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ABSTRACT

Extended range (10-30 d) heavy rain forecasting is diffiouttperforms an important function in disaster prevention
and mitigation. In this paper, a nonlinear cross predicgaior (NCPE) algorithm that combines nonlinear dynamia an
statistical methods is proposed. The method is based o gipase reconstruction of chaotic single-variable timesef
precipitable water and is tested in 100 global cases of hesny First, nonlinear relative dynamic error for localrattor
pairs is calculated at different stages of the heavy raingss, after which the local change characteristics of tinecaors
are analyzed. Second, the eigen-peak is defined as a poediadiicator based on an error threshold of about 1.5, argbis t
used to analyze the forecasting validity period. The reswveal that the prediction indicator features regardeeigen-
peaks for heavy rain extreme weather are all reflected densiig without failure, based on the NCPE model; the prtiatic
validity periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 7és;agspectively, without false alarm or omission. The
NCPE model developed allows accurate forecasting of hesimyover an extended range of 10-30 d and has the potential to
be used to explore the mechanisms involved in the developafdreavy rain according to a segmentation scale. This novel
method provides new insights into extended range forewpatid atmospheric predictability, and also allows thetareaf
multi-variable chaotic extreme weather prediction modbelsed on high spatiotemporal resolution data.
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1. Introduction GRAPES (Huang et al., 2013) and AREMS (He et al., 2006).

o . hang et al. (2010) adopted an ingredients-based methodol-
Heavy rain is a type of disastrous weather that affects S
: . . gy (Doswell et al., 1996) and performed some significant
many areas of the world, often triggering landslides, mud: : ; .
) . research on the mechanisms of heavy rain formation and pre-
slides, floods, urban waterlogging, and many other secgndar . L .
ction validity periods.

disasters. As is known, the accuracy of heavy rain forecast. Secondly, considering the fact that numerical models are

ing on the 24-h time scale is currently about 20%, on aver- o 2 .
. . - : . Strongly sensitive to the initial atmospheric state andniobu
age. Therefore, improving prediction accuracy is an irsere

ing challenge in heavy rain prediction studies, especialy ary conditions (external forcing), it means that any instab

the extended range (10—30 d) scale. Improving accuracy't}/scan generate errors during the forecast process, and eve

. ) ; . . ’minor error from the initial conditions and model can lead
especially important for disaster prevention and mitgyai to significant loss of forecast ability (Lorenz, 1963a). Ep-
There are three main approaches currently used in he y i

avy.
rain prediction studies. Firstly, numerical weather p@ediS\{ in (1969) proposed an ensemble method for weather pre-

tion (NWP). Some of the methods developed according %ctmn, and demonstrated_th:_;\t this methodis an effectaye w
: : o tn address error from the initial state and model, compensat
this approach include the mesoscale prediction models MM

. : ing for the lack of a forecast validity period (Buizza et al.,
and WRF, and the medium-and large-scale numerical mOdé}%B). Currently, short- and medium-term ensemble predic-

tion mainly applies representative disturbances to the@bo
* Corresponding author: XIA Zhiye instabilities to obtain the probability distribution ofrecasts.
Email: xiazhiye@cuit.edu.cn Regarding the initial conditions, these are mainly ob-
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tained via initial perturbation methods, such as the breembles can be decomposed into two parts, i.e., a component
ing method (Toth and Kalnay, 1997), singular vector analyghat is less sensitive to the initial atmospheric state and a
(Molteni et al., 1996), perturbed observation (Houtekaeterchaotic component that is sensitive to initial values. &iff
al., 1996), 4D-Var assimilation (Gong et al., 1999), condent procedures can be applied to different components, but
tional nonlinear optimal perturbation (Mu and Jiang, 2008he chaotic component can currently only be solved in the
initial perturbations based on ensemble transformatiogei (VWorm of a probability distribution set calculated by histor
et al., 2006), and the nonlinear local Lyapunov vectodata. Chou et al. (2010) applied different strategies to ad-
method (Feng et al., 2014). In terms of the uncertainty airess the predictability and chaotic components in 10-30 d
ror from the model, it more often utilizes disturbed bourydaextended range weather forecasting, and suggested that com
conditions, or adopts different parameterization scheames bining dynamic and statistical methods is necessary to im-
cording to parameters’ sensitivities to prediction obggdliu  prove extended range prediction precision.
et al., 2010). Gao and Cao (2007) and Gao and Ran (2009) In summary, general numerical models cannot be applied
also developed a variety of dynamic predictors and integratto extended range scale rainstorm prediction. As such, ex-
them into a heavy rain prediction algorithm using reanalygploring the chaotic characteristics of the nonlinear weath
datasets, mostly, and found that severe storm rain forecagttem is an important endeavor.
precision improved on the synoptic and subsynoptic scales. In this paper, we develop a novel nonlinear cross-
Several studies have revealed that ensemble predictidn metediction error model (NCPE) based on phase space recon-
ods can improve forecasting techniques, but many of thesteuction of single-variable chaotic time series of heaip.r
methods require further refinement. Despite great advantésng nonlinear dynamics and statistical theory, 10-30:d pr
in prediction methods, the acceptable prediction valigiey diction effects are analyzed by evaluating the local dyrami
riod of numerical models is currently only about 5 d; forefeatures. The rest of the paper is structured as follows: Sec
casting precision decreases rapidly about 10 d later, #ted lition 2 describes the NCPE algorithm in detail. Section 3
improvement in precision for predictions of 10 or more daydetails the preprocessing of the NCPE dataset and parame-
can be achieved (Chou and Ren, 2006). ters, tests the NCPE model in 100 heavy rain cases, defines
Thirdly, the atmosphere is a complex nonlinear dynantie prediction indicator and analyzes the forecastinglitsili
cal system; chaos is its inherent characteristic. The oonti period. Section 4 makes some comparisons and analysis be-
ous accumulation of initial errors can lead to greater uncéween heavy rain chaotic systems and stable time seried base
tainty in the prediction model, and to some extent cannateven the NCPE model. Finally, a summary and further discus-
be predicted. Lorenz (1963b) showed that the atmosphesion is provided in section 5.
predictability limit is about 2 weeks on average, but the pre
cision of extended range (10-30 d) forecasting is beyortd tha o
limit. Because prediction accuracy is sensitive to both ind. Model description
tial error and the boundary conditions from weather sysienks
the forecasting model must consider the interaction ofe¢hes
factors, which requires new theory and methodology. Climate is a normal nonstationary system. In fact, the hi-
Ding and Li (2009a) and Li and Ding (2009, 2011) introerarchy feature of climate system is the cause to produce non
duced the concept of nonlinear error growth dynamics to thtationary behaviors, such as chaos system movement, and
spatiotemporal distribution of atmospheric predictapiin the nonstationary behaviors of climate process is justrthe i
the case of 500 hPa geopotential height. A number of studpgytant expression of hierarchy structure. A strangeaetibr
have indicated that atmospheric predictability is as hgyd@ is the reflection of a chaotic system’s movement trajectory
days, which is beyond the 2 weeks limit proposed by Lorerrojected in phase space; it is also the interaction outcome
This work provides a theoretical basis for extended ran§etween its overall stability and local instability (Yangda
(10-30 d) heavy rain forecasting. Besides, the low-frequenZhou, 2005). However, nearly all current theories and meth-
synoptic chart (LFSC) (Sun et al., 2010) was proposed bagits for climate prediction, including those in statisticgla
on the Madden—Julian Oscillation (MJO) method (Madddgronlinear sciences, are based on the assumption that the pro
and Julian, 1971), but the study area for the extended ramgss is stationary, which is in contrast to the nature ofatém
scale based on the MJO method is mainly around the equditecesses. This contradiction is probably an importanseau
rial regions. Preliminary results show that the validityipd of the low level of climate prediction.
with respect to the LFSC and MJO methods for heavy rain Chaotic dynamic systems are common in nature; most of
prediction is up to 10-45d (Sun et al., 2010); these two methese systems cannot be depicted explicitly by dynamicequa
ods are both regarded as valuable for extended range foredé@ns, and can only be understood through the available time
ing, theoretically. However, because the speed of the M3@ries data (Liu, 2010). Regarding the sensitivity of a tbao
and the synoptic system is hard to know in advance, theg¥stem to initial error, Eckmann and Ruelle (1985) proved
methods are still difficult to apply in practice. that a system is chaotic if it has at least one positive Lyagun
Given that extended range forecasting must consider gxponent (LE), which can be used to predict the system vari-
chaotic characteristics of the weather system, Krishnémuables, by the maximum LE, and then depict the global fea-
et al. (2000) adopted an approach wherein atmospheric véures of attractors. However, development of the initial er

1. Theoretical background
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ror is not identical in all cases, because of the local dynrantiue state qualitatively.
cal characteristics of the trajectory of attractor movenien Prediction models for dynamical systems can be built
phase space. Farmer and Sidorowieh (1987) showed thatdased on the above reconstructed attractor, and a serikes of a
cal prediction methods of chaos are better than global orgwithms have been proposed. The algorithms include the cor
in the same embedding dimension. Analysis of ENSO temelation dimensio®, information dimensio®,, and the tra-
poral evolution data based on global function fitting and LElitional LEs, particularly the space time-index methodr{Ke
showed that better prediction results can be obtained usimg, 1997). These parameters may be used to analyze global
fewer data compared with other models when chaos time seriation trends but cannot describe the chaotic locabtraj
ries analysis is adopted (Li and Li, 2007). Ding and Li (200Tory because of the smooth processing in these methods.
2009b) showed that the atmospheric predictability limass Nichols et al. (2003) made predictions for the dynam-
high as 20 d in the case of 500 hPa geopotential height, bagedof a damaged structure using attractor-based models of
on the nonlinear local LE developed, and also indicated thahealthy structure’s dynamics. The overall idea in theirwo
nonlinear local error growth is more effective in descripinwas to study the evolution of local neighborhoods of trajec-
the local structure of the attractor. Specifically, the sias tories on the attractor and use the evolved neighborhood for
or finite-time LEs are the global LEs, which are establishgatediction; then, the increase of mean self-predictioorerr
based on the assumption that the initial perturbationseme vcan be seen as the damage of the system. Atmospheric mu-
small that their evolution can be approximately governed Ibgtions are similar to the above damage structure. However,
the tangent linear model of a nonlinear system, which dg-this paper, we do not compare an attractor in the baseline
sentially belongs to linear error growth dynamics. Clearlgtructural condition to itself in a subsequent conditiather,
as long as an uncertainty remains infinitely small within thee study the relationships between the different localgafrt
framework of the linear error growth behavior, it cannot@oghe attractor, i.e.(i, j), i andj are the different local parts.
a limit to predictability. Therefore, nonlinear behaviarer- The quality of this relationship is measured through a redat
ror growth should be considered. dynamical prediction error matrix; the error matrix serass

In this paper, we analyze the relative dynamical errdhhe abnormal or mutation indicator of heavy rain system.
based on the NCPE model proposed, monitor the local dy- Conveniently, we reconstruct two attractoZg, andZ,.
namics change characteristics of heavy rain chaotic streict These can also be regarded as two different local parts of one

and diagnose the forecasting validity period. entire attractor trajectory. A trajectory is randomly sbbel
with index f on one of the reconstructed attractors and named
2.2. NCPE model 21(f). We then create a sgtincluding the neares® points

The general approach undertaken for a given singkethis trajectory, which appear on the other reconstruated
chaotic variable time seriegn) involves estimation of a pa- tractorZ,; namely,0 C z>(pq) and
rameterR(i) and analysis of its variation within a certain
threshold range based on a selection of samgpies. How- z(pg) = {lpg— flw,q=1,---P}, (3)
ever, characteristics analysis depends on the statigtichh-

bility distribution of the parameter, which often causesive Wherew is often called the Theiler window. Equation (3) is

ening or annihilation of sensitive features because of e & Purély geometric construction, so that the time indipgs
eraging process, such as the run-test method (Forrer and B N0t have any temporal relationship to the fiducial time in-
tach, 1997). Different to nonlinear time series analygis, 46X - In fact, by requiring that the chosen neighbors be no
often uses the phase space, time delay and embeddingcfiSer in time thanw steps, we are purposefully removing

mension theorems etc. based on the above theorems. It d§840ral correlations. The number of n_eighbpr§ to choose
not calculate the paramet@(i) of z(n) directly, but finds the 4€Pends on the purpose of the model being built; while large

characteristics of the global attract@rin phase space indi- "€ighborhoods tend not to depict local dynamics, and would

rectly. The trajectory of an attractor based on phase spagault in reduced sensitivity to changes, very small neaghb
reconstruction can be described as hoods may be much more sensitive to noise. An easy rule is

to choose the neighborho®d= Nz /1000 (Pecora and Car-
Z={z(n),n=1,---Nz}, (1) roll, 1996).

This local neighborhood is then used to predict some evo-
whereZ is the phase points set that consists of every phagéion time-steps into the future of what the fiducial trajec-
pointz(n), andNz is the total number of phase points on théory onz; will do. The choice of evolution time-stegsnust
trajectory. For a single phase point in the phase trajectofyliow the rule thats < T, whereT is time delay referred to
z(n) can be denoted by above; generallys will be chosen ad /2 for convenience.

Given s, the predictor may be selected as the centroid (or
Zn) ={zn),z(n+T),---Zn+(M-1T]},  (2) mean) of the time-evolved neighborhood:

whereT andm are the time delay and embedding dimen-
sion, respectively. The global attractbican be denoted by a 2(s) =
“pseudo” state space that models dynamical propertieseof th q

o

122(pq+5) ’ (4)

Tl
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3. Case study and analysis

The NCPE may then be computed as
3.1. Dataquality control and preprocessing

[ 1
r(Z1,Z,) = (s)—zy(f+9)|, 5
(21,22) Nz — m” 2(8) 2 )l ®) One hundred heavy rain cases globally are selected as re-

where the| - || operator indicates the Euclidean norm. Figur&arch objects in this paper, based on their reported damage
1 shows the NCPE procedum( f +s) andz;(s) are location caused, from websites and examples in other articles (e.g.,
1 and location 2 of the phase trajectory state, respectiarty Sunetal., 2010). The cases are mainly in China, Japan and In-
r(Z1,Z>) is a matrix that indicates the local relative dynamiélia in Asia; America, Canada and Mexico in North America;
error of attractor evolution. England, France, Germany and Greece in Europe; and coun-

By looking now at how relationships between various |gties in equatorial regions. The test data for the NCPE model
cal pairs of attractors on the structure may change as the 89prise a single-variable time series of precipitableewat
namics change, we can look at a geometric transfer functid?WVAT), from the four-times-daily National Centers for En-
between pairs, to a certain extent. vironmental Prediction—National Center for Atmospheré R

In fact, the occurrence of heavy rain is the mutation frogfarch (NCEP-NCAR) reanalysis dataset. PWAT is the mea-
a certain angle of the whole weather observation process.SH€ of the depth of liquid water at the surface that would
other words, this mutation can typically be seen as local p&gsult after precipitating all of the water vapor in a veatic
turbations to the phase structure, and then these relative §0lumn over a given location, usually extending from the sur
namic changes can be detected by observing how an atti@gee to 300 hPa; it is not the realistic rainfall amount, karn c
tor transfer function model may change across the heavy ré&ffl depict the characteristics of rainfall to some extent
process. This approach is similar to the concept of frequenc The reanalysis grid has a global spatial coverage®k2
domain transfer function methods, such as the autoregees@}-5, Or 144x 73 grid points. The rules for selecting the PWAT
(AR) approach; however, the AR model assumes that the tif#ji@€ series in this paper are as follows: the initial length o

series is a linear combination of past values of itself, ar cdhe PWAT series is about 31 days or more; a length of 5 days
be depicted by the following equation: is also selected after a heavy rain case; and the PWAT data

are from the single grid that covers the heavy rain location i
(6) latitude/longitude coordinates. Only in this way can we re-
veal the evolution mechanism of heavy rain using the NCPE
in phase space.
Data preprocessing includes five steps that should be car-

AR coefficients. NCPE may be used to detect local dynanH%d out before inclusion in the NCPE model. In step 1, op-

ﬂ;:gfh?:ifcéiz;;t'ﬁz %fet:eeﬁi?;otgc dai‘:rar‘:;t;;m aszot}imal interpolation of the raw data is conducted. The length
' P Y 9 9 f the initial time series is so short that it cannot meet the

process of hef';\vy rain. In part_|cular, when the entire haos analysis rules; for example, phase space reconstruc-
.tractor Is split into different cont!ngous parts (Qr segisgn tion (Wolf et al., 1985). Then, interpolation processing is

in the length scald, {z,2;,1,---i,]---N_}, N Is the to- required and, meanwhile, the chaotic structure of the -inter
tal segments number. In generalZ;,Z;) # r(Z;,Zi), or polated series cannot be varied. High-order nonlineatdtac

r(z,2)) .7£ r(zj_,zi), and it |s_proved that <_:haos 'S 'rrevers'.bl.eihterpolation is regarded as an effective method of intlerpo
r(z,z) is defined as the diagonal nonlinear cross-predicti

L SO : ?lgn, which can obtain the optimal interpolation times (PIT
error (ONCPE) when = j, which is also the main content Ofat the restriction of metric entropy (Xia and Xu, 2010); be-

this paper. cause metric entropy is scaled by the fractal dimenBiaf
the series, the invariait can prove that the chaotic structure

x(n+1)= % ax(n—Kk),
K=0

wherex(n) represents observed measurementsagnid the

attractor 1 attractor 2

random’

= /% _neighbor—
Educial® o I i\ hood
point / T geometrically— ™
t%me*?volvedcorrespondﬁngnelghb?rhood
fiducial neighborhoéd centroid
point ‘ [

| L= ;
! | | location 2 °
. location 1 |

Fig. 1. The nonlinear cross-prediction error process.

is unchanged during the interpolation process.

Figure 2 shows the metric entropy relative error surface
along with segments and interpolation times for a chaotic
time series sample. It can be seen that the chaotic structure
approximation of the initial series is not done by any interp
lation time, but by optimal times. In this situation, theatiale
error of metric entropy is the least and uncorrelated witf se
ments. So, in Fig. 2 for example, whose OIT is 22, it can be
seen that the interpolated structure is most similar to the o
inal only by the interpolation times of 22; the following pte
for calculation are based on the optimal interpolated data.

In step 2, phase space reconstruction is performed based
on Takens (1981) theorem. Here, the interpolated timeserie
data are vectorized intm dimension phase space. In step
3, the time delayT is calculated using mutual information
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interpolation optimization surface system. We define this eigen-peak as the prediction indicato
AR and therefore, the forecasting validity pertocd 21—11=10
et d, approximately, in this case.
e Specifically, the entire attractor projected into phase
P P space from the interpolated data is split into 31 continuous
segments, i.e., one phase trajectory segment corresponds t
one day’s state for the atmosphere. It can also be split into
more segments, such as 62 based on some rule. These con-
tinuous segments are equivalentdp andZ, or location 1
and location 2; in other words, there are 31 locations corre-
- sponding to the entire attractor on this condition. Themfo
20 it is very meaningful to explore local dynamic charactécsst
times by observing individual or mutual relationships of these 31
segments.
, , , In detail, we again stress that the main point of this pa-
Fig. 2. The 3D metric entropy error surface, relative eror ver- yo is 1 exploit the information contained in the relative
sus segment and mterpol_atl_on times. There is a Iocan_orswho dynamic errom(z,z), in addition to that contained in the
errors are less under the limit of segment number and interpo . .
tion times. diagonal terms(z,z). The NCPE matrix of the Chongging
case described above is shown in Fig. 4. For the relative

(Kantz and Schreiber, 1997). In step 4, the G-P algorithfiynamic error of every phase trajectory segmepxis)
(Ledrappier, 1981) is applied to calculate the correlatian on the prediction database of one other phase trajectory
mensionD; parameteD depicts the fractal structure of the
series. In step 5, the embedding dimensiois calculated diagonal prediction
based on the false nearest neighbor method (Kennel et a
1992), and it is ensured that> 2D + 1.

It is noted that how to choose the embedding dimensiol
m is also important to the phase reconstruction, amds
selected in this paper by the empirical theory (Andrew anc
David, 2005). The meteorological elements sensitivityl-ana
ysis of different extreme weather to the NCPE model, anc
also the effects from the initial error, external forcinglgra- 5 10 15 20 25 30
rameter error, will be discussed in a future paper; we only segment number
give parameters here.

=

Bom_,-_\,mooo

15"}
segments 5

relative error of matric entropy

10
00

@

cul—= UINOTW O H

(@)

heavy rain at
segment 21

N

1.

DNCPE error

0.

Fig. 3. The DNCPE for 21 July 1996, Chongging, China. Pa-
rameters: OIT= 43; time delayl = 16; embedding dimension
As an example, heavy rain occurred on 21 July 1996 inm = 4. Eigen-peak is in segment 11 and heavy rain is in 21;
Chongging, China. lIts total precipitation was 206 mm, andforecasting validity period is 10 d.
the raw data length was 344 = 124, it's dimensionless
guantity. The parameters calculated through the abovs,step
1-5, are that OI'E 43, time delayT = 16, also dimension- g
less quantity. embedding dimensian= 4, maximum LE
A1 = 0.1128> 0; A1 greater than zero shows that the raw 5o
data PWAT are chaotic. For convenience, the entire attractc
projected by the interpolated data in 4-dimensinonal phas
space is split into 31 continuous segments, i.e., one phas
trajectory segment corresponds to one day'’s state for the a b §
mosphere, which reflects the phase spatial variation of th(1H
heavy rain chaotic system every day. As the DNCPE in Fig.
3 shows, there is a maximum error of DNCPE at segment 11 1
equal to 2.49. We consider the value 1.5 as the threshold i
this paper, based on the calculation of 100 heavy rain case
globally. That is to say, the DNCPE errors greater than 1.t
are regarded as eigen-peaks for heavy rain predictiongln Fi
3, the heavy rain occurs in segment 21, and the predictiol x
eigen-peak is in segment 11, which is referred to as the most
unstable transition zone of the total attractor about tieetib ~ Fig. 4. The NCPE matrix for 21 July 1996, Chongging, China.

3.2. Casesvalidation and analysis

=11 ]
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segment X-axis), the numbers,2,3,4,5 and 6 in the ma- diagonal prediction
trix map represent six locations, respectively. The diadon
whose slope is 1, represents the DNCPE, and the remainin & 3
values in the matrix map represent the NCPE. As in Fig. 3, &
the matrix is asymmetric and shows that the chaotic systen;j
is irreversible again. &
Location 1 is the NCPE on the database of phase trajec %
tory segment 11. The relative error to theaxis is much 0
greater overall, indicating that this zone is most unstable
the phase trajectory, which can explain the predictioncadi
tor characteristics. Location 5 depicts the NCPE in segmen:
11 on the database of every phase segmeakis). The rel-  rig 5 The DNCPE for 1 July and 24-25 July 2007, Xinyang,
ative error is also greater overall, the same as locatiorol. L china. Parameters: OFF 50; time delayT = 19; embedding
cation 2 for the NCPE is in the database phase trajectory seg@fimensionm = 4. Eigen-peak is in segment 8 and 30, respec-
ment 1-5 zone. The relative error is large overall, and thigively, and the two heavy rain cases in segment 17 and 40; fore
result can be explained by Simmons et al. (1995) in that thesasting validity period is 9 d and 10 d, respectively.
effects of the initial state error are apparent in the ihgliage
of modern NWP models, but the role of error from models diagonal prediction
will become more important along with the prediction valid-
ity period growth. The relative dynamical error at locason
3 and 4 stand for before and after the rainstorm, respegtivel
the NCPE is relatively small and smooth compared to othe
sections, indicating that the local structure of the attrais
relatively stable in these two sections. In other words, the
mutation of the local relative dynamical structure of the at
tractor may appear long before the heavy rain period, such & o 5 10 15 20 25 30
location 1. Location 6 spans before and after the heavy rain segment number
The relative dynamical error is a gradually reducing preces
in the x-axis direction, which indicates that change in the lo- Fig. 6. The DNCPE for 1 April 2003, Koblenz, Germany. Pa-
cal structure of the attractor in this period is relativelgvs ~ rameters: OIT= 47, time delayl = 26; embedding dimension
with no mutation. m = 4. Eigen-peak is in segment 14 and heavy rain is in 26;
By the same argument, Fig. 5 is the DNCPE of a heavyforecasting validity period is 12 d.
rain event in Xinyang, China. There were two heavy rain
cases on 1 July and 24-25 July 2007, and the total precipite diagonal prediction
tion was 226 mm in the 1 July case. The parameters calcu
lated are OI'T=50, time delayl = 19, embedding dimension
m =4, andA; = 0.0833. The eigen-peaks are in segments
8 and 30, respectively, and the two heavy rain cases are i
segments 17 and 40, respectively, so the forecasting tyalidi
period is 9 d and 10 d, respectively. The DNCPE can predic
these two cases accurately, without omission.
There is an interesting phenomenon regarding the 5 10 15 20 25 30
DNCPE shown in Fig. 6, for heavy rain in Koblenz, Ger- segment number
many, on 1 April 2003 (total precipitation: 50 mm). The
parameters calculated are OH47, time delayl = 26, em-  Fig. 7. The DNCPE for 20 November 2004, Medellin,
bedding dimensiom = 4, andA; = 0.1530. The two peaks Columbia. Parameters: OFF 44; time delayT = 21; embed-
are distributed in segments 5 and 14, respectively, and théing dimensiorm = 4. Eigen-peak is in segment 12 and heavy
heavy rain cases in segment 26. The peak in segment 14in is in 27; forecasting validity period is 15 d.
is seen as the eigen-peak without considering the peak at 5
based on the above view from Simmons et al. (1995), so ttlelayT = 21, embedding dimensian= 4, andA; = 0.177.
forecasting validity period is 12 d. Three peaks are distributed in segments 12, 15 and 20, re-
Cases also exist that are not interpreted well by tlpectively; two or more peaks indicate that the chaotic at-
present NWP model, i.e., false alarms or omissions. We alsactor structure of this heavy rain case is complicated. In
test this phenomenon based on the NCPE model, such astti® situation, the experiential rule for selecting thedice
results shown in Fig. 7, which shows a heavy rain case than eigen-peak is to select the first peak that appears after
occurred in Medellin, Columbia, on 20 November 2004 (teegment 5. So, the peak in segment 12 is regarded as an
tal precipitation: 96 mm). The parameters are %4, time eigen-peak, heavy rain is in segment 27, and then the fore-
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casting validity period is 15 d. Gaussian white noise
o .4
3.5}
4. Stable time series comparisons and statisti- ¥ 5 g
cal analyses o2t ]
In general, time series contain two types, stable and un % 1. ? F N AN
stable series, which differ greatly in their motion chaeact % 0.5f
istics (Brockwell and Davis, 2001). Unstable time serigs ar 0

also seen as nonlinear dynamical systems, such as heavy re 0 5 10 15 20 25 30 35 40 45
extreme weather. So, we also test two other stable timesserie segment number

by the NCPE model. Shown in Fig. 8 is the DNCPE of Gaus_Fig 8.The DNCPE for Gaussian white noise. Parameters: time
_srla:n :\L/\g.]I;engzz]ebe%?%éegﬁzr?;%ozoé p;;imffég;n;eldela%elayT .:.15; empeinng dimensiom :.3. AL= 1.2927> 0

o ' . . . T ’ means it is chaotic without local mutation on the trajectofy
indicates that Gaussian white noise may induce chaos, but {f, o~ tor.

is effected by noise greatly, i.e., signal-to-noise ratithe
prediction time length for the above Gaussian white noise se
ries is short, comparatively, and the DNCPE is smooth, whict
shows that Gaussian white noise does not have mutation fei ;5
tures, even projected in phase space.

Let us convert to other extreme weather cases by usin
the NCPE model; drought, for example. Chuxiong is a se-
vere drought area in China. The DNCPE based on PWAT
is shown in Fig. 9, through the same processing. The pa
rameters calculated afle=19,m=4; 0< A; = 0.0293< 1
shows that the drought weather system is still chaotic ant
can be predicted for the PWAT variable. While the DNCPE
is smooth without an obvious eigen-peak, the result may be ] ) )
affected by the following aspects. Firstly, the NCPE model™'d: 9- The DNCPE of drought in Chuxiong, China. Parame-
may not be more sensitive to drought forecasting when usEerSkT =19;m=4; 0< A1 = 0.0293; without obvious eigen-
ing the PWAT database; other meteorological elements such®&
as temperature or pressure will be tested and discussed in &

diagonal prediction of drought

N

—
ol —= U1 NUTwarh

0.

5 10 15 20 25 30
segment number

DNCPE err

o

future paper. Secondly, it may also be related to the effiect o 12) DNCPE Model Evaluation
the time scale of variables in the NCPE model. o 101
One hundred heavy rain cases are analyzed through the g 1
above same calculation based on the NCPE model. There- & 81 I
sults show that the heavy rain cases tested are completely g 6—-
chaotic based on LE. The prediction validity periods for the 4 |
above 100 heavy rain cases are shown statistically in Fig. & 4
10. The short range, medium range and extended range for % 2_“
weather prediction are often regardsas 1-2d, 3-9d, and 10- O | HH
30 d respectively now. In this tests, the prediction vajidit 0 1 e S ]ﬂﬂﬂﬂﬂﬂﬂ .
periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 74 cases. 0 5 10 1_5 . 20 25 _30
respectively, with no false alarms or omissions. Note that t Forecast Validity Period(day)

meaning of no false alarms or omissions does not represent
the prediction of the location and amount of precipitatiout, Fig. 10. Cartogram of the prediction validity period for 100

represents the prediction indicator. heavy rain cases globally. Prediction validity period i I;

There are 74 cases that reach the time scale for the 10-3{) 9 ¢ and 10-30 d in 4, 22 and 74 cases, respectively, without
d extended range, but the remaining 26 cases belong to thgjse alarms or omissions.

short- and medium-term time scale. The prediction validity

period exists over a time span of 1-30 d. The phenomenasilection of unstable signals of time series data, and hexat

of the time span may be related to the difference from timeay be viewed as a complicated nonlinear system that com-

chaotic structure of individual heavy rain cases, or casposbines the effects of both stable and unstable processes. The

bly be explained by the fact that the atmospheric predictabsegment size is determined by the trade-off between the sta-

ity limit has a spatiotemporal distribution difference (i tistical stability ofr(z,z;) for long segments and a finer time

and Li, 2009b). resolution for shorter segments. A slight advantage may be
Therefore, the heavy rain process can be considered agied using overlapping segments.
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