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ABSTRACT

A comparison of observations with 20 climate model simoladifrom the Coupled Model Intercomparison Project, Phase
5 (CMIP5) revealed that observed dryland expansion amdunt@61 x 10° km? during the 58 years from 1948 to 2005,
which was four times higher than that in the simulation§%x 10° km?). Dryland expansion was accompanied by a decline
in aridity index (Al) (drying trend) as a result of decreag@dcipitation and increased potential evapotranspimagicross
all dryland subtype areas in the observations, especialtiie semi-arid and dry subhumid regions. However, the CMIP5
multi-model ensemble (MME) average performed poorly wigard to the decreasing trends of Al and precipitation. By
analyzing the factors controlling Al, we found that the @lebias of Al in the simulations, compared with observasiomas
largely due to limitations in the simulation of precipitaii The simulated precipitation over global drylands wédmsgantially
overestimated compared with observations across all pat#yeas, and the spatial distribution of precipitatiorhen MME
was largely inconsistent in the African Sahel, East Asid, @astern Australia, where the semi-arid and dry subhurgidms
were mainly located.
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1. Introduction warming projected by the Coupled Model Intercomparison
roject, Phase 5 (CMIP5) multi-model ensemble (MME)

variable precipitation that does not compensate for thpevzf\e er arid and semi-arid areas can clearly be seen under dif-

orative demands (Reynolds et al., 2007), cover approximateezvr;nt rriperizﬁztsag}/ir?;:ngﬁ;atl?gc?a}zzringsar(ggfbs') ";_low
41% of Earth’s land surface and are inhabited by more than_’ pro) 9 precip e

one third of the world’s population (35.5% of the global po greater degree of uncertainty than are those of temperature

ulation in the year 2000) (Safriel et al., 2005). The dry Cﬁl_(umar etal. (2014) suggested that the agreements among the

i IP5 models are higher in simulation of the mean pattern
mate of drylands (Huang etal., 2008, 2010; Wang etal, 20% amplitude for temperature than in that of precipitati®n

2010, 2015; Nicholson, 2011; Maestre et al., 2012), cou- ... : . L : L

; . " L multi-model analysis projected variations in annual piat
pled with the relatively low fertility of their soils (Reyras tion of —30% to 25% in drvlands. depending on the drvland
et al., 2007; Li et al., 2009), forms fragile ecosystems that 0 0 y » dep 9 y

. . o region considered (Bates et al., 2008). Zhao et al. (2014) re
are sensitive to climate change and human activities (ChaE)—rted that precipitation is expected to increase by mae th
ney, 1975; Georgescu et al., 2009). Increases in temperal precip P y

. e ; 2% under RCP4.5 over central Asia and the Sahara/Sahel,
and changes in precipitation patterns are two importantco S : )
. . : ut precipitation will be reduced over the Mediterraneam. P
ponents of climate change that are of particular interest 9, tial evapotranspiration (PET), representing the o
drylands (Bader and Latif, 2003; Giannini et al., 2003; Gian. P P  Tep ing B
7 i ) ) ive demand of the atmosphere, is also projected to increase
nini, 2010; Huang et al., 2012; Wallace et al., 2012; He et a o X .
T IPCC, 2013). This is because the water-holding capacity of
2014; Ji et al., 2014). : L
tré? atmosphere increases with higher temperatures, but pre

There is general agreement among most models that., .. d relative humidi . d hea
warming of over 3C is expected for drylands by the end oF!p't‘?‘F'O” and refative humidity are not projected to crang
significantly on the global scale (IPCC, 2013). As a reshé, t

the 21stcentury [Intergovernmental Panel on Climate Chan ater vapor deficit in the atmosphere will increase, and PET

(IPCC), 2013]. Zhao et al. (2014) reported that ONgOINGiil increase (Trenberth et al., 2003). As a consequence of

such expected climatic changes, drying is expected to occur
* Corresponding author: HUANG Jianping in a substantial portion of drylands. Moreover, droughty ma
Email: hjp@Izu.edu.cn become longer lasting and more severe (Dai, 2011, 2013),

Drylands, which are characterized by scarce and highFI)
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and the drylands will become drier in warmer climates, su¢owever, temperature is not always the primary factor con-
as western North America (Seager et al., 2007; Hughes aralling PET (Donohue et al., 2010; Shaw and Riha, 2011;
Diaz, 2008), the Mediterranean Basin (Giorgi and Lionelldjobbins et al., 2012), which is also influenced by radiative
2008; Mariotti et al., 2008), southern Africa (Haenslerlet aand aerodynamic controls (Penman, 1948). The other ap-
2011), and Australia (Hughes, 2011). proach to defining PET is the Penman—Monteith algorithm,
It has been considered that such drying patterns in dwhich considers many climate factors related to the evapo-
lands result from global warming, which leads to intensiftranspiration process, such as solar radiation, relativeiti-
cation of the hydrological cycle, with climatologically tve ity, temperature, and wind (Allen et al., 1998). This altjum
regions becoming wetter and dry regions becoming drisrderived from physical principles and is superior to elirpir
(Neelin et al., 2003; Trenberth et al., 2003; Held and Secally based formulations that usually only consider thegff
den, 2006; Chou et al., 2009; Seager et al., 2010). Therefarbtemperature (Feng and Fu, 2013).
in a standard IPCC-style simulation, the area of the world's The PET data used in this study were provided by
desert areas is predicted to increase-b¥0% by the end of Feng and Fu (2013) and were calculated using the Penman—
the 21st century (Zeng and Yoon, 2009). This projection Monteith method (Allen et al., 1998). To calculate PET, the
supported by a recent study by Feng and Fu (2013), whisblar radiation, specific humidity, and wind speed reanaly-
also projected that global drylands will expand B} 0% sis datasets from the Global Land Data Assimilation System
by 2100 based on simulations from CMIP5. As mentiond@&LDAS), as well as the observed monthly surface air tem-
above, there are many future projection results for drydangberature (SAT) dataset, were used. The GLDAS datasets have
However, it is noteworthy that the extent of dryland expamfobal coverage with 8° x 0.5° latitude—longitude resolu-
sion is underestimated in the CMIP5 historical simulationton starting from 1948 (Rodell et al., 2004). The observed
Although the evidence from both observations and the hiSAT dataset was developed by the National Centers for En-
torical simulations of CMIP5 models indicates that drylandsironmental Prediction (NCEP)/Climate Prediction Center
expanded during the 58 years from 1948 to 2005, the expg6PC) (Fan and Van den Dool, 2008). It comprises station-
sion in drylands shown by the simulations is only one-fourttased observation data covering global land areas with-a spa
of that observed. Therefore, before the model projectians dial resolution of 05° x 0.5° for the period from 1948 to 2005,
be trusted, it is critical to evaluate the ability of thesedno and itis referred to as the GHCNAMS gridded 2 m temper-
els to simulate 20th century variability in dryland expamsi ature dataset. In this study, PET calculated with obsermdd a
and climate change, which is the foundation of their abiteanalysis datasets is referred to as observation-based PE
ity to project the future. In the present study, we focused L
on analyzing the observed area and climate changes in dfy> Observed precipitation datasets
lands and compared them with model-simulated changes to In addition to the SAT dataset, we used the corresponding
improve our understanding of dryland climate change. precipitation dataset from the NCEP/CPC, which is referred
to as the Precipitation Reconstruction over Land (PRECI/L;
Chen et al., 2002). This dataset has the same temporal cov-
2. Dataand methods erage and spatial resolution as the GHCRMS gridded 2
m temperature dataset. To better illustrate the relighdlft
using the PREC/L dataset, trends in land precipitation have
Different criteria and climate classification schemes hawgen analyzed using a number of datasets; notably, the Cli-
been used to define the climatic boundaries of drylands amgte Research Unit (CRU) at the University of East Anglia
their subtypes (Thornthwaite, 1948; Meigs, 1953; Ma an@iitchell and Jones, 2005), the Global Precipitation Cima
Fu, 2003; Kottek et al., 2006; Huang et al., 2012; Fenglogy Centre (GPCC) full data reanalysis, version 6 (Sehne
and Fu, 2013). The fundamental commonality in most cliter et al., 2013; Zhao et al., 2014), and the University of
matic definitions of drylands is the balance between precipelaware dataset (UDel; Legates and Willmott, 1990). The
itation and PET. Following Middleton and Thomas (1997cPCC, CRU, and UDel datasets have the same spatial and
in this study, drylands were defined as regions with aridit¢gmporal coverage as PREC/L.
index (Al), which is the ratio of annual precipitation to an-  The spatial distributions of the precipitation trends ig-dr
nual PET, of<0.65. Drylands were classified into four subtand regions using the four datasets (figure not shown) in-
types of hyper-arid (Ak:0.05), arid (0.05Al <0.2), semi- dicated that the patterns of the linear trends of precipita-
arid (0.2<Al <0.5), and dry subhumid (0<5Al <0.65). tion were in good agreement, with only small differences
. among the datasets. Additionally, the dryland averaged tem
2:2. Observation-based PET poral variations in precipitation generally decreasedhan36
There are very limited direct measurements of PET avaylears from 1948 to 2005, based on the four datasets (figure
able (Abtew et al., 2011); thus, PET must be inferred for clirot shown); the precipitation decline ranged from 0.9 to 3.1
mate studies. Two methods are widely used to estimate PEin (10 yr) ! depending on the dataset, although none of the
One is the Thornthwaite method (Thornthwaite, 1948; Midrend estimates was significant. The results showed that the
dleton and Thomas, 1997), which is an empirical formula thésear trends of precipitation were in good agreement in the
defines PET as a function of the mean monthly temperatuseatial distributions and regionally averaged temporai va

2.1. Classification of drylands
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ations over drylands. However, it should be noted that te Results

observed precipitation data in hyper-arid regions may eot b

very reliable due to poor data coverage (Chen et al., 2002 Figure 1 shows the spatial distribution of drylands and its
such as the Sahara Desert, the Arabian Peninsula, and?t ltypes for the 1961-90 climatology defined by Al, which

e’ )
Taklimakan Desert. iS consistent with the results from Feng and Fu (2013). As

shown in Fig. 1, major hyper-arid areas generally occurred

2.4. Model simulations over the deserts, such as the Sahara Desert, the Rub al Khali

The historical simulations from CMIP5 are forced ngesert N the eastern Arab@m Peninsula, and the Takhmakan
esert. Arid areas were mainly located over Central Asia and

natural solar and volcanic variations and anthropogeniara . o . .

. L . . : much of Australia. Semi-arid and dry subhumid regions were

tive forcings; most of these simulations cover the periodr : ) . ; )
located outside the hyper-arid and arid regions, such dein t

1850 to 2005 (Taylor et al., 2012). Here, the historical Slml\’gestern United States, Central and East Asia, and a large por

lations of 20 CMIPS climate models (Table 1) were SeleCt.%lon of Australia. As indicated by Safriel et al. (2005), dry
(Taylor etal., 2012), and we only analyzed the period stgrti lands accounted for 41% of the global land surface
from 1948, when both observed and reanalysis datasets were :

available. The ensemble mean of the 20 models was analy Recent observations and model simulations indicate that

Z
! . . o gdoal drylands have expanded remarkably, and the expan-
because the MME average is considered superior to mdwé{m will continue in the 21st century (Feng and Fu, 2013).

ual models (Pierce et al., 2009; Zhao et al., 2014). The fif . : .
; ; espite large differences between observations and model
ensemble run was used if a model has multiple ensemble sim- .
) ) L simulations, Feng and Fu (2013) reported that the models
ulations. All of the simulated temperature, precipitafiso-

lar radiation, specific humidity, and wind speed values w were able to simulate the robust expansion of drylands. To

statistically downscaled to half-dearee resolution. a86n Srther evaluate the simulation capability of the CMIP5 mod
and Fu (23)/13) 9 ' 9 els compared with observations, we compared the time series

of area change for drylands and subtypes in observations and

Table 1. The 20 CMIP5 models used in this study. the ensemble mean of the historical simulations_of 20 CMIP5
models (Fig. 2). Generally, the global drylands in the obser
Model name Modeling center vations expanded remarkably during the 58 years from 1948

to 2005, especially since the 1980s (Fig. 2a). However, the

BCC-CSM1.1 Beijing Climate Center, China . . . .
CanESM2 Canadian Centre for Climate, Canada simulations of the area change in drylands were not consis-
CCSM4 National Center for Atmospheric Re-tent with observations. The area changes for dryland sebtyp
search, USA regions in the simulations were also inconsistent with ohse
CNRM-CM5 Le Centre National de Recherches vations (Figs. 2b—e). For instance, the dry subhumid region
Météorologiques, France have evidently expanded since the mid-1980s, and the semi-
CSIRO-Mk3.6.0 Commonwealth Scientific and Industriabrid regions show evident expansion in the late 1960s; how-
Research, Australia ever, the CMIP5 MME did not capture these changes. Natu-
GFDL-CM3 Geophysical Fluid Dynamics Laboratory,rally, we must therefore question what factor it is that kad
USA to the large biases (or differences) between the obsenatio
GFDL-ESM2G Geophysical Fluid Dynamics Laboratory,gnd simulations.
USA ) ) ) To understand the differences between the observations
GFDL-ESM2M GEcg):ysmal Fluid Dynamics Laboratory,and CMIP5 MME simulations of area changes in dryland
GISS-E2-R NASA Goddard Institute for Space Stud_region; and subtypes during thg o8-year study period, two
ies, USA subperiods were chosen: the first 15 years (1948-62) and
HadGEM2-CC Met Office Hadley Centre, UK the most recent 15 years (1991-2005). Table 2 shows the
HadGEM2-ES Met Office Hadley Centre, UK
INM-CM4 Institute for Numerical Mathematics, ~
Russia
IPSL-CM5A-LR L'Institut Pierre-Simon Laplace, France  30"N -
IPSL-CM5A-MR L'Institut Pierre-Simon Laplace, France >
MIROC-ESM Japan Agency for Marine-Earth Science
and Technology, Japan 01
MIROC-ESM-CHEM  Japan Agency for Marine-Earth Science .
and Technology, Japan 30°s {mHyper-arid
MIROCS5 Atmosphere and Ocean Research Insti- :ggﬁmud
tute, Japan ohumid
MPI-ESM-LR Max Planck Institute for Meteorology, 60'S FIDW SUbh-um T T ™ T
Germany 180°  120°W  BO°W 0 60°E  120°E 1807
MRI-CGCM3 Meteorological Research Institute, Japan
NorESM1-M Norwegian Climate Centre, Norway F|g 1. Global distribution of drylands during 1961-90 accord-

ing to Al.
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Fig. 2. Temporal variations in area change for (a) total drylands (ah dry subhumid,
(c) semi-arid, (d) arid, and (e) hyper-arid regions, witbpect to the mean values from
1948-62. The thin red curve is based on observations. Thebthtk curve is the
CMIP5 MME. The grey shading denotes one standard deviafitimechistorical simu-
lations. The 15-year running smooth (thick) curves werdiaggo emphasize climate
change.

Table 2. The area change, in units of @Bm?, by climate type for 1991-2005 compared to 1948—1962 froseniations (CMIP5 MME).

Climate type Net change To wetter type To drier type
Hyper-arid 0.61 (0.0) Hyper-arid to arid 0.37 (0.0) N/A
Arid —0.12 (-0.10) Arid to semi-arid 1.11 (0.20) Arid to hyper-arid 0.98Q)
Semi-arid 1.58 (0.15) Semi-arid to dry subhumid 0.87 (0.38) Semi-arid to arid 1.60 (0.10)
Semi-arid to humid 0.01 (0.31)

dry subhumid 0.50 (0.50) dry subhumid to humid 0.96 (0.37) y sibhumid to semi-arid 2.84 (0.22)
Humid —2.61 (-0.55) N/A Humid to dry subhumid 3.47 (0.71)
Humid to semi-arid 0.11 (0.52)

transitions in the drylands between these two periods. Timethe semi-arid regions, where the observed area increased
simulated dryland area for the most recent 15 years (1994y-1.58 x 10° km?, accounting for more than half of the total
2005) was only 5 x 10° km? larger than that for the period dryland expansion, whereas the semi-arid regions expanded
1948-62, which was only one-fourth of the observed expany only 0.15x 10° km? according to the CMIP5 MME sim-
sion (261 x 10° km?), indicating that dryland expansion wasilation, just one-tenth of the observed expansion. Thehype
severely underestimated in the simulations. For specifie darid region also showed major differences; the observeal are
land subtypes, the areas expanded in most subtype regiafshe hyper-arid region expanded by x 10° km?, which
except for arid regions, which decreased both in the observas transitioning from arid regions, whereas there was no
tions and the CMIP5 MME. The largest difference occurrethange according to the CMIP5 MME simulation. The ar-
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eas in arid and dry subhumid regions changed (in units @fnsistent with the observations across all dryland subtyp
10° km?) by —0.12 (—0.1) and 0.5 (0.5) in the observationgegions. PET increased in all dryland subtype regions ih bot
(CMIP5 MME). In these two subtype areas, the simulatdte observations and the MME, and all of the positive trends
area changes were comparable to the observed changes.Wére significant, except for observations in the hyper-aid
total area of land (including drylands and humid regiona) thgion. As shown in Table 3, the trends of SAT were signifi-
changed to drier subtypes, was 20° km? (1.56x 10°km?)  cantly positive over all of the dryland subtype areas in both
in the observations (CMIP5 MME), whereas the total area tife observations and the MME; however, the trends in the
drylands that transitioned to wetter subtypes wa&23% 10° MME was smaller than in the observations. As expected, the
km? (1.26 x 10° km?). variability of Al declined (drying) as a result of decreased
Figure 3 presents the time series of regionally averagprecipitation and increased PET across all dryland areas in
precipitation, PET, Al, and SAT in hyper-arid, arid, semithe observations, especially in the semi-arid and dry subhu
arid, and dry subhumid regions during 1948-2005, and Tad regions (Figs. 3i-I), where the negative trends were sig
ble 3 shows the linear trends. As indicated in Figs. 3a—dificant at the 99% confidence level. However, the negative
precipitation decreased with large annual variabilityoasr trends in the semi-arid and dry subhumid regions were much
all dryland subtypes in the observation, especially overise weaker in the simulations, and a positive trend was idedtifie
arid and dry subhumid regions, where the change rates waréhe arid region (Table 3). Considering that the obseovati
—4.33 and—6.48 mm (10 yr)'%, respectively, and were sig-based PET was well simulated in these regions, the weaker
nificant at the 95% confidence level. However, the CMIP8rying trends in the MME were primarily the result of the
MME simulations showed positive trends in precipitatiosimulated precipitation.
across all dryland subtypes except the dry subhumid regions Figure 4 demonstrates the patterns of linear trends in pre-
Given that Al is defined as the ratio of precipitation to PETipitation, PET, Al, and SAT over drylands during 1948—
PET is another key component affecting changes in Al. A905 in the observations and simulations. The observed pre-
shown in Figs. 3e—h, the time series of PET in the MME waspitation was characterized by significant decreasingadse
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Fig. 3. Temporal variations in regionally averaged precipitaiiBy, PET, Al, and SAT in hyper-arid, arid, semi-arid, and dry

subhumid regions from observations (red) and the CMIP5 MMIEdk). The mean for 1961-90 was removed from each
variable.
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Table 3. Trends of regionally averaged precipitation, PET, Al, alkT $h hyper-arid, arid, semi-arid, and dry subhumid regidrmsn

observations (CMIP5). One asterisk denotes the trend mifisignt at the 95% confidence level, and two denotes the isesignificant at
the 99% confidence level.

Climate type Precipitation [mm (10 yr}] PET [mm (10 yr) 1] Al (10yn)—1 SAT [°C (10 yr) 1]
Hyper-arid —0.72 (0.39) 2.03 (6.00) —0.0003 (0.0001) 0.19 (0.17)
Arid —1.33 (1.41%) 3.85 (4.55%) —0.0010 (0.0004) 0.20°* (0.14*)
Semi-arid —4.33* (0.879) 4.29* (3.86%) —0.0041* (—0.0004) 0.17* (0.13%)
Dry subhumid —6.48" (—0.10) 7.60* (3.10") —0.0084* (—0.0015*) 0.15 (0.12%)
_ (a) P trend from observation (mm (10 yr)'w) (b) P trend from CMIP5  (mm (10 yr)’w)
CONT = o~ o } p §r ., . -
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Fig. 4. Linear trends in precipitation (P), PET, Al, and SAT in dmyds from 1948 to 2005 in observations (left-hand
panels) and the CMIP5 MME (right-hand panels). Stipplinghi@ observations indicates that the observed trend was
significant at the 99% confidence level, as determined by asstded Student’s-test. Crosses, open circles, and filled
circles in the CMIP5 MME denote one standard deviation of2B&€MIP5 models.
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in drylands across the African Sahel, southern Africa, Cearn Africa, except hyper-arid regions, whereas the siredlat
tral Asia, some of East Asia, and eastern Australia, and B¥T was overestimated over North America and eastern Aus-
increasing tends over the central United States, Argentitialia. As a result, Al was overestimated in most of the typi-
and west/central Australia (Fig. 4a). However, most of thmal regions (East Asia, Central Asia, southern Africa, mort
observed negative trends were not captured by the CMIBB Africa, and eastern Australia), where precipitatiors wa
MME (Fig. 4b). In fact, the models showed opposite trendw/erestimated, and Al was underestimated in the other three
(increasing precipitation) over these regions. Althoulgh tregions, where precipitation was underestimated. It is in-
models did capture the positive trend over western Austiralteresting that the over- or underestimation of Al in specific
the trend was smaller than that observed. Comparing Figsgions was consistent with the over- or underestimation of
4a and b, the precipitation pattern in the MME was largelyrecipitation, regardless of whether the PET was over- or
inconsistent in the African Sahel, East Asia, and eastest Auinderestimated, indicating that discrepancies in priiph
tralia, where the semi-arid and dry subhumid regions wepédayed a dominant role in the large discrepancies in Al be-
mainly located. This result is also consistent with pregiodween the observations and MME in all the typical regions.
studies (Zhao et al., 2014). For example, Zhao et al. (20I®)erefore, we conclude that it may be possible to reduce the
indicated that models underestimated the long-term trenddifferences between observed and simulated Al in drylainds i
global precipitation and did not capture the observed featu future improvements can be made to the models’ simulation
of precipitation in certain areas. Although linear trends f of regional precipitation.
regional averaged PET were well simulated in all dryland
subtype regions (Figs. 3e-h), the PET patterns showed large ) ) )
differences between observations and the MME (Figs. 4c afd Conclusion and discussion
d). The observed PET increased evidently over East Asia
and the African Sahel and decreased in the central United In this study, we investigated the historical area changes
States, the central Sahara, and western Australia, wher@ad climate changes of drylands and subtype regions us-
PET in the MME showed a uniform increase in dryland$1g both observational datasets and CMIP5 simulations for
The patterns of Al were similar to precipitation patterns ithe period 1948-2005. Generally, the global drylands in
both the observations and the MME, but with some regiorffle observations expanded remarkably during the 58 years;
differences (Figs. 4a and e). Large inconsistencies in Al Jgowever, this expansion was severely underestimated in the
tween the observations and simulations could be found feMIP5 MME. The dryland expansion was accompanied by a
the African Sahel, East Asia, Australia, and the Americaying trend (Al decreasing) as a result of decreased precip
continents. As Figs. 4g—h indicate, significant positiemtts itation and increased potential evapotranspiration (PETF)
in SAT were apparent across most drylands in both the dhough the increasing trends of observation-based PET were
servations and the MME, but SAT was much warmer in tHémulated well in global drylands, the CMIP5 MME did not
observations than in the simulations, especially in narthePerform well in capturing the observed decreasing trends of
Central Asia, East Asia, and the African Sahel (Figs. 4y and precipitation across all dryland subtype areas. The
and h). precipitation pattern in the MME was largely inconsistent i
To quantify the differences between observations affie African Sahel, East Asia, and eastern Australia, where
simulations, the changes in regionally averaged pretipita the semi-arid and dry subhumid regions were mainly located.
PET, and Al in the simulations and observations over glob@n the global scale, the simulated precipitation was overes
drylands and eight typical dryland regions [East Asia, €nt timated compared with observations across all subtype ar-
Asia, northern Africa, North America, South America, seutteas, especially in the semi-arid and dry subhumid regions.
ern Africa, western Australia, and eastern Australia (lethe In specific dryland regions, Al was overestimated or under-
in Fig. 1)] during 1948—2005 were calculated; the diffeiestimated consistently, with over- or underestimationref p
ences are shown in Fig. 5. For global drylands, the simulatéi@itation, regardless of whether PET was over- or underest
precipita‘[ion was overestimated across all Subtype r@idﬁated. ThUS, we conclude that the overall bias of Al in the
compared with the observations, especially in the serdi-afimulations, compared with observations, was largely due t
and dry subhumid regions, where precipitation was overedtinitations in the simulation of precipitation on the rega
mated by as much as 30 and 37 mm (58 yryespectively Scale. One potential reasonfor the underestimation ofjprec
(Fig. 5a). Al was overestimated across all subtypes, esgi@tion could be that the trend in precipitation in the simu-
cially in the semi-arid and dry subhumid regions, where PEations was smoothed by the MME. Plus, it may partly have
was underestimated. In the specific dryland regions, simRgen caused by variation in individual models’ simulatian c
lated precipitation was overestimated over most of the-tyiabilities and deficiencies. Recent studies also demdestra
cal regions (East Asia, Central Asia, northern Africa, seutthat the large uncertainties in precipitation are mainlyseal
ern Africa, and eastern Australia) compared with the obsdy natural variations in sea surface temperatures, whieh ar
vations, whereas simulated precipitation was underesgiinaoften not captured by climate models (Dai, 2013). The un-
over the other three typical dryland regions, especiallytGo certainty in simulated precipitation over these regiong be
America. The simulated PET was evidently underestimatélfiven by other mechanisms such as the different convection
over East Asia, South America, and most regions in nortAdd microphysical parameterization schemes (Huang et al.,
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2013), or by the uncertainty in decadal to multidecadal-vari Res.(Atmog, 113, D01103, doi: 10.1029/2007JD008470.
ability (Ault et al., 2012), and result from biases in data asFeng, S., and Q. Fu, 2013: Expansion of global drylands under
similations and model resolutions (Kimoto, 2005; Kusunoki & warming climateAtmospheric Chemistry and Physids,

et al., 2006). As the CMIP5 MME cannot capture the ob- ~ 10081-10094.

served variability of dryland precipitation, further irstiga- ~ ©eorgescu, M., G. Miguez-Macho, L. T. Steyaert, and C. P.

tions are needed to validate the regional precipitatiomuim Weaver, 2009: Climatic effects_of 30 years Of. landscape
. . e change over the Greater Phoenix, Arizona, region: 1. Sur-
tion capability of specific models.

face energy budget changek.Geophys. RegAtmog, 114,

. - D05110, doi: 10.1029/2008JD010745.
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