall, the angle evolves closer to 180◦ for more
linear cases. Hence, for each breeding cycle, BV1 and BV2
are not identical, but are two different vectors. In addition, al-
most all the red stars occur nearest to 180◦. This proves that
BV1 and BV2 with high growth rates (> 6.4) tend to head in
opposite directions in Fig. 1, i.e., they tend to become identi-
cal (except for the sign), as exemplified by the black rectangle
in Fig. 1b.

Furthermore, examining the ensemble dimension (i.e.,E-
dimension) of the Lorenz63 model is another way to prove
that BV1 and BV2 are different. TheE-dimension, which
was introduced by Patil et al. (2001) and further examined by
Oczkowski et al. (2005), gives the effective number of domi-
nant directions in the subspace spanned by anM-member set
of perturbations at a given time:

E =
(∑M

m=1 sm)2

∑M
m=1 s2

m
,
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Fig. 1. 3D Lorenz 63 attractor colored with growth rate (color
bar) and BVs for each breeding cycle. Blue represents a BV
growth rate< 0, yellow for 06 growth rate< 3.2, orange for
3.2 6 growth rate< 6.4, and red for growth rate> 6.4: (a)
BV1; (b) BV2. Thick line segments at the bottom of the at-
tractor in the warm regime indicate the corresponding BV1 for
these breeding cycles. The arrows represent the direction of the
model trajectory. The grey rectangle indicates an example of a
high-growth BV1 (thick line segment) and a high-growth BV2
(thin line segment) being close to 180◦ at a breeding time step.

wheresm is them-th singular value of the matrix constructed
by theM local bred vectors in descending order. TheE = 1
case indicates the perturbations are confined to a single di-
rection; while theE = M case means the uncertainty is
evenly distributed inM directions. TheE-dimension of the
Lorenz63 system using the initial perturbations selected in
the 14 experiments is colored with the BV growth rate aver-
aged for the 14 experiments and presented in Fig. 2b. The
E-dimension is less than 2 but greater than 1 during the en-
tire integration period, and it is closer to 1 for the more lin-
ear cases in which the rescaling interval is four or two time
steps and the initial amplitude is 0.5 or 0.1. This confirms
that the BVs in the Lorenz63 model have converged into two
dominant directions and they approach one direction in more

linear cases. Moreover, nearly all red stars occur when the
E-dimension approaches 1. This again verifies that BV1 and
BV2 for each breeding cycle in the 14 experiments tend to
become identical when growth rates exceed 6.4. After high
growth rate occurs, the angle does not suddenly drop far away
from 180◦, but gradually decreases, as does theE-dimension.

Figure 2c, which is a scatter plot of theE-dimension
and the angle between BV1 and BV2, shows an apparent
parabolic pattern: theE-dimension is closest to 2 when BV1
is perpendicular to BV2 (angle= 90◦), and it is closest to 1
when BV1 is nearly opposite/parallel to BV2 (indicated by
the red rectangular box). This implies that BV1 and BV2 ap-
proach being identical not only during the high growth rate
period, but also afterwards. The approximate parabolic pat-
tern is broken in more linear cases, since BV1 and BV2 be-
come more identical and the scatters are concentrated around
the red rectangular box in Fig. 2c. Hence, the nonlinear
growth of BVs is necessary to allow BVs to grow in more
than one direction.

When comparing the evolutions of the angle andE-
dimension with that ofx, which denotes regime duration and
transitions, it seems that the angle drops away from 180◦ and
theE-dimension stays near 2 when the regime lasts for a long
time; while the angle stays near 180◦ and theE-dimension is
close to 1 when the duration of the regime is short.

Therefore, it can be concluded that the Lorenz63 system
has two BVs for each breeding cycle and that the two BVs
tend to become identical (i.e., the angle between BV1 and
BV2 is close to 180◦) when they have high growth rate. This
is complementary to the findings of Norwood et al. (2013),
that the leading Lyapunov vector of the Lorenz63 system,
LV1, grows fastest globally; the second Lyapunov vector,
LV2, does not grow globally but usually grows faster than
LV1 locally. BVs, which are associated with the LLV, grow
towards the fastest growing local Lyapunov vector. Normally,
the BV is parallel to the LV1, but when the LV2 grows faster
than LV1 locally, the BV becomes parallel to the LV2.

3.2. Impacts of BV1 and BV2 on predicting regime tran-
sitions

Evans et al. (2004) discovered the fast-growing BV is a
predictor for regime transitions of the Lorenz63 model. The
above analysis has indicated that the Lorenz63 model has
two BVs for each breeding cycle and, thus, the impacts of
this finding on predicting regime duration and transitions are
worth exploring.

Regime transitions include transitions from warm to cold
regime and those from cold to warm regime. However, if
these two types of transitions are not separated as in Evans et
al. (2004), there is no obvious distinction between the predic-
tions of the two BVs with high growth rate for each breeding
cycle. Actually, in Fig. 1, BV1s with high growth rate (indi-
cated by red dots) are dragged by the trajectory in the warm
regime but forward along the trajectory in the cold regime;
while the situation is opposite for BV2. Hence, the two BVs
might perform differently in terms of prediction when the two
types of transitions are considered separately.
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Fig. 2. (a) Angles between BV1 and BV2, colored with the growth rate of BV1.
(b) E-dimension colored with mean growth rate of BV1 [dashedline with col-
ored stars indicates the breeding experiments with the rescaling interval equal
to eight time step (Tw = 8dt) and the size of the initial perturbation equal to 1
(σ = 1); turquoise line for experiments with Tw= 4dt andσ = 0.5; and green
line for experiments with Tw= 2dt and σ = 0.1]. (c) Relationship between
the BV1–BV2 angle andE-dimension for the experiments with Tw= 8dt and
σ = 1. The red rectangular box indicates the convergence of BV1 and BV2 to
a single BV.

Figure 3 shows the prediction of transitions from warm to
cold regime and from cold to warm regime by BV1 and BV2.
For the same number of red stars (BVs with high growth rate)
in warm regimes, the next cold regime predicted by BV1 in
the warm regime (opposite to the direction of the model tra-
jectory) will last for a shorter time than that by BV2 in the
warm regime (in the same direction as the model trajectory).
Conversely, for the same number of red stars in cold regimes,
the next warm regime predicted by BV1 in the cold regime
(in the same direction as the model trajectory) will last for
a longer time than that by BV2 in the cold regime (opposite
to the direction of the model trajectory). This indicates that
the length of the next regime is associated with the relative
direction between the high-growth BV and the moving tra-

jectory. For the total number of red stars, more high-growth
BVs are found when their directions are against the direction
of the model trajectory, such as BV1 in warm regimes, shown
by grey circles in Fig. 3a, and BV2 in cold regime, shown by
black crosses in Fig. 3b. This is also consistent with more red
dots in the warm regime than in the cold regime in Fig. 1a,
and more red dots in cold regimes than in warm regimes in
Fig. 1b. This implies a longer duration of the current regime
when more high-growth BVs point in the opposite direction
to the model trajectory.

Lorenz (1963) found that if the value of maximumz
is gradually increasing in one regime then the trajectory will
move to another regime after the value of maximumz reaches
a critical value. This finding is also supported by the value of
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Fig. 3. Prediction of regime transitions (indicated by the num-
ber of orbits in the next regime) by numbers of red stars (BVs
with high growth rate) for BV1 and BV2 in a regime. The size
of the circles and crosses reflects the number of corresponding
pairs: (a) Regime transition from warm to cold; (b) regime tran-
sition from cold to warm.

minimumz: if the value of minimumz is gradually decreas-
ing in one regime, up until reaching a critical value, a regime
transition will subsequently take place. The relationshipbe-
tween the regime duration and the directions of high-growth
BVs and the trajectory could be explained by the finding in
Lorenz (1963).

When the high-growth BV tends to align with the tra-
jectory in the current regime, e.g., the red dots in the cold
regime in Fig. 1a, it will fall in a high position (large value
of minimum z, i.e., the blue dots atz ∈ [10,20] in the warm
regime in Fig. 1a) and be dragged by the trajectory against
the flow direction in the next regime, the current regime will
have a short duration (e.g., BV1 in cold regimes and BV2 in
warm regimes), and the next regime will have a long duration.
Whereas, when the high-growth BV tends to be dragged by
the trajectory in the current regime, e.g., the red dots in the
warm regime in Fig. 1a, it will penetrate into a low position

(small value of minimumz, i.e., the blue and yellow dots at
z ∈ [10,20] in the cold regime in Fig. 1a) and follow the tra-
jectory’s direction in the next regime, the current regime will
last a long time (e.g., BV1 in warm regimes and BV2 in cold
regimes), and the next regime will last a short time.

Therefore, the two BVs perform differently in predicting
regime transitions, considering the regime transitions from
warm to cold and from cold to warm separately. When the di-
rection of the BV with high growth rate is parallel (opposite)
to the moving direction of the trajectory, the current regime
will have a short (long) duration, and the next regime will
have a long (short) duration.

4. Conclusions

This paper has explored the characteristics of BVs in
the Lorenz63 model. By examining BV directions and
E-dimensions, it has been found that that the chaotic 3D
Lorenz63 model has two different BVs for each breeding
cycle, and the two BVs tend to become identical when the
growth rate is high. This indicates that, in nonlinear BV
growth, initial perturbations from different arbitrary direc-
tions will converge into few different directions and the
Lorenz63 model has two directions of nonlinear growing in-
stability, which are both detected by the breeding method.
The duration of the current regime is associated with the rel-
ative directions between the BV with high growth rate and
the moving trajectory. If the two directions are the same (op-
posite), the current regime has a short (long) length and the
next regime has a long (short) length.

Although this study has been performed using the simple
3D Lorenz63 system, it still has implications for nonlinear
unstable perturbations in large systems. A nonlinearly grow-
ing perturbation may have more than one growing direction
and the breeding method is capable of capturing nonlinear
instabilities with different directions. The relative direction
of the mean flow and the unstable perturbation is potentially
useful for predicting regime transitions.
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