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ABSTRACT

Geophysical data sets are growing at an ever-increasiagregjuiring computationally efficient data selectionr{tting)
methods to preserve essential information. Satellite) as WindSat, provide large data sets for assessing theaagand
computational efficiency of data selection techniques. ¥ data thinning technique, based on support vector regnessi
(SVR), is developed and tested. To manage large on-linditatiata streams, observations from WindSat are forméal in
subsets by Voronoi tessellation and then each is thinned/By($SVR). Three experiments are performed. The first corgfirm
the viability of TSVR for a relatively small sample, compagiit to several commonly used data thinning methods (random
selection, averaging and Barnes filtering), producing a i0i#ting rate (90% data reduction), low mean absolute srror
(MAE) and large correlations with the original data. A sed¢@xperiment, using a larger dataset, shows TSVR retrievals
with MAE < 1 m st and correlations> 0.98. TSVR was an order of magnitude faster than the commory thinning
methods. A third experiment applies a two-stage pipelind %R, to accommodate online data. The pipeline subsets
reconstruct the wind field with the same accuracy as the seepperiment, is an order of magnitude faster than the non-
pipeline TSVR. Therefore, pipeline TSVR is two orders of misude faster than commonly used thinning methods that
ingest the entire data set. This study demonstrates thaRTi@peline thinning is an accurate and computationally ieffic
alternative to commonly used data selection techniques.
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1. Introduction tors of observations to the data selection process andehenc

. . . . to the analysis. Notably, satellites provide high-resolubb-
The quantity of geophysical data is increasing at & ralos'%rvations over data poor regions, especially the oceahs an
rate. Hence, it is essential to identify and/or select festu P 9 » €SP y

that preserve relevant information in the data. Data sjelect.Sparsely populated land areas. Historically, d"?“a rechryda
. S issues led to the development of data selection approaches
has as its two main aims the removal of redundant and fau

_ thiat were simple and cost effective. These included: allo-
data. Here, the emphasis is on redundant data, so the terms . . :
. . . . cating the observations to geographical grid boxes and then
data selection and data thinning will be used intercharlgeab : )
X . . ayeraging the data in each box to produce so-called super-

Redundant data arise from two main sources: when the daia

L . observations, or “superobs” (Lorenc, 1981; Purser et al.,
density is greater than the spatial and temporal resolation ) . : ; L
o . . 2000); the selection of observations, in both meridional an
the analysis grid and when the data are not linearly indepen- L . . .
dent. Penalties for retaining redundant data are the (g SSizonal directions, with random sampling of the observations
) 9 v (Bondarenko et al., 2007); and the use of filters, such as the

massive) increase in computational .cost, the failure tisfgat nes scheme (Barnes, 1964). Owing to their simplicitg, an
key assumptions of the data analysis scheme (Lorenc, 19 fi . .
ecause they are non-adaptive, such strategies are teferre

and the increased risk of overfitting (particularly for pierhs as unintelligent data selection techniques. For exanipds, t

with high dimensions). Co - . go not specify targeted areas of interest or weight the data
The need for data selection is exemplified by satellite ob- . ; - T .
according to their contribution to minimizing differendes-
tween the thinned and non-thinned data.
* Corresponding author: Michael B. RICHMAN Recently, various intelligent data selection strategaésh
Email: mrichman@ou.edu emerged (e.g., Lazarus et al., 2010). Such approaches-are ef
servations. Satellites are among the most important dantri fective in identifying and removing redundant data and have
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other desirable features. One example is the Density Aatopting a pipeline methodology (Quinn, 2004) to improve
justed Data Thinning (DADT; Ochotta et al., 2005; 2007}he computational efficiency of the data selection scheme.
and its successor, the modified DADT (mDADT,; Lazarus et In section 2, large-scale problems using satellite daaset
al., 2010). The intelligent data selection schemes are-adape described. In section 3, it is shown how Voronoi tessella
tive, as they attempt to retain those observations that i@ reduces the size of the large observational data sads, a
less highly correlated with other observations, but cboté how a pipeline SVM methodology substantially enhances the
more significantly to the retention of the information cortte computational efficiency of the data selection scheme. The
in the observations (e.g., they employ metrics based on-gra@sults are presented in section 4. Finally, conclusioas ar
ents and/or curvature of the fields). Intelligent data s&dac discussed in section 5.

schemes usually require definitions of redundancy measures

and their sampling strategies iteratively remove obsemat

that fail to meet the metric threshold criteria. 2. Data
The present work develops an entirely different, kernel-
based, intelligent data selection technique using SupMeart This study employs data from the WindSat microwave

tor Machines (SVMs). SVMs require neithapriori specifi- polarimetric radiometry sensor (Gaiser et al., 2004). Wind
cation of metrics nor of thinning rates. SVMs are alterregtiv Sat provides environmental data products, includinguegt
to artificial neural networks, decision trees and Bayesitn nlongitude, cloud liquid water, column integrated precipie
works for classification and prediction tasks (Scholkopd a water, rain rate, and sea surface temperature. WindSat mea-
Smola, 2002) used in supervised learning, such as statistisurements over the ocean are used operationally to generate
classification and regression analysis. Although SVMs weagalysis fields and also as input to numerical weather predic
introduced several decades ago (Vapnik, 1982), they hdign models of the U.S. Navy, the U.S. National Oceanic and
been investigated extensively by the machine learning coAtmospheric Administration (NOAA) and the United King-
munity only since the mid-1990s (Shawe-Taylor and Cristom Meteorological Office. As a polarimetric radiometer,
tianini, 2004). WindSat measures not only the principal polarizations-(ver
SVMs require solving a quadratic programming probletical and horizontal), but also the cross-correlation & th
with linear constraints. Therefore, the speed of the allgori vertical and horizontal polarizations. The cross-cotrefa
is a function of the number of observations (data pointsjlusterms represent the third and fourth parameters of the mod-
during the training period. Hence, the SVM solution to prohfied Stokes vector (Gaiser et al., 2004). The Stokes vector
lems comprised of numerous data points is computationafiyovides a full characterization of the electromagnetip si
inefficient. Several methods have been proposed to amature of the ocean surface and the independent information
liorate this problem. Platt (1999) applied Sequential Minneeded to uniquely determine the wind direction (Chang et
mal Optimization (SMO), to break the large quadratic pral., 1997).
gramming problem into a series of smallest analyticallysol ~ To illustrate the data selection procedure introduced
able problems. A faster SMO SVM algorithm, advantageoberein, it suffices to explore a single data type, namely, sea
for real-time or online prediction or classification fordar surface wind (SSW) speeds and directions. For SSW data, it
scale problems, was suggested by Bottou and LeCun (2004 )necessary to account not only for random errors but also
Musicant and Mangasarian (2000) applied a linear progrdar spatially correlated errors. Typical ascending swéitins
SVM method to accommodate very large datasets. Bakirae24 hour sample of WindSat data providel.5 million ob-
al. (2004) selectively removed data using probabilistii- esservations. Given this massive number of data points, over-
mates, without modifying the location of the decision boundampling of wind data can severely degrade the analysis and,
ary. Other techniques used online training to reduce the ieBnsequently, the model forecasts.
pact of large data sets. Bottou and LeCun (2005) showed that Three experiments were carried out using different Wind-
performing a single epoch of an online algorithm converg&sat datasets. The first experiment was designed to assess, on
to the solution of the learning problem. Laskov et al. (200@)relatively small sample, the accuracy and computatidnal e
develop incremental SVM learning with the aim of providindiciency of a Voronoi tessellation followed by SVR to thin
a fast, numerically stable and robust implementation. Sujre WindSat data. Hereafter, this sequential combination
port Vector Regression (SVR) uses the kernel approach frafVoronoi tessellation followed by SVR will be referred to
SVM to replace the inner product in regression. It is di$TSVR”. Two hours of WindSat data from 1 January 2005
cussed extensively by Smola and Scholkopf (1998). SViMere chosen in the region 1A% to 145E longitude and
techniques have been applied to small-scale meteorologiz® to 42N latitude, providing 13 540 observations for the
applications, such as rainfall and diagnostic analysisidieldata selection process. Additionally, TSVR was compared to
supporting tornado outbreaks. These include the studiestlufee commonly used data thinning techniques (simple aver-
Son et al. (2005), Santosa et al. (2005), Trafalis et al. §200aging, random selection and a Barnes filter) to assess the rel
and in satellite data retrievals, by Wei and Roan (2012). Théve accuracy and computational efficiency of each method.
present study seeks to further enhance SVR in two respeétsecond experiment used 226393 observations to determine
(1) by applying a Voronoi tessellation (Bowyer, 1981) to ref the accuracy and computational efficiency gains by TSVR
duce the size of the large observational data sets and, \{&re preserved with a much larger dataset. The third experi-
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ment employs a pipeline methodology (section 3.3) as it hiesent fromc. That is if D(x,A) = inf{d(x,a)|a € A} de-
been employed successfully to achieve much higher commtes the distance between the poiaind the subse, then
tational efficiency (e.g., Ragothaman et al., 2014). Such¥pn= {x € X|d(x,P¢) < d(x,Pj), forall j # c}.
approach is expected to enhance real-time processing of anin general, the set of all points closerRg, than to any
on-line stream of WindSat data. other point ofS is called the Voronoi cell foP.. The set of
such polytopes is the Voronoi tessellation corresponding t

) ) ) the setS In two dimensional space, a Voronoi tessellation
3. Learning Machine Methodologies can be represented as shown in Fig. 1. Since the number of
data points inside each Voronoi polygon is much less than for

) ) the full data set, the computational time is reduced greatly
Experiments show that the standard SVR algorithm losgg,eqver, further efficiency can be gained by using parallel

computational efficiency when analyzing more than severgy 5 ting, solving a set of Voronoi polygons simultanepus!
thousand observations (Platt, 1999). Since the WindSat dat

sets used in this study are in excess of this, and can exc8&l Support Vector Regression

10° observations, direct application of SVR is not feasible. In SVR, itis assumed that there is a data source providing
Methods have been proposed to reduce this problem (e fgequence of observations and no distributional assump-
Platt, 1999; Musicant and Mangasarian, 2000). Voronoi tgsns are made. Each observation (data point) is reprasente
sellation partitions a plane witp points into convex poly- a4 4 vector with a finite numberof continuous and/or dis-
gons such that each polygon contains exactly one generaiidgie variables that can be denoted as a point in the Eunlidea

point and every point in a given polygon is closer to its gelynace M. Hence, thd observations are data points in the
erating point than to any other. The cells are called po$opg,cjidean spacg”.

(e.g., Voronoi polygons). They were employed by VOronoi - re| gpservations are divided infocells using Voronoi
(1908) and have been applied in diverse fields, such as c@isqe|iation. The methodology consists of making eebh
puter graphics, epidemiology, geology, and meteorology. fpservation a seed or “centroid” for a Voronoi céll Ve
shown in Fig. 1, the tessellation is achieved by allocating pl. The parametek is set such thap = |1/k|. Hence, for
the data points to a number of Voronoi cells (Du et al., 199 ‘largerk, fewer cells will be generated. Each celiwill be
Mansouri et al., 2007; Gilbert and Trafalis, 2009; Helms a%mposed of data points representedkye 8", Vi € [L1].
Hart, 2013). The process uses the Matlab “voronoi” functiqp regression problems, each observaﬁpa is related to a

(Matlab, 2012)' ) o unique real valued scalar target denotedﬁp;y The couplets
As mentlon_ed above,_ fora d|s<_:rete setof points infR (Xic.Yic) in M1 are a set of points that have a continuous
and for any poink, there is one point dclosest tx. More ;ninown shape that is not assumed to follow a known distri-

formally, letX be a space (ara nonempty subset &) pro- 1 ,ion. The objective of support vector regression (SVR) is
vided with a distance function, LetC, anonempty subsetof, fing a machine learning prediction function (in our appli-

X, be a set op centroids(Pc),c € 1, p|. The Voronoicell, or catign this is an estimation at a particular timeather than
Voronoi region,V, associated with the centroR is the set 5 forecast at time-+ At), denoted byf. for each cell; such
of all points inX whose distance tB; is not greater than their that the differences betwedg(X; ¢) and the target valuegc,
are minimized.
T T , B = In the present study, the target is either ther the v-
40 NP =0 o 0 0 | component of the winds. By introducing, for each obser-
: b NaVLY s WS —— | vationXc, a set of positive slack variable&,c, which are
minimized, the following set of constraints for the regiess

3.1. Voronoi Tessellation

BBN- - ~- 7 77 - problems are generated for each &ll
PO e e S T [fo(Xic) = Vel < & Vi€ [L]]
' éic=0 Vi e [1,1]

L BN P For linear regression, in the SVM literaturi, belongs to a

M TSR S L class of functions denoted 5y, such that:
sanl AL XS R Fi={XeR"— (We-X)+be, [We||[ <Bc}, (2
— . : J . - whereby is the bias termB. > 0 is a constant that bounds the
160 E 164 E 168 E 172 E 176 E

weight spacewe = 3_; @jc, Xj.c, andaj c € RVj € [1,1].

In the case of nonlinear regression, the class of functions,
Fig. 1. Voronoi tessellation for a subset of data over the PacificF, is changed to allow for linear regression in Hilbert space t
Ocean. where the observationg . will be mapped. This is achieved

by introducing a nonnegative definite kerfkelR" x R" —
distance to the other centroid®;, wherej is any index dif- 91, to induce a new Hilbert spateand mapp : 3" — H such
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thatk(x,y) = (¢ (X), ¢ (y))n for anyx andyin R". HenceF 3.3. Pipeline TSVR

becomes: To improve the efficiency of the TSVR, a pipeline

methodology (Quinn, 2004) is introduced to allow for an on-
line stream of meteorological satellite data. The pipeline
approach is appropriate for such data because the satellite
samples a swath of new wind data as it orbits. Within each
Voronoi polygon, the pipeline is applied to the variablesdis
to estimate the winds by TSVR. A two-stage pipeline (with
50% overlap as shown in Fig. 2) is applied that fetches and
preprocesses new data as old data is executing in the CPU.
(4) Figure 2 illustrates the pipeline, showing that the orbital
£.>0 swath is divided into discrete steps and how these new data
bz are incorporated into the TSVR process. Figure 2 shows the
SVM allows for an objective function that reduces thBIPeline window of width of four CPU time units, ingesting
slack variables and the expected valuéfgfxic) — yic|. To _the data_ set. At each step, the most recent data are included
achieve that objective, minimize the quantiﬂazs fi.’c, and N the window, while th_e oldest data are released. N_ext, the
Wl ’ vvfmﬂ_ow_moles Lo tze ngh'F Ey one-haé:f stepr; Herlllce, ms'_tgad
2 _ 5l _ Syl _ _ _ of thinning all the data within a window, the cells outside
5! T;T_JS' |(|;vct|7|{'_* ( ¢<(§_’_)1 .(X:I;C((f(_(x;f: %J:;%J(-,C‘Z(xhcz\i:ere the window are dropped and new Voronoi cells are formed
(kjij J:T(()I(’acc ;(JC A T"rfe quad:;tic proble?n ti) bce solved iS:that contain only the new data. If this overlappmg approach
AN were not adopted, the data would have to be ingested, prepro-
cessed and analyzed prior to moving on to the next batch of
(5) data, thereby reducing the efficiency of the process.

Fi={xeO"— (Wed(X))n +bc|[We|ln <Bc}, (3)

wherewe = 3\_, ajcd(Xjc), andajc € RYj € [L1]. Ex-
plicit knowledge ofH and ¢ is not required. Therefore, the
set of constraints Eq. (1) becomes:

|
Z O ck(Xjc,Xic) +bc—Vic| <&ic Vie[ll]
=1 .

Vi e [1,1]

. T
MiNg, £, b 0¢Kcac+CE & + b2
subject to {Kcac+bel -y | <&’

3.4. Measures of differences between non-thinned and
whereC > 0 is a positive trade-off constant that penalizesthe  thinned data

non-zero valugs of thg ¢, 1is al x 1 vector of ones, any Mean squared differences (commonly referred to as
is the vector with elementsc. _ MSE), mean absolute differences (MAE), as well as the cor-

~ The optimal solutior{ach;) of Eq. (5) yields the follow- rejation between the original (non-thinned) and thinneellsa
ing prediction function: lite observed winds are employed to measure the quality of
| the thinned observations. MSE, MAE and correlations are
fo i X Zlai*ck(xi.cax) b (6) o!efmed in Wilks (_2011). These are commonly applied met-

a9 ’ rics to measure differences between two fields.
The vectors fo; ¢ which the values ofr ¢ are nonzero are
called support vectors.

From Eqg. (3) a kernel is required. In this work, sever
kernels were tested for their ability to select a smaller bam
of observations with a minimum loss of information. Those The main objective of this experiment is to assess the

4. Resaults

%.1. Results of the first experiment

tested were:
the linear kernel,

feasibility of the TSVR, and to determine the most effec-
tive kernel, using a small sample (13 540 observations) of
WindSat data. Support vectors are used for the reproduc-

k(Xi,X) = X;rx ’ (7) . . . .
tion of the wind field after data selection. Because of the
the radial basis function kernel (RBF), intelligent adaptive capability of the TSVR, fewer than 8%
, of the observed satellite data were needed to reconstreict th
K(Xi,X) = ef”"—;’;i ®) wind field. To quantify the accuracy of the reconstructed
RO ’ winds using TSVR, the thinned winds are compared to the
the polvnomial kernel of dear non-thinned observations. From Eq. (3), a kernel must be
poly areg selected to generate the support vectors and reconsthects t
xTX q wind fields. Table 1 shows metrics (MSE, MAE and corre-
k(Xi,X) = (1+ F) ) (9) lations) for the kernels defined in section 3.1. The various
and the sigmoidal kernel, { Window | |
NI R N R R AR I AN AN B A A
H AN N AN R A I N B B B |
k(xi,X) = tanha(x'x) + ) , (10) 1 5 10 15 t

whereo,g,a and@ are scaling constants.

Fig. 2. Pipeline thinning showing the moving data window.
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Table 1. MAE, MSE and correlation metrics comparing the differenbesveen observed and thinnedandv-components of wind for
different SVR kernels. The kernel selected (RBF 1) is in bofd.

u-component v-component

MAE (m s~ 1) MSE (n? s72) Correlation MAE (m s1) MSE (n? s2) Correlation
RBF .5 1.25 8.27 0.90 0.88 3.07 0.98
RBF 1 1.15 5.99 0.91 0.72 2.71 0.98
RBF 5 1.30 6.72 0.90 0.99 3.29 0.98
RBF 10 1.48 8.32 0.87 1.09 3.71 0.98
RBF 20 1.60 9.30 0.85 1.22 4.25 0.98
RBF 50 1.86 10.95 0.82 1.62 5.94 0.97
RBF 100 2.03 12.41 0.80 1.89 7.34 0.96
Linear 2.06 12.84 0.79 1.96 7.82 0.95
Poly 12 2.06 12.82 0.79 1.96 7.81 0.95
Poly 13 2.05 12.80 0.79 1.96 7.80 0.95
Sig 11 2.06 12.85 0.79 1.96 7.82 0.95

kernels tested were: linear; seven radial basis functiatis wthe v-component (Fig. 3b). Both distributions are highly lep-
the o parameter varying from 0.5 to 100; polynomials withiokurtic, illustrating the efficacy of TSVR. Figure 4 preten
g =1 and of ordersq) 2 and 3; and sigmoidal with the twothe thinned (Figs. 4a, ¢) and non-thinned (Figs. 4b, d) lgatel
scale parametergy(0) set to 1. The smallest differences bewind field contours for thei- andv-components. The close
tween thinned and non-thinned wind data were obtained f&patial correspondence of the patterns for each compahent i
the RBF kernel, with ai-component MAE (MSE) of 1.05 consistent with the large positive correlations in Tabled f
m s 1(5.99 nf s2), which are 44% (53%) reductions in thehe RBF 1 kernel.
discrepancies, respectively, obtained from any non-RBF ke  For the present problem, most of the support vectors have
nel. For thev-component, the corresponding reductions falpha values near zero (Fig. 5), thus they have an insigntfica
the RBF kernel, compared to a non-RBF kernel, were eveantribution to the final solution. From Eg. (6), those suppo
larger at 63% (65%). The variances explained (correlatiomsctors with zero or near-zero alpha values are ignored, pro
squared) are 82.8% and 96.0% for thandv-components, viding further data reduction. For the present analysig; Fi
representing improvements of 33% and 6%, respectivelye 5 illustrates the large data reduction capability of SVR
over any non-RBF kernel. Therefore, the RBF kernel witlor these data. From the available 13540 data points, only
parameter 1 is used for all subsequent TSVR analyses. ~ 1000 support vectors<(8%) are required to reconstruct
Figure 3 shows frequency counts of the reconstructéte wind vector field with the aforementioned high level of
wind errors for the 13540 observations thinned by TSVRccuracy. Specifically, for each Voronoi cell, the sateliata
For theu-component (Fig. 3a), 77% (87%) of the discreppoints inside each cell are used to train the SVR. Fewer than
ancies of the magnitudes are1 m s1 (2 m s'1), which 8% of the observations were support vectors and are retained
is at or below the accepted observation error for these d#tarefore, the thinning rate is 92%. The< 8% support vec-
(Quilfen et al., 2007). Similar discrepancies were found faors had an MAE of 0, the MAE of the other 92% data

4500 450075
4000 4000
§ 3500 -og' 3500
33000 3 3000
© 2500 © 2500
) o)
©2000 S 2000
S 1500 $ 1500
(o8 o
@ 1000 @ 1000
Y- 500 “- 500
0 0
40 5 0 5 10 10 5 0 5 10

Difference (ms™') Difference (ms™")

Fig. 3. Frequency counts of the wind speed discrepancies (i setween the original non-thinned data and
the thinned data (a) for thecomponent and (b) for thecomponent of the sea surface winds.
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Fig. 4. Contour maps of the-andv-components (in m3t) of the (a, ) thinned and (b, d) non-thinned wind

fields.
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Fig. 5. Distributions of the alpha values for the support vector&@ptheu-component and (b) thecomponent
of the winds.

points was calculated using ony 8% of the support vec- to compare it to several commonly used data thinning tech-
tors. Since the percentage of support vectors is a funcfionmiques. For these commonly used techniques, the observa-
the complexity of the data field, it will vary according to théions were assigned to cells dfdegrees latitude and lon-
spatial and temporal data structure. gitude. For random sampling, a single observation was se-
) lected. For the other schemes, all data were used. The accu-
4.2. Results of the second experiment racy of these data selection methods is shown in Figs. 6a-d
Given the large data reduction and high level of acc¢MAE, MSE) and Fig. 7 (correlation). The MAE for the
racy in reproducing the wind fields provided by TSVR, asomponent (Fig. 6a) shows that, as the width of the data cells
found in section 4.1, a considerably larger sample (2263@8creases, the discrepancies decrease for both averaging a
data points) was drawn to assess the scalability of TSVR atmhdom selection. The accuracy of Barnes filtering improves
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Fig. 6. Mean absolute differences (MAE) and mean squared diffee(MSE) between the thinned and non-
thinnedu-components (a, c) andcomponent (b, d) of the wind (in n8) for the averaging, random, Barnes

and TSVR thinning methods.
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than the corresponding MAE values; however, the ranking
of the techniques remains the same, with the random sam-
pling being least accurate, averaging and Barnes giving sim
ilar results and the TSVR producing the most accurate thin-
ning. The correlation between the thinned and non-thinned
winds is calculated for the same data selection methods (Fig
7). As the cell width decreases, the correlations for the u-
components, given by the three commonly used techniques
move closer to the TSVR value, but never exceed it. Despite
these large correlations at small cell widths, the largerBVIA
and MSE of the three commonly used techniques indicate less
accurate thinning for those methods. TMieomponent cor-

Fig. 7. Correlations between the thinned and non-thinned data€lations for the other methods are considerably lower than
for the averaging, random, Barnes and TSVR thinning methodsthose for TSVR (Fig. 7). Moreover, the high correlations ob-

tained with the three commonly used data selection methods

as the cells decrease in size and reaches a minimum & achieved at the expense of a loss of computational effi-
cell width of approximately 0.7 degrees; beyond that, insufiency (Fig. 8), as the TSVR requires approximately 250 sec-
ficient data density produces increasingly inaccuratelt®esuonds to thin these data at the aforementioned accuracyfcorr
As the Voronoi tessellation is applied to TSVR, the cells dation of 0.99 and 0.98 for the TSVR) versus over 1000 sec-
not change and hence the accuracy remains constant. Foraihés for the other three techniques. For this experimeat, th
v-component (Fig. 6b), similar behavior is noted for all tectpercentage of data required to obtain this level of accuracy
nigues. TSVR is the most accurate thinning technique witbr the TSVR is~ 10%. In comparison, the thinning rates of
MAE ~ 0.5 m s 1. The MSE values (Figs. 6c, d) are largethe three commonly used methods, to achieve accuracy close
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TSVR without a pipeline, a sample of 120983 data points was
drawn from the 1.5 million observations. The results for the
regular and pipeline TSVR are very similar, with MAE mag-
nitude differences (Fig. 9a, b) &f 0.05 m s'1 and the MSE
differences of< 0.1 n? s~2 (Fig. 9c, d). The correlations
between the reconstructed and observed winds for the regula
versus pipeline methods (Fig. 9e, f) show trivial differesc

in the second decimal point, at most. It is notable that the
correlations for the-component are, for both the regular and
pipeline methods;- 0.97 (Fig. 9e) and, for the-component,

~ 0.99 (Fig. 9f), indicating the very close correspondence
between the thinned and the non-thinned data. The compu-

Fig. 8. Computation time as a function of cell width (in degrees) tation time for the pipeline TSVR is less than that for the
for the average, random and Barnes thinning solutions sersuregular TSVR. The computational efficiency gain arises as,

TSVR.

to that of the TSVR, is much larger(26%).

4.3. Results of the third experiment

for the first CPU time step (Fig. 10= 1), all the data within

the window are thinned; however, for> 1, using pipeline
TSVR, only the new data are thinned. For both the pipeline
and non-pipeline TSVR approaches, the time needed to thin
the data for the first period was 145 seconds. However, for

Using TSVR, computation times can be decreased pgriods 2—-13, the average thinning time wad42 seconds
buffering in a series of subsets of data and calculating tf@ the regular TSVR, decreasing by an order of magnitude
support vectors of each sample. This process is knowntas13 seconds for the pipeline TSVR approach (Fig. 10).
pipeline thinning (Fig. 2). To investigate the gain in comTherefore, the pipeline TSVR approach requires just 9% of
putational efficiency of the pipeline approach, compared the time of the non-pipeline TSVR method, while providing
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Fig. 9. Mean absolute differences (MAE), mean squared differefM&E) (in m s°1) and correlations between
the thinned and non-thinnadcomponents (a, ¢, €) anvecomponent (b, d, f) of the wind regular SVR thinning
versus the pipeline TSVR thinning. The data subset is shawth@horizontal axis.
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