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ABSTRACT

Quantitative precipitation estimation (QPE) plays an important role in meteorological and hydrological applications.
Ground-based telemetered rain gauges are widely used to collect precipitation measurements. Spatial interpolation methods
are commonly employed to estimate precipitation fields covering non-observed locations. Kriging is a simple and popular
geostatistical interpolation method, but it has two known problems: uncertainty underestimation and violation of assumptions.
This paper tackles these problems and seeks an optimal spatial interpolation for QPE in order to enhance spatial interpolation
through appropriately assessing prediction uncertainty and fulfilling the required assumptions. To this end, severalmethods
are tested: transformation, detrending, multiple spatialcorrelation functions, and Bayesian kriging. In particular, we focus
on a short-term and time-specific rather than a long-term andevent-specific analysis. This paper analyzes a stratiform rain
event with an embedded convection linked to the passing monsoon front on the 23 August 2012. Data from a total of 100
automatic weather stations are used, and the rainfall intensities are calculated from the difference of 15 minute accumulated
rainfall observed every 1 minute. The one-hour average rainfall intensity is then calculated to minimize the measurement
random error. Cross-validation is carried out for evaluating the interpolation methods at regional and local levels. As a result,
transformation is found to play an important role in improving spatial interpolation and uncertainty assessment, and Bayesian
methods generally outperform traditional ones in terms of the criteria.
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1. Introduction

Quantitative precipitation estimation (QPE) plays an im-
portant role in meteorological and hydrological applications.
Rain gauges are widely used to collect precipitation measure-
ments due to certain advantages. For instance, rain gauges di-
rectly measure rainfall on the ground, thus providing accurate
ground-level precipitation observations with limited error.

Precipitation varies significantly in time and space.
Hence, spatial interpolation methods are commonly em-
ployed to estimate precipitation in locations lacking measure-
ment equipment. Examples of such interpolation methods in-
clude inverse distance weighting (Franke, 1982), local poly-
nomial (Yilmaz, 2007), and radial basis function (Carlson
and Foley, 1991). Spatial interpolation methods are typically
classified into two categories: deterministic and stochastic.
The deterministic methods provide no assessment of pos-
sible errors, while the stochastic methods offer probabilistic
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estimates (Dirks et al., 1998; Nalder and Wein, 1998; Buy-
taert et al., 2006; Basistha et al., 2008; Ly et al., 2011). In
this paper, we focus on geostatistical stochastic methods,in
particular ordinary kriging (OK) and its variants are consid-
ered as a spatial interpolation tool.

Kriging is a simple and popular geostatistical interpola-
tion method. There are several variants, such as simple krig-
ing, ordinary kriging, universal kriging, and indicator krig-
ing (Cressie, 1993; Schabenberger and Gotway, 2004). This
paper tackles two problems that are often neglected in krig-
ing analysis—uncertainty underestimation and violation of
assumptions—in a single framework.

Although kriging is widely used for spatial interpolation,
the spatial structure of the underlying process is presumed
known, leading to a plug-in or two-stage procedure. Hence,
kriging is often performed after estimating the parametersof
the spatial structure. In this framework, the uncertainty in
spatial interpolation is often underestimated because thepro-
cedure ignores uncertainty in the parameter estimation related
to spatial structure, as if the parameters were the true val-
ues. This is an optimistic assessment of predictive accuracy.
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To overcome this problem, there are several ways to account
for the uncertainty, including bootstrapping (Wang and Wall,
2003) and Bayesian statistics (Diggle et al., 1998; Handcock
and Stein, 1993). The Bayesian approach allows explicit ac-
counting of uncertainties in the model parameters by treat-
ing them as random quantities, rather than as unknown con-
stants as in the classical approach. Within this framework,
parameter estimation and prediction can be conducted simul-
taneously without the separation in the two-stage procedure
above. This framework accounts for the uncertainty ignored
by model parameter estimation, leading to more realistic spa-
tial prediction, with better uncertainty assessment. In addi-
tion, any a priori knowledge about the unknown quantities
can be incorporated into the inference.

The second problem is that spatial data sets in prac-
tice often violate the assumptions required for kriging, and
it is neglected in spatial analysis. Kriging may be used to
find the best linear unbiased predictor (BLUP), as it fully
complies with the validity of all the required assumptions,
such as normality, stationarity, and homoscedasticity (Isaaks
and Srivastava, 1989). Furthermore, the effect of violat-
ing the assumption on spatial prediction would be substan-
tial. This paper will investigate suitable remedies for the
violations.

The main objective of this study is to obtain an opti-
mal spatial interpolation for QPE to assess prediction un-
certainty appropriately and fulfill the required assumptions.
To this end, we compare several kriging variants: (1) trans-
formation; (2) detrending; (3) spatial correlation function;
and (4) Bayesian kriging. Very few studies have explored
these issues simultaneously in a single framework. We focus
on a short-term and time-specific analysis rather than long-
term and event-specific ones. The data and methodology are
shown in section 2 and the analysis results are discussed in
section 3.

2. Data and method

2.1. Data and pre-processing

The rain gauge data are collected by tipping bucket rain
gauges in an Automatic Weather System (AWS) with 0.5 mm
resolution. Thus, 0.5 mm h−1 is used as the cut-off threshold
to reject dry areas experiencing no rain from the analysis. A
total of 100 AWS stations are used over the area of (34.33◦–
37.03◦N, 126.84◦–128.25◦E). The rainfall intensities are cal-
culated from the difference between the AWS-observed 15
minute accumulated rainfall amounts every minute. The
one hour average rainfall intensity is calculated to minimize
the measurement random error. Figure 1 displays the loca-
tions of the rain gauges in the study area. The event to be
analyzed is a stratiform precipitation event with embedded
convection related to the passage of the monsoon front that
occurred on 23 August 2012. The convective line developed
over the southeast of the domain associated with the mon-
soon front (Fig. 2). Two lines intensified from 0600–0900
LST, and the systems became weaker and spread widely. The

Fig. 1. Locations of the 100 rain gauges in the study area. The
different symbols represent the total precipitation over 24 hours:
circles have6 50 mm, triangles6 100 mm, and squares> 100
mm.

rain band moved southeast to northwest. The total rainfall
amounts were recorded up to a maximum of 173 mm in the
analysis region.

The precipitation data are summarized in Table 1. Since
only wet stations are used in the analysis, the number of sta-
tions considered varies from 33 to 76 over the time steps of
the study period. There was intense precipitation during some
time steps, e.g. time steps 4 (42 mm h−1), 6 (59.5 mm h−1),
and 13 (84.5 mm h−1). Data variation, measured by the stan-
dard deviation (SD), was not constant over time, ranging from
1.402 mm h−1 to 10.262 mm h−1. This finding motivates
hourly-specific spatial analysis rather than aggregated analy-
sis over all time steps in a single event.

2.2. Transformation

Some inherent characteristics of precipitation lead to vi-
olation of the normality and constant variance (homoscedas-
ticity) conditions necessary for OK to be BLUP. For instance,
precipitation data are commonly skewed, due to their inter-
mittency; data transformations have been commonly adopted
to remedy this. Although square root and logarithmic trans-
formations have been used (e.g., Schuurmans et al., 2007;
Verworn and Haberlandt, 2011), they do not always suffi-
ciently account for the departure from the assumptions. An
alternative option is the family of power transformations,
including the Box–Cox transformation, which is the most
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Fig. 2. Radar images of the estimated rainfall rate every three hours from 0000 to 2100 LST 23
August 2012.

Table 1. Summary of the 24 hour precipitation data. Q1 is quartile 1, Q3 is quartile 3, Max is maximum, and SD is standard deviation.

Time Number of Q1 Median Mean Q3 Max SD
(LST) wet stations (mm h−1) (mm h−1) (mm h−1) (mm h−1) (mm h−1) (mm h−1)

1 33 0.5 1.5 2.3 3.0 9.0 2.2
2 42 0.5 1.0 2.3 2.5 18.0 3.1
3 41 0.5 1.5 2.5 2.5 17.0 3.4
4 40 0.5 1.5 3.5 4.0 42.0 6.7
5 50 1.0 3.0 4.8 7.4 25.0 5.2
6 47 1.0 2.3 5.5 5.8 59.5 9.7
7 49 0.5 2.0 4.0 5.5 23.5 4.9
8 54 0.6 2.0 4.4 5.9 30.0 6.000
9 58 1.0 2.0 4.2 6.0 23.9 5.0
10 52 1.5 3.0 5.2 7.5 22.0 4.8
11 62 1.0 2.5 3.8 5.5 17.0 3.6
12 62 1.5 2.5 3.9 4.9 22.0 4.1
13 67 1.0 2.0 4.2 4.8 84.5 10.3
14 70 1.0 2.3 3.0 4.0 9.0 2.5
15 76 0.5 2.0 2.8 4.0 12.0 2.5
16 68 0.5 2.3 2.9 3.5 19.0 3.1
17 64 0.5 2.0 3.1 3.6 20.5 3.8
18 57 0.5 2.0 2.4 3.5 8.5 2.1
19 51 1.0 1.5 2.4 2.5 16.5 2.7
20 51 0.8 2.0 2.3 3.3 11.5 2.1
21 48 1.0 2.0 2.2 3.0 7.0 1.4
22 45 1.0 2.0 2.1 3.0 7.5 1.4
23 55 1.0 1.5 2.0 2.5 9.5 1.8
24 74 1.0 1.5 2.1 2.5 7.5 1.5
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widely used (Box and Cox, 1964). This is given by:

Z =











Y λ −1
λ

, λ 6= 0

log(Y ), λ = 0,

where Z is the transformed data,Y is the original data
larger than the threshold, andλ is the transformation pa-
rameter. This transformation is typically applied to positive
data, which exclude dry areas in this study. The transfor-
mation is data-driven because the transformation parameter
is determined according to profile log-likelihoods over the
value within some ranges. In this paper, we consider a time-
specific rather than an event-specific transformation, because
the same transformation over time in an event seems to be
unreasonable due to variation of the precipitation process.

2.3. Variogram model

Kriging requires spatial pattern information. An empiri-
cal variogram is first computed and fitted to a theoretical var-
iogram in order to estimate spatial parameters, such as sill,
range, and nugget, via

2γ̂(h) =
1

2|N(h)| ∑
(si,s j)∈N(h)

[Z(si)−Z(s j)]
2 ,

whereN(h) is the set of pairs of observationsZ(si) andZ(s j)
such that distance between two locationsd(si,s j) is equal to
spatial lagh and|N(h)| is the number of the pairs. Variogram-
based parameter estimation is generally inefficient because it
is based on the smoothed variogram, which is not the orig-
inal but a summary of the data. Likelihood-based methods
are a general means to make use of the data generating pro-
cess, but this approach requires a distributional assumption,
such as normality. In this study, we adopt a maximum like-
lihood estimation that is widely implemented in statistical
inference. Maximum likelihood estimators require a spa-
tial distribution to construct the likelihood function. Inthis
case, letZZZ = (Z(s1), . . . ,Z(sn))

T denote the vector of trans-
formed observations, with a multivariate normal distribution
with meanµnnn, and covariance matrixΣ(θθθ), wherennn is an×1
vector of ones, andθθθ is the vector of spatial parameters such
as partial sill and range. The resulting log-likelihood function
is given by

l(µ ,θθθ |ZZZ) = −
1
2

ln |Σ(θθθ )|−
n
2

ln2π

−
1
2
(ZZZ− µnnn)TΣ(θθθ )−1(ZZZ − µnnn) .

The maximum likelihood estimators can be obtained by max-
imizing the log-likelihood function with respect to the param-
etersµ andθθθ . The resulting estimator has meaningful statis-
tical properties under some mild regularity conditions (Cox
and Hinkley, 1974).

Exponential and spherical functions have often been used
as spatial correlation functions in variogram modeling and
kriging analysis (Chilès and Delfiner, 1999). In addition to

these functions, the circular correlation function is considered
in this study, a first in the study of rain. Table 2 presents the
forms of the functions. Surprisingly, as shown in the results
below, the new correlation function is the most frequently se-
lected as the optimal spatial correlation function over time.
For every time step, three correlation models are fitted, and
one of them is selected according to a model selection cri-
terion, known as the Bayesian Information Criterion (BIC).
Therefore, a different correlation model is fitted to each time
step.

The mean of the function often spatially varies over the
region of interest, while one of the required assumptions for
BLUP is a constant mean. In this case, detrending can deal
with the non-constant mean problem. A trend surface is com-
monly modeled using spatial coordinates or available covari-
ate information, and the residuals between the observations
and the fitted trends delineate the spatial structure. As a re-
sult, this detrending, or removal of trends, can reduce the
variability of the predictive distribution. We examine the
effect of detrending on spatial prediction for spatial coordi-
nates, longitude and latitude.

2.4. Interpolation method

OK is a linear interpolation method that is unbiased and
minimizes the variance of the observations. The weightings
of the linear interpolator are found by solving a system of
equations with some constraints in order to achieve the sound
properties. Several variants of OK are considered in this
study. Trans-Gaussian OK (TOK) is a variant of kriging with
a transformed Gaussian random field when the transforma-
tion is known (Cressie, 1993). Application of the Box–Cox
transformation is assumed to transform non-normally dis-
tributed data into a normal distribution. Bayesian OK (BOK)
and Bayesian trans-Gaussian OK (BTOK) perform OK and
TOK from a Bayesian perspective. The kriging variants with
detrending based on spatial coordinates are also considered.

Bayesian analysis requires estimation of prior distribu-
tions for unknown parameters (θθθ ). Combining the likelihood
functionL(θθθ |ZZZ) with a prior distributionP(θθθ ) leads to an ex-
pression for the posterior distributionp(θθθ |ZZZ) via normalized
Bayes’ Theorem:

p(θθθ |ZZZ) =
L(θθθ |ZZZ)p(θθθ )

∫

L(θθθ |ZZZ)p(θθθ )dθθθ
.

The posterior distribution provides a probability statement
about the parameters and allows for uncertainty in all

Table 2. The three spatial correlation functions;ϕ is a range param-
eter that varies for each function, andh is spatial lag.

Exponentialρ(h) = exp

(

−
h
ϕ

)

Spherical ρ(h) = 1−1.5
|h|
ϕ

+0.5

(

h
ϕ

)3

, 0 6 h < ϕ

Circular ρ(h) =
2
π

cos−1
(

h
ϕ

)

−
h
ϕ

√

1−

(

h
ϕ

)2

, 0 6 h < ϕ
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parameters. Similarly, the Bayesian predictive distribution
p(Z(s0)|ZZZ) for an arbitrary and unobserved locations0 can
be obtained as

p(Z(s0)|ZZZ) =

∫

p(Z(s0)|ZZZ,θθθ )p(θθθ |ZZZ)dθθθ .

In this study, we choose non-informative priors due to a lack
of a priori information about the parameters.

2.5. Validation

Cross-validation is carried out to evaluate the influence of
data transformation, detrending, spatial autocorrelation, and
different interpolation methods (i.e. classical and Bayesian)
on interpolation performance. LetZ(i,k) andẐ(i,k) denote
the observed and predicted values from the leave-one-out
cross-validation at theith monitoring station in thekth time
step, respectively. The mean absolute error (MAE) is then
employed to evaluate the quality of the interpolations,

MAEk =
1
nk

nk

∑
i
|Ẑ(i,k)−Z(i,k)| ,

where nk is the number of wet stations in thekth time
step. This criterion measures the unbiasedness of the cross-
validation prediction. A correlation coefficient is used to
evaluate the agreement between the observed and predicted
values,

R2
k =

nk

∑
i

(Z(i,k)− Z̄(k))(Ẑ(i,k)− ¯̂Z(k))

√

nk

∑
i

(Z(i,k)− Z̄(k))2

√

nk

∑
i

(Ẑ(i,k)− ¯̂Z(k))2

,

whereZ̄(k) and ¯̂Z(k) are the means of the observed and pre-
dicted values over all the wet stations on thekth time step,
respectively. This measure is the square of Pearson’s corre-
lation coefficient ranging between 0 and 1. Similar to the
coefficient of determination in regression analysis, the coeffi-
cient measures how good a spatial interpolator is constructed
from the observed data.

To compare the prediction uncertainty, two measures are
employed, the length of the prediction interval and the cov-
erage probability. The prediction intervalLk is formed from
the predicted value and its prediction error, and a wider inter-
val represents greater uncertainty. The former is the average
length of the cross-validation prediction interval over all wet
stations at a given time step,

Lk =
1
nk

∑
i

(U(i,k)−L(i,k)) ,

whereU(i,k) andL(i,k) are the upper and lower bounds of
the prediction intervals at stationi at a given time stepk, re-
spectively. The coverage probability is computed by counting
how many times the observed values fall in the prediction in-
tervals,

Pk =
1
nk

∑
i

I[L(i,k),U(i,k)](Z(i,k)) ,

whereIA(x) is the indicator function, which is 1 forx ∈ A,
and 0 otherwise. It is expected that the coverage probability
is close to the nominal value (e.g, 95%).

The methods considered in this study are evaluated on
two spatial scales, regional and local (Xie et al., 2011). The
regional-scale evaluation is performed over the entire study
area for each time step, while the local-scale evaluation com-
pares the performance of the different spatial interpolation
methods at each station over all time steps.

3. Results

3.1. Transformation

Data transformation is employed to examine the assump-
tions required for the optimal spatial interpolation methods.
Most statistical interpolation methods assume data are nor-
mally distributed. Figure 3 describes the distributions ofraw
and transformed precipitation datasets over 24 time steps us-
ing boxplots. The raw precipitation data include outliers in
all time steps, but not the transformed data. This highlights
the advantage of data transformation because outliers easily
lead to non-normal data distributions. Robust distributions
are more appropriate for data with outliers, such as thet-
distribution.

Other statistical measures and testing are further used to
study the impact of the power transformation on distribution
normality (Table 3). Skewness is a measure of the extent of
symmetry of a distribution, and kurtosis is a descriptor of the
shape of a distribution, measuring the peakedness or flatness
of a distribution. Positive kurtosis indicates a peaked distri-
bution, while negative kurtosis corresponds to a flat distribu-
tion. The normal distribution has zero skewness and kurto-
sis by definition. Table 3 reports that positive skewness and
large kurtosis are found in raw data over all time steps, indi-
cating asymmetric and positively skewed distributions. This
is expected for rainfall data, which are typically skewed to-
ward heavy rain. After transformation, such data have sig-
nificantly reduced kurtosis. For testing normality quantita-
tively, the Kolmogorov–Smirnov test is performed, and the
results are presented in Table 3, before and after transforma-
tion. For raw data, none of the stations’ data have a nor-
mal distribution, although two stations fulfill that assumption
at the 0.05 significance level, after applying the transforma-
tion. Although the remaining stations havep-values less than
0.05, the symmetry is much enhanced in terms of both skew-
ness and kurtosis. Figure 4 presents normal quantile–quantile
plots of the raw and Box–Cox transformed datasets over two
time steps with transformation parameter estimates. It is clear
that the transformation improves the normality. A significant
deviation from normality is found in the tails of the distri-
bution of the raw data, though this is greatly reduced in the
transformed data.

3.2. Variogram fitting

To optimize fitting of the variogram, we consider two po-
tential factors that can improve spatial prediction. The first is
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Fig. 3. Boxplots for the raw and transformed data over 24 hour time steps.

Table 3. Distribution measures and Kolmogorov–Smirnov normality test metrics of the raw and transformed data. The symbol * indicates
statistical non-significance at the 0.05 level.

Raw Transformed

Time Skewness Kurtosis p-value Skewness Kurtosis p-value

1 1.510 1.674 0.000 0.013 −1.317 0.010
2 3.300 13.289 0.000 0.189 −1.501 0.000
3 2.584 7.074 0.000 0.213 −1.399 0.000
4 4.694 23.696 0.000 0.030 −1.314 0.003
5 1.638 2.947 0.000 0.069 −1.306 0.045
6 3.893 17.97 0.000 0.030 −1.103 0.098*
7 2.049 4.438 0.000 0.001 −1.384 0.000
8 2.397 6.155 0.000 0.217 −1.166 0.003
9 1.943 3.694 0.000 0.058 −1.183 0.024
10 1.413 1.760 0.000 −0.132 −0.860 0.195*
11 1.487 2.031 0.000 −0.055 −1.086 0.030
12 2.488 7.564 0.000 −0.406 −0.605 0.026
13 7.138 52.905 0.000 −0.150 −0.663 0.001
14 0.979 −0.192 0.000 −0.087 −1.226 0.000
15 1.383 1.861 0.000 −0.078 −1.369 0.000
16 2.594 9.097 0.000 −0.154 −1.286 0.000
17 2.726 8.677 0.000 −0.189 −1.375 0.000
18 1.279 1.033 0.000 −0.053 −1.264 0.000
19 3.197 12.929 0.000 −0.193 −0.681 0.003
20 2.032 5.926 0.000 −0.045 −1.082 0.001
21 0.877 0.895 0.002 −0.031 −0.954 0.017
22 1.350 2.685 0.048 −0.218 −0.739 0.038
23 2.559 8.024 0.000 0.140 −0.572 0.008
24 1.336 1.325 0.000 −0.055 −0.684 0.000
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Fig. 4. Normal quantile–quantile (Q–Q) plots of raw (left) and Box–Cox transformed (right) data at two
time steps (0500 LST above and 0900 LST below). The estimatedtransformation parameters (Λ) are
0.075 and 0.03, respectively.

the spatial correlation function, which models spatial struc-
ture, and therefore leads to poor spatial prediction if specified
incorrectly. This effect is more pronounced for classical esti-
mation, which assumes that the selected function is true in the
prediction stage. Surprisingly, the spatial correlation function
varies significantly in time. We find that the under-used circu-
lar correlation function is most suitable (Table 4). Detrending
does not significantly affect the selection, whereas transfor-
mation does.

The significance of the trend (i.e. the variation of the
mean in space) is investigated at each time step, and Table
5 summarizes the result. Over 67% of raw and 83% of trans-
formed time steps have a significant trend effect. This mo-
tivates modeling of the trend surface in order to characterize
the spatial structure for spatial interpolation. In particular,
latitude is an important factor for the modeling trend in this
analysis. Figure 1 illustrates the significant latitudinalvaria-
tion of the total rain amount.

Table 4. Frequency table for the correlation functions selected for
every time step. “Raw” is raw data; “Trans” is transformed data;
“Trend” is constant mean; “Detrend” is spatially varying mean.

Exponential Spherical Circular

Raw-Trend 6 5 13
Raw-Detrend 5 7 12
Trans-Trend 7 5 12

Trans-Detrend 6 7 11

Table 5. Frequency table for the significant trend effects of raw and
transformed data for every time step. “None” indicates no variation
of mean, while “Lon” or “Lat” indicates the variation mean inthe
longitudinal or latitudinal direction.

Data None Lon Lat Lon + Lat

Raw 8 1 7 8
Transformed 4 2 8 10

3.3. Evaluation

The comparison of different spatial interpolation methods
is shown in terms of MAE in Fig. 5 as a box-plot. The BTOK
approach results in the smallest median, whereas the TOKD
approach has the largest. In general, the Bayesian methods
outperform the traditional methods in terms of MAE. The
distributions of the MAE values of BTOK and TOK are nar-
rower than those of the other methods. There are no outlying
values (circles in Fig. 5) of MAE in BTOK and BTOKD.

The BTOK has the largest correlation coefficient and the
smallest variation. Detrending does not improve the correla-
tion. Particularly, BOKD and BTOKD have low correlation
coefficient values. Overall, the Bayesian methods perform
better than the classical methods, in terms of both criteria.
In contrast to detrending, transformation enhances the unbi-
asedness of the spatial interpolation.

Local-scale evaluation at each rain gauge is shown in Fig.
6. Similar to the regional scale, transformation-based meth-
ods without detrending have, in general, a smaller MAE on
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Fig. 5. Boxplots of the mean absolute error (top) and correlation coefficient
(bottom) values on the regional scale. The horizontal thickbar indicates the
median values. The bottom and top of the box indicate the firstand third quar-
tiles. The thin lower (upper) bar is the minimum (maximum) value. The cir-
cles indicates outliers. OK, Ordinary kriging; OKD, Ordinary kriging with
detrend; TOK, Trans-Gaussian kriging; TOKD, Trans-Gaussian kriging with
detrend; BOK, Bayesian ordinary kriging; BOKD, Bayesian ordinary kriging
with detrend; BTOK, Bayesian trans-Gaussian ordinary kriging; and BTOKD,
Bayesian trans-Gaussian ordinary kriging with detrend.

Fig. 6. Boxplots of mean absolute error (top) and correlation coefficient (bot-
tom) values at the local scale. The symbols are the same as in Fig. 4.

the local scale, and Bayesian methods overall outperform the
classical methods. TOK and BTOK perform best in terms
of the local MAE. As for correlation coefficients, TOK and
BTOK have larger values than the other methods. Detrend-
ing has a negative effect on both MAE and the correlation
coefficient, whereas transformation and the Bayesian meth-
ods provide some improvement.

Two aspects of uncertainty estimation are compared.
First, the average coverage probabilities for each time step
are compared for the classical and Bayesian methods for each
kriging variant. Second, prediction intervals are constructed
with 95% nominal probability. Hence, a good prediction in-
terval has a coverage probability close to the nominal proba-
bility.

Overall, the Bayesian methods generally have reasonable
ranges of coverage probability, while the classical methods
have some extreme probabilities (Fig. 7). The coverage prob-
abilities for the Bayesian methods (y-axis) are reasonably
spread with some consistency, while those of the classical
methods range too widely with extreme values.

The average lengths of the prediction intervals based on
the spatial interpolation methods are shown in Fig. 8. As
addressed earlier, the width of the intervals represents un-
certainty in the prediction. As expected, Bayesian methods
have generally longer widths than the classical ones, and
this indicates that the Bayesian approach evaluates a more
realistic uncertainty in spatial prediction. There is no system-
atic effect of transformation and detrending on the length.
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Fig. 7. 95% coverage probability for the cross-validation prediction intervals. The estimated probabil-
ities are averaged over stations for a given time step. The vertical and horizontal lines are nominal
probability 0.95.

Fig. 8. Average length of the cross-validation prediction intervals.

The scatterplot of prediction intervals (Fig. 9) ensures that
Bayesian methods have longer intervals. There are some sig-
nificant length differences between BTOK and TOK. Overall,
the Bayesian approaches have realistic and larger uncertainty
estimation. Figure 10 presents the spatial precipitation esti-
mated by BTOK for four time steps.

4. Summary and discussion

In this paper, we investigate two problems commonly
found and often neglected in the spatial interpolation of QPE:
uncertainty underestimation and violation of assumptions,
along with their effects on spatial prediction and uncertainty
estimation. The methods addressed are considered to resolve
the problems, and implemented in a single framework. The
proposed method is illustrated with a rain gauge dataset con-

sisting of 100 AWS stations in South Korea. A stratiform
precipitation event is analyzed with one hour average rain-
fall intensity in order to minimize measurement error. The
proposed kriging variants are applied to the dataset and com-
pared with several criteria at regional and local levels.

Overall, the methods improve spatial interpolation. For
instance, we find that transformation plays an important role
in improving spatial interpolation and is not constant over
each time and event. Hence, it is challenging to find an ap-
propriate transformation for each time step and event. The
same transformation is commonly applied to all time steps
in the event. Time-specific transformation is recommended,
even though this may demand slightly more computational
resources. In summary, a desirable method for a reliable QPE
must be flexible and sophisticated enough to account for dy-
namic precipitation processes, as opposed to a static approach
that assumes the same transformation or spatial structure over
time in a given event.

As used in this study, parametric spatial functions typi-
cally model spatial structure. However, they are often too
restrictive to explain the structure adequately. A flexiblespa-
tial structure function is necessary to characterize the spa-
tial structure of precipitation, e.g. by using a nonparamet-
ric approach (Yao, 1998). As a parametric approach, the
Matérn class of covariance functions is a reasonable alterna-
tive (Handcock and Stein, 1993).

Detrending is used as a means of correcting the non-
stationarity of the underlying process. In this study, the trend
is modeled using only the spatial coordinates, longitude and
latitude. Although detrending appears to influence the se-
lection of the spatial correlation function, this method barely
impacts on the evaluation of spatial interpolation. However, it
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Fig. 9. Scatterplots of the length of the prediction intervals.

Fig. 10. Spatial precipitation estimated by BTOK at four time steps:0500 LST (upper-left);
1100 LST (upper-right); 1700 LST (lower-left); 2300 LST (lower-right).

is possible that detrending can be a powerful tool if the trend
is modeled adequately with the other potential variables. For
the sake of convenience, only spatial coordinate variablesare
considered in this study. Elevation and weather radar data
could help to characterize the precipitation field and supple-
ment spatial variation.

A Bayesian approach is introduced to assess prediction
uncertainty related to the uncertainty of parameter estimation
in variogram analysis. There are some obstacles when con-
ducting Bayesian prediction practically, to the first of which
is eliciting prior information. When there is little a priori in-
formation about the parameters, a non-informative or diffuse

prior distribution is often chosen regularly. In this case,the
subsequent result is dominated by likelihood or data informa-
tion when the sample size is sufficiently large. Furthermore,
although the sample size is large in spatial prediction, theef-
fective sample size is much smaller than the original sample
size due to the high correlation between the spatial data. It
is clear that prior information enhances not only parameter
estimation but also the spatial prediction. The second con-
cern is that the Bayesian approach usually requires intensive
computation for evaluating the integral related to finding pos-
terior and predictive distribution. If some convenient prior
data are used, a conjugate prior distribution, the evaluation
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becomes simple because they can be evaluated analytically.
Otherwise, more feasible evaluation strategies are necessary,
such as Markov chain Monte Carlo (MCMC) methods. For
large sample sizes, the problem becomes more serious due to
high dimensionality leading to inversion of the high dimen-
sion matrix.

Temporal processes are often modeled to account for the
temporal variation of the precipitation process. It is obvi-
ous that temporal processes can enhance the modeling and
prediction of the underlying process if the level of temporal
variation is significant and the corresponding temporal pro-
cess can take account of the variation appropriately. There
are a variety of spatial–temporal processes available for this
purpose (Guttorp et al., 1994; Cressie and Huang, 1999; Gen-
ton, 2007; Ma, 2008). However, it is necessary to be aware
that these do not always improve the spatial prediction be-
cause complicated models can worsen it. The complexity of
the processes also increases the computation time, which can
be an important concern in practical operations.

In QPE, it is usual to observe outliers in the precipitation
dataset. Classical variogram estimation is sensitive to out-
liers, which can propagate in spatial predictions. TOK- and
BTOK-transformed datasets have no outliers. As such, trans-
formation is helpful to not only comply with the required as-
sumptions, but also to deal with outliers. Transformation can
also remedy heteroscedasticity, required in kriging for fulfill-
ing second-order stationarity (Erdin and Frei, 2012).
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