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ABSTRACT

Geophysical data sets are growing at an ever-increasing rate, requiring computationally efficient data selection (thinning)
methods to preserve essential information. Satellites, such as WindSat, provide large data sets for assessing the accuracy and
computational efficiency of data selection techniques. A new data thinning technique, based on support vector regression
(SVR), is developed and tested. To manage large on-line satellite data streams, observations from WindSat are formed into
subsets by Voronoi tessellation and then each is thinned by SVR (TSVR). Three experiments are performed. The first confirms
the viability of TSVR for a relatively small sample, comparing it to several commonly used data thinning methods (random
selection, averaging and Barnes filtering), producing a 10%thinning rate (90% data reduction), low mean absolute errors
(MAE) and large correlations with the original data. A second experiment, using a larger dataset, shows TSVR retrievals
with MAE < 1 m s−1 and correlations> 0.98. TSVR was an order of magnitude faster than the commonly used thinning
methods. A third experiment applies a two-stage pipeline toTSVR, to accommodate online data. The pipeline subsets
reconstruct the wind field with the same accuracy as the second experiment, is an order of magnitude faster than the non-
pipeline TSVR. Therefore, pipeline TSVR is two orders of magnitude faster than commonly used thinning methods that
ingest the entire data set. This study demonstrates that TSVR pipeline thinning is an accurate and computationally efficient
alternative to commonly used data selection techniques.
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1. Introduction

The quantity of geophysical data is increasing at a rapid
rate. Hence, it is essential to identify and/or select features
that preserve relevant information in the data. Data selection
has as its two main aims the removal of redundant and faulty
data. Here, the emphasis is on redundant data, so the terms
data selection and data thinning will be used interchangeably.
Redundant data arise from two main sources: when the data
density is greater than the spatial and temporal resolutionof
the analysis grid and when the data are not linearly indepen-
dent. Penalties for retaining redundant data are the (possibly
massive) increase in computational cost, the failure to satisfy
key assumptions of the data analysis scheme (Lorenc, 1981)
and the increased risk of overfitting (particularly for problems
with high dimensions).

The need for data selection is exemplified by satellite ob-
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servations. Satellites are among the most important contribu-

tors of observations to the data selection process and, hence,
to the analysis. Notably, satellites provide high-resolution ob-
servations over data poor regions, especially the oceans and
sparsely populated land areas. Historically, data redundancy
issues led to the development of data selection approaches
that were simple and cost effective. These included: allo-
cating the observations to geographical grid boxes and then
averaging the data in each box to produce so-called super-
observations, or “superobs” (Lorenc, 1981; Purser et al.,
2000); the selection of observations, in both meridional and
zonal directions, with random sampling of the observations
(Bondarenko et al., 2007); and the use of filters, such as the
Barnes scheme (Barnes, 1964). Owing to their simplicity, and
because they are non-adaptive, such strategies are referred to
as unintelligent data selection techniques. For example, they
do not specify targeted areas of interest or weight the data
according to their contribution to minimizing differencesbe-
tween the thinned and non-thinned data.

Recently, various intelligent data selection strategies have
emerged (e.g., Lazarus et al., 2010). Such approaches are ef-
fective in identifying and removing redundant data and have
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other desirable features. One example is the Density Ad-
justed Data Thinning (DADT; Ochotta et al., 2005; 2007),
and its successor, the modified DADT (mDADT; Lazarus et
al., 2010). The intelligent data selection schemes are adap-
tive, as they attempt to retain those observations that are
less highly correlated with other observations, but contribute
more significantly to the retention of the information content
in the observations (e.g., they employ metrics based on gradi-
ents and/or curvature of the fields). Intelligent data selection
schemes usually require definitions of redundancy measures,
and their sampling strategies iteratively remove observations
that fail to meet the metric threshold criteria.

The present work develops an entirely different, kernel-
based, intelligent data selection technique using SupportVec-
tor Machines (SVMs). SVMs require neithera priori specifi-
cation of metrics nor of thinning rates. SVMs are alternatives
to artificial neural networks, decision trees and Bayesian net-
works for classification and prediction tasks (Schölkopf and
Smola, 2002) used in supervised learning, such as statistical
classification and regression analysis. Although SVMs were
introduced several decades ago (Vapnik, 1982), they have
been investigated extensively by the machine learning com-
munity only since the mid-1990s (Shawe-Taylor and Cris-
tianini, 2004).

SVMs require solving a quadratic programming problem
with linear constraints. Therefore, the speed of the algorithm
is a function of the number of observations (data points) used
during the training period. Hence, the SVM solution to prob-
lems comprised of numerous data points is computationally
inefficient. Several methods have been proposed to ame-
liorate this problem. Platt (1999) applied Sequential Mini-
mal Optimization (SMO), to break the large quadratic pro-
gramming problem into a series of smallest analytically solv-
able problems. A faster SMO SVM algorithm, advantageous
for real-time or online prediction or classification for large
scale problems, was suggested by Bottou and LeCun (2004).
Musicant and Mangasarian (2000) applied a linear program
SVM method to accommodate very large datasets. Bakır et
al. (2004) selectively removed data using probabilistic esti-
mates, without modifying the location of the decision bound-
ary. Other techniques used online training to reduce the im-
pact of large data sets. Bottou and LeCun (2005) showed that
performing a single epoch of an online algorithm converges
to the solution of the learning problem. Laskov et al. (2006)
develop incremental SVM learning with the aim of providing
a fast, numerically stable and robust implementation. Sup-
port Vector Regression (SVR) uses the kernel approach from
SVM to replace the inner product in regression. It is dis-
cussed extensively by Smola and Schölkopf (1998). SVM
techniques have been applied to small-scale meteorological
applications, such as rainfall and diagnostic analysis fields
supporting tornado outbreaks. These include the studies of
Son et al. (2005), Santosa et al. (2005), Trafalis et al. (2005),
and in satellite data retrievals, by Wei and Roan (2012). The
present study seeks to further enhance SVR in two respects:
(1) by applying a Voronoi tessellation (Bowyer, 1981) to re-
duce the size of the large observational data sets and, (2)

adopting a pipeline methodology (Quinn, 2004) to improve
the computational efficiency of the data selection scheme.

In section 2, large-scale problems using satellite datasets
are described. In section 3, it is shown how Voronoi tessella-
tion reduces the size of the large observational data sets, and
how a pipeline SVM methodology substantially enhances the
computational efficiency of the data selection scheme. The
results are presented in section 4. Finally, conclusions are
discussed in section 5.

2. Data

This study employs data from the WindSat microwave
polarimetric radiometry sensor (Gaiser et al., 2004). Wind-
Sat provides environmental data products, including latitude,
longitude, cloud liquid water, column integrated precipitable
water, rain rate, and sea surface temperature. WindSat mea-
surements over the ocean are used operationally to generate
analysis fields and also as input to numerical weather predic-
tion models of the U.S. Navy, the U.S. National Oceanic and
Atmospheric Administration (NOAA) and the United King-
dom Meteorological Office. As a polarimetric radiometer,
WindSat measures not only the principal polarizations (ver-
tical and horizontal), but also the cross-correlation of the
vertical and horizontal polarizations. The cross-correlation
terms represent the third and fourth parameters of the mod-
ified Stokes vector (Gaiser et al., 2004). The Stokes vector
provides a full characterization of the electromagnetic sig-
nature of the ocean surface and the independent information
needed to uniquely determine the wind direction (Chang et
al., 1997).

To illustrate the data selection procedure introduced
herein, it suffices to explore a single data type, namely, sea
surface wind (SSW) speeds and directions. For SSW data, it
is necessary to account not only for random errors but also
for spatially correlated errors. Typical ascending swathsfor
a 24 hour sample of WindSat data provide∼ 1.5 million ob-
servations. Given this massive number of data points, over-
sampling of wind data can severely degrade the analysis and,
consequently, the model forecasts.

Three experiments were carried out using different Wind-
Sat datasets. The first experiment was designed to assess, on
a relatively small sample, the accuracy and computational ef-
ficiency of a Voronoi tessellation followed by SVR to thin
the WindSat data. Hereafter, this sequential combination
of Voronoi tessellation followed by SVR will be referred to
“TSVR”. Two hours of WindSat data from 1 January 2005
were chosen in the region 127◦W to 145◦E longitude and
23◦ to 42◦N latitude, providing 13 540 observations for the
data selection process. Additionally, TSVR was compared to
three commonly used data thinning techniques (simple aver-
aging, random selection and a Barnes filter) to assess the rel-
ative accuracy and computational efficiency of each method.
A second experiment used 226393 observations to determine
if the accuracy and computational efficiency gains by TSVR
were preserved with a much larger dataset. The third experi-
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ment employs a pipeline methodology (section 3.3) as it has
been employed successfully to achieve much higher compu-
tational efficiency (e.g., Ragothaman et al., 2014). Such an
approach is expected to enhance real-time processing of an
on-line stream of WindSat data.

3. Learning Machine Methodologies

3.1. Voronoi Tessellation

Experiments show that the standard SVR algorithm loses
computational efficiency when analyzing more than several
thousand observations (Platt, 1999). Since the WindSat data
sets used in this study are in excess of this, and can exceed
106 observations, direct application of SVR is not feasible.
Methods have been proposed to reduce this problem (e.g.,
Platt, 1999; Musicant and Mangasarian, 2000). Voronoi tes-
sellation partitions a plane withp points into convex poly-
gons such that each polygon contains exactly one generating
point and every point in a given polygon is closer to its gen-
erating point than to any other. The cells are called polytopes
(e.g., Voronoi polygons). They were employed by Voronoi
(1908) and have been applied in diverse fields, such as com-
puter graphics, epidemiology, geology, and meteorology. As
shown in Fig. 1, the tessellation is achieved by allocating
the data points to a number of Voronoi cells (Du et al., 1999;
Mansouri et al., 2007; Gilbert and Trafalis, 2009; Helms and
Hart, 2013). The process uses the Matlab “voronoi” function
(Matlab, 2012).

As mentioned above, for a discrete set,S, of points inR
n

and for any pointxxx, there is one point ofSclosest toxxx. More
formally, letX be a space (andSa nonempty subset ofX) pro-
vided with a distance function,d. LetC, a nonempty subset of
X, be a set ofp centroids(PPPc),c∈ [1, p]. The Voronoi cell, or
Voronoi region,Vc, associated with the centroidPPPc is the set
of all points inX whose distance toPPPc is not greater than their

Fig. 1. Voronoi tessellation for a subset of data over the Pacific
Ocean.

distance to the other centroids,PPP j , where j is any index dif-

ferent fromc. That is if D(xxx,A) = inf{d(xxx,aaa)|aaa ∈ A} de-
notes the distance between the pointx and the subsetA, then
Vc = {xxx∈ X|d(xxx,PPPc) 6 d(xxx,PPPj), for all j 6= c}.

In general, the set of all points closer toPPPc, than to any
other point ofS, is called the Voronoi cell forPPPc. The set of
such polytopes is the Voronoi tessellation corresponding to
the setS. In two dimensional space, a Voronoi tessellation
can be represented as shown in Fig. 1. Since the number of
data points inside each Voronoi polygon is much less than for
the full data set, the computational time is reduced greatly.
Moreover, further efficiency can be gained by using parallel
computing, solving a set of Voronoi polygons simultaneously.

3.2. Support Vector Regression

In SVR, it is assumed that there is a data source providing
a sequence ofl observations and no distributional assump-
tions are made. Each observation (data point) is represented
as a vector with a finite numbern of continuous and/or dis-
crete variables that can be denoted as a point in the Euclidean
space,Rn. Hence, thel observations are data points in the
Euclidean spaceRn.

The l observations are divided intop cells using Voronoi
tessellation. The methodology consists of making eachkth
observation a seed or “centroid” for a Voronoi cellVc,∀c ∈
[1, p]. The parameterk is set such thatp = ⌊1/k⌋. Hence, for
a largerk, fewer cells will be generated. Each cellVc will be
composed of data points represented byxxxi,c ∈ R

n,∀i ∈ [1, l ].
In regression problems, each observationxxxi,c is related to a
unique real valued scalar target denoted byyi,c. The couplets
(xxxi,c,yi,c) in R

n+1 are a set of points that have a continuous
unknown shape that is not assumed to follow a known distri-
bution. The objective of support vector regression (SVR) is
to find a machine learning prediction function (in our appli-
cation, this is an estimation at a particular time,t, rather than
a forecast at timet + ∆t), denoted byfc for each cellVc such
that the differences betweenfc(xxxi,c) and the target values,yi,c,
are minimized.

In the present study, the target is either theu-or the v-
component of the winds. By introducing, for each obser-
vation xxxi,c, a set of positive slack variables,ξi,c, which are
minimized, the following set of constraints for the regression
problems are generated for each cellVc:

{

| fc(xxxi,c)−yi,c| 6 ξi,c ∀i ∈ [1, l ]

ξi,c > 0 ∀i ∈ [1, l ]
. (1)

For linear regression, in the SVM literature,fc belongs to a
class of functions denoted byF , such that:

F := {xxx∈ R
n 7→ 〈wwwc ·xxx〉+bc,‖wwwc‖ 6 Bc} , (2)

wherebc is the bias term,Bc > 0 is a constant that bounds the
weight space,wwwc = ∑l

j=1α j ,c, xxx j ,c, andα j ,c ∈ R∀ j ∈ [1, l ].
In the case of nonlinear regression, the class of functions,

F , is changed to allow for linear regression in Hilbert space to
where the observationsxxxi,c will be mapped. This is achieved
by introducing a nonnegative definite kernelk : R

n×R
n →

R, to induce a new Hilbert spaceH and mapϕ : Rn →H such
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thatk(xxx,yyy) = 〈ϕ(xxx),ϕ(yyy)〉H for anyxxx andyyy in R
n. Hence,F

becomes:

F := {x ∈ ℜn 7→ 〈wwwcϕ(xxx)〉H +bc‖wwwc‖H 6 Bc} , (3)

wherewwwc = ∑l
j=1 α j ,cϕ(xxx j ,c), andα j ,c ∈ R∀ j ∈ [1, l ]. Ex-

plicit knowledge ofH andϕ is not required. Therefore, the
set of constraints Eq. (1) becomes:















∣

∣

∣

∣

∣

l

∑
j=1

α j ,ck(xxx j ,c,xxxi,c)+bc−yi,c

∣

∣

∣

∣

∣

6 ξi,c ∀i ∈ [1, l ]

ξi,c > 0 ∀i ∈ [1, l ]

. (4)

SVM allows for an objective function that reduces the
slack variables and the expected value of| fc(xxxi,c)− yi,c|. To
achieve that objective, minimize the quantitiesbc, ξi,c, and
‖wwwc‖H .

Thus,‖wwwc‖
2
H = 〈∑l

j=1 α j ,cϕ(xxx j ,c) ·∑l
j=1α j ,cϕ(xxx j ,c)〉H =

∑l
i=1 ∑l

j=1 αi,cα j ,c〈ϕ(xxxi,c) · ϕ(xxx j ,c)〉H = αααT
c KKKcαααc, where

(KKKc)i j = k(xxxi,c,xxx j ,c). The quadratic problem to be solved is:

minαc,ξc,bcαααT
c KKKcαααc +CξξξT

c ξξξ c +b2
c

subject to :|KKKcαααc +bc1−yyyc| 6 ξξξ c

, (5)

whereC > 0 is a positive trade-off constant that penalizes the
non-zero values of theξi,c, 1 is a l ×1 vector of ones, andyyyc
is the vector with elementsyi,c.

The optimal solution(ααα∗
cb∗c) of Eq. (5) yields the follow-

ing prediction function:

fc : xxx 7→
l

∑
i=1

α∗
i,ck(xxxi,c,xxx)+b∗c . (6)

The vectors forxxxi,c which the values ofαi,c are nonzero are
called support vectors.

From Eq. (3) a kernel is required. In this work, several
kernels were tested for their ability to select a smaller number
of observations with a minimum loss of information. Those
tested were:
the linear kernel,

k(xxxi ,xxx) = xxxT
i xxx , (7)

the radial basis function kernel (RBF),

k(xxxi ,xxx) = e
−

‖xxx−xxxi‖
2

σ2 , (8)

the polynomial kernel of degreeq,

k(xxxi ,xxx) =

(

1+
xxxT

i xxx
g

)q

, (9)

and the sigmoidal kernel,

k(xxxi ,xxx) = tanh(a(xxxT
i xxx)+ θ ) , (10)

whereσ ,g,a andθ are scaling constants.

3.3. Pipeline TSVR

To improve the efficiency of the TSVR, a pipeline
methodology (Quinn, 2004) is introduced to allow for an on-
line stream of meteorological satellite data. The pipeline
approach is appropriate for such data because the satellite
samples a swath of new wind data as it orbits. Within each
Voronoi polygon, the pipeline is applied to the variables used
to estimate the winds by TSVR. A two-stage pipeline (with
50% overlap as shown in Fig. 2) is applied that fetches and
preprocesses new data as old data is executing in the CPU.
Figure 2 illustrates the pipeline, showing that the orbital
swath is divided into discrete steps and how these new data
are incorporated into the TSVR process. Figure 2 shows the
pipeline window of width of four CPU time units, ingesting
the data set. At each step, the most recent data are included
in the window, while the oldest data are released. Next, the
window moves to the right by one-half step. Hence, instead
of thinning all the data within a window, the cells outside
the window are dropped and new Voronoi cells are formed
that contain only the new data. If this overlapping approach
were not adopted, the data would have to be ingested, prepro-
cessed and analyzed prior to moving on to the next batch of
data, thereby reducing the efficiency of the process.

3.4. Measures of differences between non-thinned and
thinned data

Mean squared differences (commonly referred to as
MSE), mean absolute differences (MAE), as well as the cor-
relation between the original (non-thinned) and thinned satel-
lite observed winds are employed to measure the quality of
the thinned observations. MSE, MAE and correlations are
defined in Wilks (2011). These are commonly applied met-
rics to measure differences between two fields.

4. Results

4.1. Results of the first experiment

The main objective of this experiment is to assess the
feasibility of the TSVR, and to determine the most effec-
tive kernel, using a small sample (13 540 observations) of
WindSat data. Support vectors are used for the reproduc-
tion of the wind field after data selection. Because of the
intelligent adaptive capability of the TSVR, fewer than 8%
of the observed satellite data were needed to reconstruct the
wind field. To quantify the accuracy of the reconstructed
winds using TSVR, the thinned winds are compared to the
non-thinned observations. From Eq. (3), a kernel must be
selected to generate the support vectors and reconstructs the
wind fields. Table 1 shows metrics (MSE, MAE and corre-
lations) for the kernels defined in section 3.1. The various

 1                  5                       10                     15            t  

Fig. 2. Pipeline thinning showing the moving data window.
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Table 1. MAE, MSE and correlation metrics comparing the differencesbetween observed and thinnedu- andv-components of wind for
different SVR kernels. The kernel selected (RBF 1) is in boldfont.

u-component v-component

MAE (m s−1) MSE (m2 s−2) Correlation MAE (m s−1) MSE (m2 s−2) Correlation

RBF .5 1.25 8.27 0.90 0.88 3.07 0.98
RBF 1 1.15 5.99 0.91 0.72 2.71 0.98
RBF 5 1.30 6.72 0.90 0.99 3.29 0.98
RBF 10 1.48 8.32 0.87 1.09 3.71 0.98
RBF 20 1.60 9.30 0.85 1.22 4.25 0.98
RBF 50 1.86 10.95 0.82 1.62 5.94 0.97
RBF 100 2.03 12.41 0.80 1.89 7.34 0.96
Linear 2.06 12.84 0.79 1.96 7.82 0.95
Poly 12 2.06 12.82 0.79 1.96 7.81 0.95
Poly 13 2.05 12.80 0.79 1.96 7.80 0.95
Sig 11 2.06 12.85 0.79 1.96 7.82 0.95

kernels tested were: linear; seven radial basis functions with
the σ parameter varying from 0.5 to 100; polynomials with
g = 1 and of orders (q) 2 and 3; and sigmoidal with the two
scale parameters (a,θ ) set to 1. The smallest differences be-
tween thinned and non-thinned wind data were obtained for
the RBF kernel, with au-component MAE (MSE) of 1.05
m s−1 (5.99 m2 s−2), which are 44% (53%) reductions in the
discrepancies, respectively, obtained from any non-RBF ker-
nel. For thev-component, the corresponding reductions for
the RBF kernel, compared to a non-RBF kernel, were even
larger at 63% (65%). The variances explained (correlations
squared) are 82.8% and 96.0% for theu-andv-components,
representing improvements of 33% and 6%, respectively,
over any non-RBF kernel. Therefore, the RBF kernel with
parameter 1 is used for all subsequent TSVR analyses.

Figure 3 shows frequency counts of the reconstructed
wind errors for the 13540 observations thinned by TSVR.
For theu-component (Fig. 3a), 77% (87%) of the discrep-
ancies of the magnitudes are6 1 m s−1 (2 m s−1), which
is at or below the accepted observation error for these data
(Quilfen et al., 2007). Similar discrepancies were found for

thev-component (Fig. 3b). Both distributions are highly lep-
tokurtic, illustrating the efficacy of TSVR. Figure 4 presents
the thinned (Figs. 4a, c) and non-thinned (Figs. 4b, d) satellite
wind field contours for theu- andv-components. The close
spatial correspondence of the patterns for each component is
consistent with the large positive correlations in Table 1 for
the RBF 1 kernel.

For the present problem, most of the support vectors have
alpha values near zero (Fig. 5), thus they have an insignificant
contribution to the final solution. From Eq. (6), those support
vectors with zero or near-zero alpha values are ignored, pro-
viding further data reduction. For the present analysis, Fig-
ure 5 illustrates the large data reduction capability of SVR
for these data. From the available 13540 data points, only
∼ 1000 support vectors (< 8%) are required to reconstruct
the wind vector field with the aforementioned high level of
accuracy. Specifically, for each Voronoi cell, the satellite data
points inside each cell are used to train the SVR. Fewer than
8% of the observations were support vectors and are retained;
therefore, the thinning rate is> 92%. The< 8% support vec-
tors had an MAE of 0, the MAE of the other> 92% data

Fig. 3. Frequency counts of the wind speed discrepancies (m s−1) between the original non-thinned data and
the thinned data (a) for theu-component and (b) for thev-component of the sea surface winds.
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Fig. 4. Contour maps of theu-andv-components (in m s−1) of the (a, c) thinned and (b, d) non-thinned wind
fields.

Fig. 5. Distributions of the alpha values for the support vectors of(a) theu-component and (b) thev-component
of the winds.

points was calculated using only< 8% of the support vec-
tors. Since the percentage of support vectors is a function of
the complexity of the data field, it will vary according to the
spatial and temporal data structure.

4.2. Results of the second experiment

Given the large data reduction and high level of accu-
racy in reproducing the wind fields provided by TSVR, as
found in section 4.1, a considerably larger sample (226393
data points) was drawn to assess the scalability of TSVR and

to compare it to several commonly used data thinning tech-
niques. For these commonly used techniques, the observa-
tions were assigned to cells ofh degrees latitude and lon-
gitude. For random sampling, a single observation was se-
lected. For the other schemes, all data were used. The accu-
racy of these data selection methods is shown in Figs. 6a-d
(MAE, MSE) and Fig. 7 (correlation). The MAE for theu-
component (Fig. 6a) shows that, as the width of the data cells
decreases, the discrepancies decrease for both averaging and
random selection. The accuracy of Barnes filtering improves
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Fig. 6. Mean absolute differences (MAE) and mean squared differences (MSE) between the thinned and non-
thinnedu-components (a, c) andv-component (b, d) of the wind (in m s−1) for the averaging, random, Barnes
and TSVR thinning methods.

Fig. 7. Correlations between the thinned and non-thinned data
for the averaging, random, Barnes and TSVR thinning methods.

as the cells decrease in size and reaches a minimum at a
cell width of approximately 0.7 degrees; beyond that, insuf-
ficient data density produces increasingly inaccurate results.
As the Voronoi tessellation is applied to TSVR, the cells do
not change and hence the accuracy remains constant. For the
v-component (Fig. 6b), similar behavior is noted for all tech-
niques. TSVR is the most accurate thinning technique with
MAE ∼ 0.5 m s−1. The MSE values (Figs. 6c, d) are larger

than the corresponding MAE values; however, the ranking
of the techniques remains the same, with the random sam-
pling being least accurate, averaging and Barnes giving sim-
ilar results and the TSVR producing the most accurate thin-
ning. The correlation between the thinned and non-thinned
winds is calculated for the same data selection methods (Fig.
7). As the cell width decreases, the correlations for the u-
components, given by the three commonly used techniques
move closer to the TSVR value, but never exceed it. Despite
these large correlations at small cell widths, the larger MAE
and MSE of the three commonly used techniques indicate less
accurate thinning for those methods. Thev-component cor-
relations for the other methods are considerably lower than
those for TSVR (Fig. 7). Moreover, the high correlations ob-
tained with the three commonly used data selection methods
is achieved at the expense of a loss of computational effi-
ciency (Fig. 8), as the TSVR requires approximately 250 sec-
onds to thin these data at the aforementioned accuracy (corre-
lation of 0.99 and 0.98 for the TSVR) versus over 1000 sec-
onds for the other three techniques. For this experiment, the
percentage of data required to obtain this level of accuracy
for the TSVR is∼ 10%. In comparison, the thinning rates of
the three commonly used methods, to achieve accuracy close
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Fig. 8. Computation time as a function of cell width (in degrees)
for the average, random and Barnes thinning solutions versus
TSVR.

to that of the TSVR, is much larger (∼ 26%).

4.3. Results of the third experiment

Using TSVR, computation times can be decreased by
buffering in a series of subsets of data and calculating the
support vectors of each sample. This process is known as
pipeline thinning (Fig. 2). To investigate the gain in com-
putational efficiency of the pipeline approach, compared to

TSVR without a pipeline, a sample of 120983 data points was
drawn from the 1.5 million observations. The results for the
regular and pipeline TSVR are very similar, with MAE mag-
nitude differences (Fig. 9a, b) of6 0.05 m s−1 and the MSE
differences of6 0.1 m2 s−2 (Fig. 9c, d). The correlations
between the reconstructed and observed winds for the regular
versus pipeline methods (Fig. 9e, f) show trivial differences
in the second decimal point, at most. It is notable that the
correlations for theu-component are, for both the regular and
pipeline methods,∼ 0.97 (Fig. 9e) and, for thev-component,
∼ 0.99 (Fig. 9f), indicating the very close correspondence
between the thinned and the non-thinned data. The compu-
tation time for the pipeline TSVR is less than that for the
regular TSVR. The computational efficiency gain arises as,
for the first CPU time step (Fig. 10;t = 1), all the data within
the window are thinned; however, fort > 1, using pipeline
TSVR, only the new data are thinned. For both the pipeline
and non-pipeline TSVR approaches, the time needed to thin
the data for the first period was∼ 145 seconds. However, for
periods 2–13, the average thinning time was∼ 142 seconds
for the regular TSVR, decreasing by an order of magnitude
to 13 seconds for the pipeline TSVR approach (Fig. 10).
Therefore, the pipeline TSVR approach requires just 9% of
the time of the non-pipeline TSVR method, while providing

Fig. 9. Mean absolute differences (MAE), mean squared differences(MSE) (in m s−1) and correlations between
the thinned and non-thinnedu-components (a, c, e) andv-component (b, d, f) of the wind regular SVR thinning
versus the pipeline TSVR thinning. The data subset is shown on the horizontal axis.
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Fig. 10. Regular TSVR Thinning versus pipeline TSVR thin-
ning computation times. The data subset is shown on the hori-
zontal axis.

almost identical accuracy.

5. Conclusions

The removal of redundant data is commonly known as
data thinning. In this study, the application is the thinning
of u-andv-components of the winds estimated from Wind-
Sat. The number of observations is reduced through a combi-
nation of Voronoi tessellation and support vector regression
(TSVR). Here, hundreds of thousands of observations are as-
signed to several thousand Voronoi cells to optimize the wind
retrieval accuracy. For each cell, separate TSVR analyses
were conducted, for theu-andv-components of the winds.
The number of Voronoi cells can be adapted, consistent with
the complexity of the field, by increasing or decreasing their
number. The process can be extremely efficient if the process
is parallelized by assigning the SVR calculation inside each
Voronoi cell to a separate CPU.

The results of the thinning experiments yielded decidedly
encouraging results. The TSVR requires fewer than 8%–10%
of the WindSat data to produce a highly accurate estimate of
the wind field (MAE< 1 m s−1 and the correlation> +0.98).
In comparison, commonly used techniques, such as random
selection, averaging and a Barnes filter, are computationally
efficient, but have poor retrieval accuracy at coarse spatial
resolution. However, at high spatial resolution, as the ac-
curacy of the three commonly used techniques approaches
that of TSVR, the computational times for the other thinning
methods exceed those of the TSVR approach by a factor of
∼ 4.

High retrieval accuracy is a requirement for meaningful
analysis. Of the thinning techniques examined, only TSVR
offers this combination of providing extremely high retrieval
accuracy with the shortest clock time. To determine whether
the computational efficiency of the TSVR approach could
be improved further, a pipeline thinning methodology was
applied to the TSVR, reducing the clock time from 150 to
15 seconds. Therefore, for any application requiring ingest-
ing and preprocessing online data, followed by thinning, the
pipeline TSVR methodology is advantageous. In this study,
it is not only the most accurate of all methods tested but is
also the fastest, by up to two orders of magnitude.
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