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ABSTRACT

Extended range (10–30 d) heavy rain forecasting is difficultbut performs an important function in disaster prevention
and mitigation. In this paper, a nonlinear cross predictionerror (NCPE) algorithm that combines nonlinear dynamics and
statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of
precipitable water and is tested in 100 global cases of heavyrain. First, nonlinear relative dynamic error for local attractor
pairs is calculated at different stages of the heavy rain process, after which the local change characteristics of the attractors
are analyzed. Second, the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5, and is then
used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded aseigen-
peaks for heavy rain extreme weather are all reflected consistently, without failure, based on the NCPE model; the prediction
validity periods for 1–2 d, 3–9 d and 10–30 d are 4, 22 and 74 cases, respectively, without false alarm or omission. The
NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10–30 d and has the potential to
be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel
method provides new insights into extended range forecasting and atmospheric predictability, and also allows the creation of
multi-variable chaotic extreme weather prediction modelsbased on high spatiotemporal resolution data.
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1. Introduction

Heavy rain is a type of disastrous weather that affects
many areas of the world, often triggering landslides, mud-
slides, floods, urban waterlogging, and many other secondary
disasters. As is known, the accuracy of heavy rain forecast-
ing on the 24-h time scale is currently about 20%, on aver-
age. Therefore, improving prediction accuracy is an interest-
ing challenge in heavy rain prediction studies, especiallyat
the extended range (10–30 d) scale. Improving accuracy is
especially important for disaster prevention and mitigation.

There are three main approaches currently used in heavy
rain prediction studies. Firstly, numerical weather predic-
tion (NWP). Some of the methods developed according to
this approach include the mesoscale prediction models MM5
and WRF, and the medium-and large-scale numerical models
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GRAPES (Huang et al., 2013) and AREMS (He et al., 2006).
Zhang et al. (2010) adopted an ingredients-based methodol-
ogy (Doswell et al., 1996) and performed some significant
research on the mechanisms of heavy rain formation and pre-
diction validity periods.

Secondly, considering the fact that numerical models are
strongly sensitive to the initial atmospheric state and bound-
ary conditions (external forcing), it means that any instabil-
ity can generate errors during the forecast process, and even
minor error from the initial conditions and model can lead
to significant loss of forecast ability (Lorenz, 1963a). Ep-
stein (1969) proposed an ensemble method for weather pre-
diction, and demonstrated that this method is an effective way
to address error from the initial state and model, compensat-
ing for the lack of a forecast validity period (Buizza et al.,
2005). Currently, short- and medium-term ensemble predic-
tion mainly applies representative disturbances to the above
instabilities to obtain the probability distribution of forecasts.

Regarding the initial conditions, these are mainly ob-
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tained via initial perturbation methods, such as the breed-
ing method (Toth and Kalnay, 1997), singular vector analysis
(Molteni et al., 1996), perturbed observation (Houtekameret
al., 1996), 4D-Var assimilation (Gong et al., 1999), condi-
tional nonlinear optimal perturbation (Mu and Jiang, 2008),
initial perturbations based on ensemble transformation (Wei
et al., 2006), and the nonlinear local Lyapunov vectors
method (Feng et al., 2014). In terms of the uncertainty er-
ror from the model, it more often utilizes disturbed boundary
conditions, or adopts different parameterization schemesac-
cording to parameters’ sensitivities to prediction objects (Mu
et al., 2010). Gao and Cao (2007) and Gao and Ran (2009)
also developed a variety of dynamic predictors and integrated
them into a heavy rain prediction algorithm using reanalysis
datasets, mostly, and found that severe storm rain forecast
precision improved on the synoptic and subsynoptic scales.
Several studies have revealed that ensemble prediction meth-
ods can improve forecasting techniques, but many of these
methods require further refinement. Despite great advances
in prediction methods, the acceptable prediction validitype-
riod of numerical models is currently only about 5 d; fore-
casting precision decreases rapidly about 10 d later, and little
improvement in precision for predictions of 10 or more days
can be achieved (Chou and Ren, 2006).

Thirdly, the atmosphere is a complex nonlinear dynami-
cal system; chaos is its inherent characteristic. The continu-
ous accumulation of initial errors can lead to greater uncer-
tainty in the prediction model, and to some extent cannot even
be predicted. Lorenz (1963b) showed that the atmospheric
predictability limit is about 2 weeks on average, but the pre-
cision of extended range (10–30 d) forecasting is beyond that
limit. Because prediction accuracy is sensitive to both ini-
tial error and the boundary conditions from weather systems,
the forecasting model must consider the interaction of these
factors, which requires new theory and methodology.

Ding and Li (2009a) and Li and Ding (2009, 2011) intro-
duced the concept of nonlinear error growth dynamics to the
spatiotemporal distribution of atmospheric predictability in
the case of 500 hPa geopotential height. A number of studies
have indicated that atmospheric predictability is as high as 20
days, which is beyond the 2 weeks limit proposed by Lorenz.
This work provides a theoretical basis for extended range
(10–30 d) heavy rain forecasting. Besides, the low-frequency
synoptic chart (LFSC) (Sun et al., 2010) was proposed based
on the Madden–Julian Oscillation (MJO) method (Madden
and Julian, 1971), but the study area for the extended range
scale based on the MJO method is mainly around the equato-
rial regions. Preliminary results show that the validity period
with respect to the LFSC and MJO methods for heavy rain
prediction is up to 10–45 d (Sun et al., 2010); these two meth-
ods are both regarded as valuable for extended range forecast-
ing, theoretically. However, because the speed of the MJO
and the synoptic system is hard to know in advance, these
methods are still difficult to apply in practice.

Given that extended range forecasting must consider the
chaotic characteristics of the weather system, Krishnamurti
et al. (2000) adopted an approach wherein atmospheric vari-

ables can be decomposed into two parts, i.e., a component
that is less sensitive to the initial atmospheric state and a
chaotic component that is sensitive to initial values. Differ-
ent procedures can be applied to different components, but
the chaotic component can currently only be solved in the
form of a probability distribution set calculated by historic
data. Chou et al. (2010) applied different strategies to ad-
dress the predictability and chaotic components in 10–30 d
extended range weather forecasting, and suggested that com-
bining dynamic and statistical methods is necessary to im-
prove extended range prediction precision.

In summary, general numerical models cannot be applied
to extended range scale rainstorm prediction. As such, ex-
ploring the chaotic characteristics of the nonlinear weather
system is an important endeavor.

In this paper, we develop a novel nonlinear cross-
prediction error model (NCPE) based on phase space recon-
struction of single-variable chaotic time series of heavy rain.
Using nonlinear dynamics and statistical theory, 10–30 d pre-
diction effects are analyzed by evaluating the local dynamic
features. The rest of the paper is structured as follows: Sec-
tion 2 describes the NCPE algorithm in detail. Section 3
details the preprocessing of the NCPE dataset and parame-
ters, tests the NCPE model in 100 heavy rain cases, defines
the prediction indicator and analyzes the forecasting validity
period. Section 4 makes some comparisons and analysis be-
tween heavy rain chaotic systems and stable time series based
on the NCPE model. Finally, a summary and further discus-
sion is provided in section 5.

2. Model description

2.1. Theoretical background

Climate is a normal nonstationary system. In fact, the hi-
erarchy feature of climate system is the cause to produce non-
stationary behaviors, such as chaos system movement, and
the nonstationary behaviors of climate process is just the im-
portant expression of hierarchy structure. A stranger attractor
is the reflection of a chaotic system’s movement trajectory
projected in phase space; it is also the interaction outcome
between its overall stability and local instability (Yang and
Zhou, 2005). However, nearly all current theories and meth-
ods for climate prediction, including those in statistics and
nonlinear sciences, are based on the assumption that the pro-
cess is stationary, which is in contrast to the nature of climate
processes. This contradiction is probably an important cause
of the low level of climate prediction.

Chaotic dynamic systems are common in nature; most of
these systems cannot be depicted explicitly by dynamic equa-
tions, and can only be understood through the available time
series data (Liu, 2010). Regarding the sensitivity of a chaotic
system to initial error, Eckmann and Ruelle (1985) proved
that a system is chaotic if it has at least one positive Lyapunov
exponent (LE), which can be used to predict the system vari-
ables, by the maximum LE, and then depict the global fea-
tures of attractors. However, development of the initial er-
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ror is not identical in all cases, because of the local dynami-
cal characteristics of the trajectory of attractor movement in
phase space. Farmer and Sidorowieh (1987) showed that lo-
cal prediction methods of chaos are better than global ones
in the same embedding dimension. Analysis of ENSO tem-
poral evolution data based on global function fitting and LEs
showed that better prediction results can be obtained using
fewer data compared with other models when chaos time se-
ries analysis is adopted (Li and Li, 2007). Ding and Li (2007,
2009b) showed that the atmospheric predictability limit isas
high as 20 d in the case of 500 hPa geopotential height, based
on the nonlinear local LE developed, and also indicated that
nonlinear local error growth is more effective in describing
the local structure of the attractor. Specifically, the classic
or finite-time LEs are the global LEs, which are established
based on the assumption that the initial perturbations are very
small that their evolution can be approximately governed by
the tangent linear model of a nonlinear system, which es-
sentially belongs to linear error growth dynamics. Clearly,
as long as an uncertainty remains infinitely small within the
framework of the linear error growth behavior, it cannot pose
a limit to predictability. Therefore, nonlinear behavior in er-
ror growth should be considered.

In this paper, we analyze the relative dynamical error
based on the NCPE model proposed, monitor the local dy-
namics change characteristics of heavy rain chaotic structure,
and diagnose the forecasting validity period.

2.2. NCPE model

The general approach undertaken for a given single
chaotic variable time seriesz(n) involves estimation of a pa-
rameterR(i) and analysis of its variation within a certain
threshold range based on a selection of sampleszi(n). How-
ever, characteristics analysis depends on the statisticalproba-
bility distribution of the parameter, which often causes weak-
ening or annihilation of sensitive features because of the av-
eraging process, such as the run-test method (Forrer and Ro-
tach, 1997). Different to nonlinear time series analysis, it
often uses the phase space, time delay and embedding di-
mension theorems etc. based on the above theorems. It does
not calculate the parameterR(i) of z(n) directly, but finds the
characteristics of the global attractorZZZ in phase space indi-
rectly. The trajectory of an attractor based on phase space
reconstruction can be described as

ZZZ ≡ {zzz(n),n = 1, · · ·NZ} , (1)

whereZZZ is the phase points set that consists of every phase
point zzz(n), andNZ is the total number of phase points on the
trajectory. For a single phase point in the phase trajectory,
zzz(n) can be denoted by

zzz(n) = {z(n),z(n + T ), · · · z[n +(m−1)T]} , (2)

whereT and m are the time delay and embedding dimen-
sion, respectively. The global attractorZZZ can be denoted by a
“pseudo” state space that models dynamical properties of the

true state qualitatively.
Prediction models for dynamical systems can be built

based on the above reconstructed attractor, and a series of al-
gorithms have been proposed. The algorithms include the cor-
relation dimensionDc, information dimensionDI , and the tra-
ditional LEs, particularly the space time-index method (Ken-
nel, 1997). These parameters may be used to analyze global
variation trends but cannot describe the chaotic local trajec-
tory because of the smooth processing in these methods.

Nichols et al. (2003) made predictions for the dynam-
ics of a damaged structure using attractor-based models of
a healthy structure’s dynamics. The overall idea in their work
was to study the evolution of local neighborhoods of trajec-
tories on the attractor and use the evolved neighborhood for
prediction; then, the increase of mean self-prediction error
can be seen as the damage of the system. Atmospheric mu-
tations are similar to the above damage structure. However,
in this paper, we do not compare an attractor in the baseline
structural condition to itself in a subsequent condition; rather,
we study the relationships between the different local parts of
the attractor, i.e.,r(i, j), i and j are the different local parts.
The quality of this relationship is measured through a relative
dynamical prediction error matrix; the error matrix servesas
the abnormal or mutation indicator of heavy rain system.

Conveniently, we reconstruct two attractors,ZZZ1 andZZZ2.
These can also be regarded as two different local parts of one
entire attractor trajectory. A trajectory is randomly selected
with index f on one of the reconstructed attractors and named
zzz1( f ). We then create a setρ including the nearestP points
to this trajectory, which appear on the other reconstructedat-
tractorZZZ2; namely,ρ ⊂ zzz2(pq) and

zzz2(pq) = {|pq − f |〉w,q = 1, · · ·P} , (3)

wherew is often called the Theiler window. Equation (3) is
a purely geometric construction, so that the time indicespq

do not have any temporal relationship to the fiducial time in-
dex f . In fact, by requiring that the chosen neighbors be no
closer in time thanw steps, we are purposefully removing
temporal correlations. The number of neighbors to choose
depends on the purpose of the model being built; while large
neighborhoods tend not to depict local dynamics, and would
result in reduced sensitivity to changes, very small neighbor-
hoods may be much more sensitive to noise. An easy rule is
to choose the neighborhoodP = NZ/1000 (Pecora and Car-
roll, 1996).

This local neighborhood is then used to predict some evo-
lution time-stepss into the future of what the fiducial trajec-
tory onZZZ1 will do. The choice of evolution time-stepss must
follow the rule thats < T , whereT is time delay referred to
above; generally,s will be chosen asT/2 for convenience.
Given s, the predictor may be selected as the centroid (or
mean) of the time-evolved neighborhood:

zzz2(s) =
1
P

P

∑
q=1

z2(pq + s) , (4)
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The NCPE may then be computed as

r(ZZZ1,ZZZ2) =

√

1
NZ −m

‖zzz2(s)− zzz1( f + s)‖ , (5)

where the‖ ·‖ operator indicates the Euclidean norm. Figure
1 shows the NCPE procedure;zzz1( f +s) andzzz2(s) are location
1 and location 2 of the phase trajectory state, respectively, and
r(ZZZ1,ZZZ2) is a matrix that indicates the local relative dynamic
error of attractor evolution.

By looking now at how relationships between various lo-
cal pairs of attractors on the structure may change as the dy-
namics change, we can look at a geometric transfer function
between pairs, to a certain extent.

In fact, the occurrence of heavy rain is the mutation from
a certain angle of the whole weather observation process. In
other words, this mutation can typically be seen as local per-
turbations to the phase structure, and then these relative dy-
namic changes can be detected by observing how an attrac-
tor transfer function model may change across the heavy rain
process. This approach is similar to the concept of frequency
domain transfer function methods, such as the autoregressive
(AR) approach; however, the AR model assumes that the time
series is a linear combination of past values of itself, or can
be depicted by the following equation:

x(n +1) =
M

∑
k=0

akx(n− k) , (6)

wherex(n) represents observed measurements andak is the
AR coefficients. NCPE may be used to detect local dynamic
change characteristics of the chaotic attractor in a spatial do-
main; this capability is beneficial to diagnosing the chaotic
process of heavy rain. In particular, when the entire at-
tractor is split into different continuous parts (or segments)
in the length scaleL, {zzzi,zzz j,1, · · · i, j · · ·NL}, NL is the to-
tal segments number. In general,r(ZZZi,ZZZ j) 6= r(ZZZ j,ZZZi), or
r(zzzi,zzz j) 6= r(zzz j,zzzi), and it is proved that chaos is irreversible;
r(zzzi,zzzi) is defined as the diagonal nonlinear cross-prediction
error (DNCPE) wheni = j, which is also the main content of
this paper.

Fig. 1. The nonlinear cross-prediction error process.

3. Case study and analysis

3.1. Data quality control and preprocessing

One hundred heavy rain cases globally are selected as re-
search objects in this paper, based on their reported damage
caused, from websites and examples in other articles (e.g.,
Sun et al., 2010). The cases are mainly in China, Japan and In-
dia in Asia; America, Canada and Mexico in North America;
England, France, Germany and Greece in Europe; and coun-
tries in equatorial regions. The test data for the NCPE model
comprise a single-variable time series of precipitable water
(PWAT), from the four-times-daily National Centers for En-
vironmental Prediction–National Center for Atmospheric Re-
search (NCEP–NCAR) reanalysis dataset. PWAT is the mea-
sure of the depth of liquid water at the surface that would
result after precipitating all of the water vapor in a vertical
column over a given location, usually extending from the sur-
face to 300 hPa; it is not the realistic rainfall amount, but can
still depict the characteristics of rainfall to some extent.

The reanalysis grid has a global spatial coverage of 2.5×
2.5, or 144×73 grid points. The rules for selecting the PWAT
time series in this paper are as follows: the initial length of
the PWAT series is about 31 days or more; a length of 5 days
is also selected after a heavy rain case; and the PWAT data
are from the single grid that covers the heavy rain location in
latitude/longitude coordinates. Only in this way can we re-
veal the evolution mechanism of heavy rain using the NCPE
in phase space.

Data preprocessing includes five steps that should be car-
ried out before inclusion in the NCPE model. In step 1, op-
timal interpolation of the raw data is conducted. The length
of the initial time series is so short that it cannot meet the
chaos analysis rules; for example, phase space reconstruc-
tion (Wolf et al., 1985). Then, interpolation processing is
required and, meanwhile, the chaotic structure of the inter-
polated series cannot be varied. High-order nonlinear fractal
interpolation is regarded as an effective method of interpola-
tion, which can obtain the optimal interpolation times (OIT)
at the restriction of metric entropy (Xia and Xu, 2010); be-
cause metric entropy is scaled by the fractal dimensionD of
the series, the invariantD can prove that the chaotic structure
is unchanged during the interpolation process.

Figure 2 shows the metric entropy relative error surface
along with segments and interpolation times for a chaotic
time series sample. It can be seen that the chaotic structure
approximation of the initial series is not done by any interpo-
lation time, but by optimal times. In this situation, the relative
error of metric entropy is the least and uncorrelated with seg-
ments. So, in Fig. 2 for example, whose OIT is 22, it can be
seen that the interpolated structure is most similar to the orig-
inal only by the interpolation times of 22; the following steps
for calculation are based on the optimal interpolated data.

In step 2, phase space reconstruction is performed based
on Takens (1981) theorem. Here, the interpolated time series
data are vectorized intom dimension phase space. In step
3, the time delayT is calculated using mutual information
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Fig. 2. The 3D metric entropy error surface, relative error ver-
sus segment and interpolation times. There is a location whose
errors are less under the limit of segment number and interpola-
tion times.

(Kantz and Schreiber, 1997). In step 4, the G-P algorithm
(Ledrappier, 1981) is applied to calculate the correlationdi-
mensionD; parameterD depicts the fractal structure of the
series. In step 5, the embedding dimensionm is calculated
based on the false nearest neighbor method (Kennel et al.,
1992), and it is ensured thatm > 2D+1.

It is noted that how to choose the embedding dimension
m is also important to the phase reconstruction, andm is
selected in this paper by the empirical theory (Andrew and
David, 2005). The meteorological elements sensitivity anal-
ysis of different extreme weather to the NCPE model, and
also the effects from the initial error, external forcing and pa-
rameter error, will be discussed in a future paper; we only
give parameters here.

3.2. Cases validation and analysis

As an example, heavy rain occurred on 21 July 1996 in
Chongqing, China. Its total precipitation was 206 mm, and
the raw data length was 31× 4 = 124, it’s dimensionless
quantity. The parameters calculated through the above steps,
1–5, are that OIT= 43, time delayT = 16, also dimension-
less quantity. embedding dimensionm = 4, maximum LE
λ1 = 0.1128> 0; λ1 greater than zero shows that the raw
data PWAT are chaotic. For convenience, the entire attractor
projected by the interpolated data in 4-dimensinonal phase
space is split into 31 continuous segments, i.e., one phase
trajectory segment corresponds to one day’s state for the at-
mosphere, which reflects the phase spatial variation of the
heavy rain chaotic system every day. As the DNCPE in Fig.
3 shows, there is a maximum error of DNCPE at segment 11,
equal to 2.49. We consider the value 1.5 as the threshold in
this paper, based on the calculation of 100 heavy rain cases
globally. That is to say, the DNCPE errors greater than 1.5
are regarded as eigen-peaks for heavy rain prediction. In Fig.
3, the heavy rain occurs in segment 21, and the prediction
eigen-peak is in segment 11, which is referred to as the most
unstable transition zone of the total attractor about the chaotic

system. We define this eigen-peak as the prediction indicator,
and therefore, the forecasting validity periodt = 21−11= 10
d, approximately, in this case.

Specifically, the entire attractor projected into phase
space from the interpolated data is split into 31 continuous
segments, i.e., one phase trajectory segment corresponds to
one day’s state for the atmosphere. It can also be split into
more segments, such as 62 based on some rule. These con-
tinuous segments are equivalent toZZZ1 andZZZ2 or location 1
and location 2; in other words, there are 31 locations corre-
sponding to the entire attractor on this condition. Therefore,
it is very meaningful to explore local dynamic characteristics
by observing individual or mutual relationships of these 31
segments.

In detail, we again stress that the main point of this pa-
per is to exploit the information contained in the relative
dynamic errorr(zzzi,zzz j), in addition to that contained in the
diagonal termsr(zzzi,zzzi). The NCPE matrix of the Chongqing
case described above is shown in Fig. 4. For the relative
dynamic error of every phase trajectory segment (y-axis)
on the prediction database of one other phase trajectory

0

Fig. 3. The DNCPE for 21 July 1996, Chongqing, China. Pa-
rameters: OIT= 43; time delayT = 16; embedding dimension
m = 4. Eigen-peak is in segment 11 and heavy rain is in 21;
forecasting validity period is 10 d.

Fig. 4. The NCPE matrix for 21 July 1996, Chongqing, China.
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segment (x-axis), the numbers 1,2,3,4,5 and 6 in the ma-
trix map represent six locations, respectively. The diagonal,
whose slope is 1, represents the DNCPE, and the remaining
values in the matrix map represent the NCPE. As in Fig. 3,
the matrix is asymmetric and shows that the chaotic system
is irreversible again.

Location 1 is the NCPE on the database of phase trajec-
tory segment 11. The relative error to they-axis is much
greater overall, indicating that this zone is most unstablein
the phase trajectory, which can explain the prediction indica-
tor characteristics. Location 5 depicts the NCPE in segment
11 on the database of every phase segment (x-axis). The rel-
ative error is also greater overall, the same as location 1. Lo-
cation 2 for the NCPE is in the database phase trajectory seg-
ment 1–5 zone. The relative error is large overall, and this
result can be explained by Simmons et al. (1995) in that the
effects of the initial state error are apparent in the initial stage
of modern NWP models, but the role of error from models
will become more important along with the prediction valid-
ity period growth. The relative dynamical error at locations
3 and 4 stand for before and after the rainstorm, respectively;
the NCPE is relatively small and smooth compared to other
sections, indicating that the local structure of the attractor is
relatively stable in these two sections. In other words, the
mutation of the local relative dynamical structure of the at-
tractor may appear long before the heavy rain period, such as
location 1. Location 6 spans before and after the heavy rain.
The relative dynamical error is a gradually reducing process
in thex-axis direction, which indicates that change in the lo-
cal structure of the attractor in this period is relatively slow
with no mutation.

By the same argument, Fig. 5 is the DNCPE of a heavy
rain event in Xinyang, China. There were two heavy rain
cases on 1 July and 24–25 July 2007, and the total precipita-
tion was 226 mm in the 1 July case. The parameters calcu-
lated are OIT= 50, time delayT = 19, embedding dimension
m = 4, andλ1 = 0.0833. The eigen-peaks are in segments
8 and 30, respectively, and the two heavy rain cases are in
segments 17 and 40, respectively, so the forecasting validity
period is 9 d and 10 d, respectively. The DNCPE can predict
these two cases accurately, without omission.

There is an interesting phenomenon regarding the
DNCPE shown in Fig. 6, for heavy rain in Koblenz, Ger-
many, on 1 April 2003 (total precipitation: 50 mm). The
parameters calculated are OIT= 47, time delayT = 26, em-
bedding dimensionm = 4, andλ1 = 0.1530. The two peaks
are distributed in segments 5 and 14, respectively, and the
heavy rain cases in segment 26. The peak in segment 14
is seen as the eigen-peak without considering the peak at 5
based on the above view from Simmons et al. (1995), so the
forecasting validity period is 12 d.

Cases also exist that are not interpreted well by the
present NWP model, i.e., false alarms or omissions. We also
test this phenomenon based on the NCPE model, such as the
results shown in Fig. 7, which shows a heavy rain case that
occurred in Medellı́n, Columbia, on 20 November 2004 (to-
tal precipitation: 96 mm). The parameters are OIT= 44, time

Fig. 5. The DNCPE for 1 July and 24–25 July 2007, Xinyang,
China. Parameters: OIT= 50; time delayT = 19; embedding
dimensionm = 4. Eigen-peak is in segment 8 and 30, respec-
tively, and the two heavy rain cases in segment 17 and 40; fore-
casting validity period is 9 d and 10 d, respectively.

Fig. 6. The DNCPE for 1 April 2003, Koblenz, Germany. Pa-
rameters: OIT= 47, time delayT = 26; embedding dimension
m = 4. Eigen-peak is in segment 14 and heavy rain is in 26;
forecasting validity period is 12 d.

Fig. 7. The DNCPE for 20 November 2004, Medellı́n,
Columbia. Parameters: OIT= 44; time delayT = 21; embed-
ding dimensionm = 4. Eigen-peak is in segment 12 and heavy
rain is in 27; forecasting validity period is 15 d.

delayT = 21, embedding dimensionm = 4, andλ1 = 0.177.
Three peaks are distributed in segments 12, 15 and 20, re-
spectively; two or more peaks indicate that the chaotic at-
tractor structure of this heavy rain case is complicated. In
this situation, the experiential rule for selecting the predic-
tion eigen-peak is to select the first peak that appears after
segment 5. So, the peak in segment 12 is regarded as an
eigen-peak, heavy rain is in segment 27, and then the fore-
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casting validity period is 15 d.

4. Stable time series comparisons and statisti-
cal analyses

In general, time series contain two types, stable and un-
stable series, which differ greatly in their motion character-
istics (Brockwell and Davis, 2001). Unstable time series are
also seen as nonlinear dynamical systems, such as heavy rain
extreme weather. So, we also test two other stable time series
by the NCPE model. Shown in Fig. 8 is the DNCPE of Gaus-
sian white noise: data length of 9200; parameter time delay
T = 15; and embedding dimensionm = 3. λ1 = 1.2927> 1
indicates that Gaussian white noise may induce chaos, but it
is effected by noise greatly, i.e., signal-to-noise ratio.The
prediction time length for the above Gaussian white noise se-
ries is short, comparatively, and the DNCPE is smooth, which
shows that Gaussian white noise does not have mutation fea-
tures, even projected in phase space.

Let us convert to other extreme weather cases by using
the NCPE model; drought, for example. Chuxiong is a se-
vere drought area in China. The DNCPE based on PWAT
is shown in Fig. 9, through the same processing. The pa-
rameters calculated areT = 19,m = 4; 0< λ1 = 0.0293< 1
shows that the drought weather system is still chaotic and
can be predicted for the PWAT variable. While the DNCPE
is smooth without an obvious eigen-peak, the result may be
affected by the following aspects. Firstly, the NCPE model
may not be more sensitive to drought forecasting when us-
ing the PWAT database; other meteorological elements such
as temperature or pressure will be tested and discussed in a
future paper. Secondly, it may also be related to the effect of
the time scale of variables in the NCPE model.

One hundred heavy rain cases are analyzed through the
above same calculation based on the NCPE model. The re-
sults show that the heavy rain cases tested are completely
chaotic based on LE. The prediction validity periods for the
above 100 heavy rain cases are shown statistically in Fig.
10. The short range, medium range and extended range for
weather prediction are often regards as 1–2 d, 3–9 d, and 10–
30 d respectively now. In this tests, the prediction validity
periods for 1–2 d, 3–9 d and 10–30 d are 4, 22 and 74 cases,
respectively, with no false alarms or omissions. Note that the
meaning of no false alarms or omissions does not represent
the prediction of the location and amount of precipitation,but
represents the prediction indicator.

There are 74 cases that reach the time scale for the 10–30
d extended range, but the remaining 26 cases belong to the
short- and medium-term time scale. The prediction validity
period exists over a time span of 1–30 d. The phenomenon
of the time span may be related to the difference from the
chaotic structure of individual heavy rain cases, or can possi-
bly be explained by the fact that the atmospheric predictabil-
ity limit has a spatiotemporal distribution difference (Ding
and Li, 2009b).

Therefore, the heavy rain process can be considered as a

Fig. 8.The DNCPE for Gaussian white noise. Parameters: time
delayT = 15; embedding dimensionm = 3. λ1 = 1.2927> 0
means it is chaotic without local mutation on the trajectoryof
the attractor.

Fig. 9. The DNCPE of drought in Chuxiong, China. Parame-
ters: T = 19; m = 4; 0< λ1 = 0.0293; without obvious eigen-
peak.

Fig. 10. Cartogram of the prediction validity period for 100
heavy rain cases globally. Prediction validity period is 1–2 d,
3–9 d and 10–30 d in 4, 22 and 74 cases, respectively, without
false alarms or omissions.

collection of unstable signals of time series data, and weather
may be viewed as a complicated nonlinear system that com-
bines the effects of both stable and unstable processes. The
segment size is determined by the trade-off between the sta-
tistical stability ofr(zzzi,zzz j) for long segments and a finer time
resolution for shorter segments. A slight advantage may be
gained using overlapping segments.
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5. Conclusion and discussion

An NCPE model is developed in this paper using single-
variable time series of a chaotic system combined with non-
linear dynamics and statistics based on phase space. The
NCPE model may be used to calculate nonlinear cross er-
ror of attractor local pairs, depict the local dynamical change
features in the attractors, and evaluate the development mech-
anism for a heavy rain chaotic process. Prediction validity
periods for 1–2 d, 3–9 d and 10–30 d occur in 4, 22 and 74
cases, respectively, without false alarms or omissions. Pre-
liminary results based on the 100 rainstorm samples show
that the NCPE model can achieve the heavy rain medium and
10–30 d extended range forecasting, which provides a basis
for extended range (10–30 d) heavy rain predictability.

Besides, because the data length of variables and segment
numbers are referred to in the NCPE model, the NCPE model
can diagnose the chaotic movement characteristics of heavy
rain at different time scales through the trade-off between
the variable date length and segment numbers. This novel
processing can also provide a new approach for developing
multi-variable chaotic weather system prediction algorithms
based on high-resolution spatiotemporal data.

Theoretically, the prediction validity period of the NCPE
model will be more stable when coupled with chaotic multi-
variables. Single-variable series data based on phase con-
struction are commonly applied to nonlinear chaotic trajec-
tory analysis, but this method presents several limitations (Li
and Chou, 1996). A single variable cannot be used to ana-
lyze the nonlinear dynamical features of the atmosphere per-
fectly, which is affected by multiple variables. Ding and
Li (2007) calculated the nonlinear local LE based on anN-
dimensional chaotic system, but could not distinguish the
contribution from every error vector because of computation
precision limitation. This finding reveals that calculating the
variation rate inm-dimensional space is difficult, although
the Gram–Schmidt Orthogonalization method is believed to
be theoretically able to do so.

How, then, can multivariable chaotic elements be coupled
into the NCPE model to improve extended range prediction
precision? Sensitivity analysis of the effects of meteorolog-
ical elements of different extreme weather conditions to the
NCPE model, as well as effects from initial error, external
forcing and other parameter errors, will be discussed in a fu-
ture report.
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