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ABSTRACT

The breeding method has been widely used in studies of dataitaion, predictability and instabilities. The bred
vectors (BVs), which are the nonlinear difference betwéercontrol and perturbed runs, represent the time-evohapiglly
growing errors in dynamic systems. The Lorenz (1963) modetdafter Lorenz63 model) has chaotic dynamics similar to
weather and climate. This study investigates the featurB¥s of the Lorenz63 model and its impact on regime predictio
of the Lorenz63 model. The results show that the Lorenz63efoals two different BVs for each breeding cycle, and the
two BVs approach being identical when growth rate is highe @ibration of the current and next regime is associated with
the relative directions between the BV with high growth rael the model trajectory.
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1. Introduction The Lorenz (1963) model (hereafter Lorenz63 model)

The breeding method proposed by Toth and Kaln was designed to represent forced dissipative hydrodynamic
w. The equations of the model are

(1993, 1997) is designed to estimate dynamic forecast er-

rors and produce perturbations for ensemble forecasting. T dx

steps of breeding are adding a small random initial perturba ot ay—x),
tion to a control run, integrating forward, and periodigall dy

rescaling the difference between the perturbed and control i rX—y—Xxz,
runs to the size of initial perturbation at the end of eachdfixe dz

rescaling interval. The difference between the perturimetl a Pt A bz,

control runs is called the bred vector (BV) and the process

during a fixed rescaling interval is called a breeding cycle. yyhere the original values= 10,b = 8/3 andr = 28 are cho-
The breeding method generates time-evolving perturlgsy for chaotic behavior (Lorenz, 1963). The trajectory of
tions in directions where errors have grown fast. It is eagye Lorenz solutions in three-dimensional (3D) phase space
to apply and computationally inexpensive, and thus it hagnibits a “butterfly” shape and the two wings of the butter-
been used not only in data assimilation (e.g., Kalnay, 20G8; attractor are regarded as “warmX ¢ 0 andy > 0) and
Yang et al., 2006; Yang et al., 2009) but also in other applicold” (x < 0 andy < 0) regimes, respectively. Transitions
cations. For example, it has been used for producing initigdtween the two regimes take place aperiodically. The solu-
perturbations for operational ensemble forecasts at the M@gns of the equations are also nonperiodic and sensitive to
tional Centers for Environmental Prediction (NCEP) sincgma|l changes in initial conditions. Hence, due to its cicaot
December 1992 (Toth and Kalnay, 1997). Besides this,df{namics, similar to those of weather and climate, this rhode
was employed to study the “error of the day” (e.g., Kalnayas peen widely used for predictability studies in meteorol
and Toth, 1994; Kalnay, 2003), to investigate the structuggyy.
of background error covariance (Corazza et al., 2003; Yang Evans et al. (2004) studied the possible prediction of
et al.,, 2009), and to discover the intrinsic predictabiétyd regime transitions in the Lorenz63 model using breeding and
instabilities of chaotic systems, such as the atmospheret@ind two rules: (1) regime transitions happened after fhe a
Mars (Newman et al., 2003; Greybush et al., 2013), bargearance of high BV growth rate [indicated by the red stars in
clinic rotating annulus (Young and Read, 2008), and globgjy. 4 of Evans et al. (2004)], and (2) the duration of the new

upper ocean (Hoffman et al., 2009). regime was proportional to the number of red stars [as shown
in Fig. 5 of Evans et al. (2004)]. This study was carried out

* Corresponding author: Ying ZHANG on the basis of one BV for each breeding cycle. However, is
Email: yzhang@atmos.umd.edu it possible that this 3D model has more than one BV for each
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breeding cycle? Moreover, if so, do they perform differgntl0.1) have also been carried out to represent more lineas,case

in predicting regime transitions? These questions have motvhich the BVs have less nonlinear growth than in the pri-

been previously studied. mary experiments. The results reported below are from the
The goal of the present study is to examine whether tpemary experiments unless otherwise stated.

Lorenz63 system has more than one BV for each breeding

cycle and how those BVs affect the prediction of regime tran-

sitions. The remainder of the paper is organized as follows: Results

The experiment design is described in section 2. In sectiong3l. Case of two BVs for each breeding cycle existing in

we examine whether the Lorenz63 system has more than one  the Lorenz63 system

BV for each breeding cycle and the impacts of those BVs on

predicting regime transitions. Finally, the results anema-

rized in section 4.

The BV growth rates of the 14 experiments merge into
two lines after integrating several hundred time steps:.ofen

them merge into one line and the other four merge into the
other line. Hence, 14 BVs for each breeding cycle in these
2. Experiment design experiments converge towards two BVs, denoted by BV1 and

BV2 respectively. All BV1s and BV2sin the figures are com-

int Thelre are tt;rge_t_kely patrarSett_ers in bdredgdm?: the ﬁrtgslcalg&ited of the ten BV1 experiments and of the four BV2 ex-
interval, size of initial perturbation, and direction oftia periments, respectively.

perturbation. In the nonlinear breeding method, the pertur The 3D attractors with both BV1 and BV2 colored with

bation initially grows linearly and then becomes saturatefigeir growth rates are shown in Figs. 1a and b. The BV for

regcte_, forﬂ? Slhort rescah?ﬁ; (;nter_valtan.d/or: small '?'t'at'? every breeding cycle (i.e., every eight time steps) is iatdid
urbation, e linear growth dominates, whereas, 1or a lohg, 5 ine segment originating from a filled colored circle on

rescaling interval and/or large initial perturbation, threar the trajectory and its direction is from the filled colored ci

growth of the pgrturbation will saturate and then nonline%{e on the trajectory to the unfilled black one. The arrows
growth will dominate. denote the moving direction of the trajectory. One diffeen

. The Lyapur_l(_)v exponents (LEs), Wh'(?h quantitatively e een the two figures is obvious; that is, for each breeding
timate the stability properties of a dynamic system, aré@,9 cycle, the BV1 points to different directions from the cerre

0, and —14.572 for the Lorenz63 system under the give : ;
) onding BV2 and they tend to be opposite when the colored
parameters (Wolf et al., 1985; Wolfe and Samelson, 200 ad is red (growth rate 6.4), even on the same trajectory.

The first positive LE is associated with the leading Lyapungy) clearly present this difference, a few BV1s (denoted by
vector and the second LE with the second Lyapunov VeCtlick line segments) at the bottom of the warm regime are

When an instability exists in a system, all initial perturbas added in Fig. 1b. Hence, it is suggested that BV1 and BV2

will converge to the fastest-growing leading Lyapunov wect o giginct; otherwise théy would point to exactly the sam

The Lyapunov vectors with finite amplitude in finite time, i.eOr opposite,directions '

local Lyapunov vectors (LLV), could be extended nonlingarl In order to further verify if BV1 and BV2 for each breed-

Lohy sevelr_al me:hodls ’LSUCh as BVst(KaInEy andt'l'olth,zt91%]’6) 6}98 cycle really are two different BVs, the exact angle be-
€ honiinear focal -yapunov vectors (Feng etal., : )0 een them during the whole integration period is calculate

ented from the nonlinear local Lyapunov exponent (Ding and <hown in Fig. 2a. None of the angles (colored with the

L, 2|007(;j L ?nthal?ﬂ, 2008; Li g\r}d t?]mgL’ 2011%'3 delh rowth rate of BV1) exactly equal$ @r 180, even for more
norderto check howmany BVS the Lorenzos Model Ngpq ¢ cases (shorter rescaling interval and smalleiryer-

for each bree_dmg cycle, a series of S?nS't'V'ty. expe”me%rbation). Overall, the angle evolves closer to 18 more

has been de§|gned b_y_randomly chqngl_ng the d|rec_t|pn of "Mhear cases. Hence, for each breeding cycle, BV1 and BV2

tial perturbation .bUt f|X|n_g the rescaling mteryal to e'g“?e_ ._are notidentical, but are two different vectors. In additial-

steps (it = 0.01 is one time step) and the size of the 'n't'al?nost all the red stars occur nearest to°18bhis proves that

perturbation to_l for primary focus. If t_here is only one B V1 and BV2 with high growth rates(6.4) tend to head in

for each breeding cycle, i.e., one leading LLV (Kalnay an pposite directions in Fig. 1, i.e., they tend to becometiden

Toth, 1996; Kalnay, 2003), no matter which direction you, tfor the si lified by the black rede
add to the initial perturbation, after a finite period, a# er- inaF(iZXi?Jp orthe sign), as exemplified by the black redeang

turbations will converge to the direction of the leading LLV Furthermore, examining the ensemble dimension Ee.,

or, eqw_valently, its opp_osm_a d|rect|on.. Ot_herW|se, p'.im'. dimension) of the Lorenz63 model is another way to prove
tions might not merge into just one direction. The dlrect|0{p1at BV1 and BV2 are different. ThE-dimension. which
of the initial perturbation has been altered 14 times, sqnasv\t]%E introduced by Patil et al. (2001) and further examined by

cover most of the 3D space. The model has been integrag: kowski et al. (2005), gives the effective number of domi-

for a long tim_e for all the 14 .expet\r.iments.,.after spinnir_lg YRant directions in the subspace spanned bylamember set
hundreds of time steps from its initial position. Two seés of perturbations at a given time:

similar sensitivity experiments with the same 14 initiat-pe
: S . M 2

turbations but shorter rescaling intervals (four and twnoeti E— (> m=15m)

steps) and smaller amplitudes of initial perturbationS ¢hd SM R



NOVEMBER 2015 ZHANG ET AL. 1535

(a) BV1 linear cases. Moreover, nearly all red stars occur when the
E-dimension approaches 1. This again verifies that BV1 and
BV2 for each breeding cycle in the 14 experiments tend to
become identical when growth rates exceed 6.4. After high
growth rate occurs, the angle does not suddenly drop far away
from 180, but gradually decreases, as doesEh#dimension.

Figure 2c, which is a scatter plot of tHe-dimension
and the angle between BV1 and BV2, shows an apparent
parabolic pattern: thE-dimension is closest to 2 when BV1
is perpendicular to BV2 (angle 90°), and it is closest to 1
when BV1 is nearly opposite/parallel to BV2 (indicated by
the red rectangular box). This implies that BV1 and BV2 ap-
proach being identical not only during the high growth rate
period, but also afterwards. The approximate parabolie pat
tern is broken in more linear cases, since BV1 and BV2 be-
come more identical and the scatters are concentratedcroun
the red rectangular box in Fig. 2c. Hence, the nonlinear
growth of BVs is necessary to allow BVs to grow in more
than one direction.

When comparing the evolutions of the angle dad
dimension with that ok, which denotes regime duration and
transitions, it seems that the angle drops away front 28@
theE-dimension stays near 2 when the regime lasts for a long
time; while the angle stays near T8nd theE-dimension is
close to 1 when the duration of the regime is short.

Therefore, it can be concluded that the Lorenz63 system
has two BVs for each breeding cycle and that the two BVs
tend to become identical (i.e., the angle between BV1 and
BV2 is close to 180) when they have high growth rate. This
is complementary to the findings of Norwood et al. (2013),
30 .20 that the leading Lyapunov vector of the Lorenz63 system,
LV1, grows fastest globally; the second Lyapunov vector,
LV2, does not grow globally but usually grows faster than

bar) and BVs for each breeding cycle. Blue represents a B\/LV:L locally. BVs, which are associated with the LLV, grow

growth rate< 0, yellow for 0< growth rate< 3.2, orange for towardsf the fastest growing local Lyapunov vector. Norgpall
3.2 < growth rate< 6.4, and red for growth rate 6.4: (a) the BV is parallel to the LV1, but when the LV2 grows faster

BV1; (b) BV2. Thick line segments at the bottom of the at- than LV1 locally, the BV becomes parallel to the Lv2.
tractor in the warm regime indicate the corresponding B\1 fo
these breeding cycles. The arrows represent the directitme o
model trajectory. The grey rectangle indicates an examipée o
high-growth BV1 (thick line segment) and a high-growth Bv2 Evans et al. (2004) discovered the fast-growing BV is a
(thin line segment) being close to I8t a breeding time step.  predictor for regime transitions of the Lorenz63 model. The
above analysis has indicated that the Lorenz63 model has
wheresy is them-th singular value of the matrix constructedwo BVs for each breeding cycle and, thus, the impacts of
by theM local bred vectors in descending order. The-1 this finding on predicting regime duration and transitiores a
case indicates the perturbations are confined to a singlewerth exploring.
rection; while theE = M case means the uncertainty is Regime transitions include transitions from warm to cold
evenly distributed iV directions. TheE-dimension of the regime and those from cold to warm regime. However, if
Lorenz63 system using the initial perturbations selected these two types of transitions are not separated as in Evans e
the 14 experiments is colored with the BV growth rate aveal. (2004), there is no obvious distinction between the igred
aged for the 14 experiments and presented in Fig. 2b. Tiiens of the two BVs with high growth rate for each breeding
E-dimension is less than 2 but greater than 1 during the arycle. Actually, in Fig. 1, BV1s with high growth rate (indi-
tire integration period, and it is closer to 1 for the more lincated by red dots) are dragged by the trajectory in the warm
ear cases in which the rescaling interval is four or two timegime but forward along the trajectory in the cold regime;
steps and the initial amplitude is 0.5 or 0.1. This confirmghile the situation is opposite for BV2. Hence, the two BVs
that the BVs in the Lorenz63 model have converged into twnight perform differently in terms of prediction when theatw
dominant directions and they approach one direction in magges of transitions are considered separately.

Fig. 1. 3D Lorenz 63 attractor colored with growth rate (color

3.2. Impacts of BV1 and BV2 on predicting regime tran-
sitions
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(a) Angle between BV1 & BV2
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Fig. 2. (a) Angles between BV1 and BV2, colored with the growth rdtB\d1.

(b) E-dimension colored with mean growth rate of BV1 [daslied with col-
ored stars indicates the breeding experiments with theliagcinterval equal
to eight time step (Tw = @) and the size of the initial perturbation equal to 1
(o = 1); turquoise line for experiments with Tw 4dt ando = 0.5; and green
line for experiments with Tw= 2dt and 0 = 0.1]. (c) Relationship between
the BV1-BV2 angle and-dimension for the experiments with T 8dt and

o = 1. The red rectangular box indicates the convergence of BMI1BY/2 to

a single BV.

Figure 3 shows the prediction of transitions from warm tgctory. For the total number of red stars, more high-growth
cold regime and from cold to warm regime by BV1 and BV2BVs are found when their directions are against the diractio
For the same number of red stars (BVs with high growth ratej the model trajectory, such as BV1 in warm regimes, shown
in warm regimes, the next cold regime predicted by BV1 iby grey circles in Fig. 3a, and BV2 in cold regime, shown by
the warm regime (opposite to the direction of the model tralack crosses in Fig. 3b. This is also consistent with made re
jectory) will last for a shorter time than that by BV2 in thedots in the warm regime than in the cold regime in Fig. 1a,
warm regime (in the same direction as the model trajectorgnd more red dots in cold regimes than in warm regimes in
Conversely, for the same number of red stars in cold regim&gg. 1b. This implies a longer duration of the current regime
the next warm regime predicted by BV1 in the cold regime&hen more high-growth BVs point in the opposite direction
(in the same direction as the model trajectory) will last fao the model trajectory.

a longer time than that by BV2 in the cold regime (opposite Lorenz (1963) found that if the value of maximum
to the direction of the model trajectory). This indicateatthis gradually increasing in one regime then the trajectoty wi
the length of the next regime is associated with the relatimeove to another regime after the value of maximumaches
direction between the high-growth BV and the moving tra critical value. This finding is also supported by the valfie o
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(a) warm ——> cold (small value of minimung, i.e., the blue and yellow dots at

7 X z€ [10,20] in the cold regime in Fig. 1a) and follow the tra-
jectory’s direction in the next regime, the current reginikk w

6 X BV2y=066x+0.74, p=089 9 x last a long time (e.g., BV1 in warm regimes and BV2 in cold

regimes), and the next regime will last a short time.

Therefore, the two BVs perform differently in predicting
regime transitions, considering the regime transitiosnfr
warm to cold and from cold to warm separately. When the di-
rection of the BV with high growth rate is parallel (oppo}ite
to the moving direction of the trajectory, the current regim
will have a short (long) duration, and the next regime will
have a long (short) duration.

Number of next cold regime orbits

O 1 1 1 1 1 1 )
o 1 2 3 4 5 6 7 4. Conclusions
Number of red stars in warm regime ] o .
This paper has explored the characteristics of BVs in
(b) cold —> warm the Lorenz63 model. By examining BV directions and
7 E-dimensions, it has been found that that the chaotic 3D
Lorenz63 model has two different BVs for each breeding
6 X BV2: y=0.48x+0.33, p=0.78 . .
cycle, and the two BVs tend to become identical when the

5 growth rate is high. This indicates that, in nonlinear BV
growth, initial perturbations from different arbitraryrde-
tions will converge into few different directions and the
Lorenz63 model has two directions of nonlinear growing in-
stability, which are both detected by the breeding method.
The duration of the current regime is associated with the rel
ative directions between the BV with high growth rate and
the moving trajectory. If the two directions are the same (op
. . . . . . . posite), the current regime has a short (long) length and the
0 1 D) 3 4 5 6 7 next regime has a long (short) length.

Although this study has been performed using the simple
3D Lorenz63 system, it still has implications for nonlinear
unstable perturbations in large systems. A nonlinearlygro

ber of orbits in the next regime) by numbers of red stars (BVsIng perturbation may have more than one growing direction

with high growth rate) for BV1 and BV2 in a regime. The size and the breeding method is capable of capturing nonlinear
of the circles and crosses reflects the number of correspgndi instabilities with different directions. The relative eation

pairs: (a) Regime transition from warm to cold; (b) regimantr of the mean flow and the unstable perturbation is potentially
sition from cold to warm. useful for predicting regime transitions.

Number of next warm regime orbits

Number of red stars in cold regime

Fig. 3. Prediction of regime transitions (indicated by the num-

minimumz if the value of minimuneis gradually decreas- ~ Acknowledgements. This work was jointly supported by the

ing in one regime, up until reaching a critical value, a regim©NR (Office of Naval Research) (Grant No. N00014-10-1-0557)

transition will subsequently take place. The relationdsep the Civil, Mechanical and Manufacturing Innovation Digsiof the

tween the regime duration and the directions of high-growSF (National Science Foundation) (Grant No. CMMI112585)

BVs and the trajectory could be explained by the finding iINASA (National Aeronautic and Space Administration) (Grilo.

Lorenz (1963). 5069UMNASAMI3G).
When the high-growth BV tends to align with the tra-

jectory in the current regime, e.g., the red dots in the cold

regime in Fig. 1a, it will fall in a high position (large value

of minimumz, i.e., the blue dots at e [10, 20] in the warm  Corazza, M., and Coauthors, 2003: Use of the breeding teaani

regime in Fig. 1a) and be dragged by the trajectory against to estimate the structure of the analysis “errors of the day”

the flow direction in the next regime, the current regime will _ Nonlinear Processesin Geophysics, 10, 233-243.

have a short duration (e.g., BV1 in cold regimes and Bv2 irPi"g: R- Q., and J. P. Li, 2007: Nonlinear finite-time Lyapuno

warm regimes), and the next regime will have a long duration. ~ €XPenent and predictabilitiPhysics Letters A, 364, 396-400,

. doi: 10.1016/j.physleta.2006.11.094.
Whereas, when the high-growth BV tends to be dragged bl\évans, E.N. Bhajttpi), t’ Pann, J. Kinney, M. Pefia, S.-C. Yaig

the trajectory in the current regime, e.g., the red dotsén th Kalnay, and J. Hansen, 2004: RISE: Undergraduates find that
warm regime in Fig. 1a, it will penetrate into a low position regime changes in Lorenz's model are predictaBidl. Amer.
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