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ABSTRACT

Quantitative precipitation estimation (QPE) plays an imgat role in meteorological and hydrological application
Ground-based telemetered rain gauges are widely usedléztcptecipitation measurements. Spatial interpolati@thmods
are commonly employed to estimate precipitation fields dogenon-observed locations. Kriging is a simple and popula
geostatistical interpolation method, but it has two knowabems: uncertainty underestimation and violation ofiagstions.
This paper tackles these problems and seeks an optimadldp&ipolation for QPE in order to enhance spatial intkxtion
through appropriately assessing prediction uncertaintyfalfilling the required assumptions. To this end, sevaraethods
are tested: transformation, detrending, multiple spatatelation functions, and Bayesian kriging. In particulse focus
on a short-term and time-specific rather than a long-termexedt-specific analysis. This paper analyzes a stratifaim r
event with an embedded convection linked to the passing aoongont on the 23 August 2012. Data from a total of 100
automatic weather stations are used, and the rainfallsittes are calculated from the difference of 15 minute aadated
rainfall observed every 1 minute. The one-hour averagdaigintensity is then calculated to minimize the measuneime
random error. Cross-validation is carried out for evahmthe interpolation methods at regional and local levelsaAesult,
transformation is found to play an important role in imprayspatial interpolation and uncertainty assessment, agddtan
methods generally outperform traditional ones in term$efdriteria.
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1. Introduction estimates (Dirks et al., 1998; Nalder and Wein, 1998; Buy-
. taert et al., 2006; Basistha et al., 2008; Ly et al., 2011). In
Mhis paper, we focus on geostatistical stochastic mettinds,

por.tant role in met(_aorolog|cal and hydrolog!cgl gpplloas. Particular ordinary kriging (OK) and its variants are cahsi
Rain gauges are widely used to collect precipitation measu L :
eEed as a spatial interpolation tool.

ments due to certain advantages. For instance, rain gaitges S : L
) - Kriging is a simple and popular geostatistical interpola-
rectly measure rainfall on the ground, thus providing aatair _. : . :
tion method. There are several variants, such as simple krig

ground—lle\_/el _precipitgtion gbs_grvationswith limitedagrr ing, ordinary kriging, universal kriging, and indicatoride

Prempltat!on_vanes sllgnmcantly in time and SpaCPTI"]g,(Cressie 1993; échabenberger an,d Gotway, 2004). This
Hence, spat_lal mterpo_la_tmn ”?eth"ds_ are commonly erBéper tackles two problems that are often neglected in krig-
ployed to estimate precipitation in locations lacking meas . : S -

. ; ; ing analysis—uncertainty underestimation and violatién o

ment equipment. Examples of such interpolation methods 'arlls'sumptions—in a single framework
clude inverse distance weighting (Franke, 1982), locaypol c 9 ' - .
nomial (Yilmaz, 2007), and radial basis function (Carlso&eAlthough kriging is widely used for spatial interpolation,

L . . spatial structure of the underlying process is presumed
and Foley, 1991). Spatial interpolation methods are tmcaknown, leading to a plug-in or two-stage procedure. Hence,

classified inFo_ ‘V_VO categories: d_eterministic and StOcmaStkriging is often performed after estimating the paramedérs
The deterministic methods provide no assessment of Ple spatial structure. In this framework, the uncertaimty i

sible errors, while the stochastic methods offer probstii spatial interpolation is often underestimated becauspritie

cedure ignores uncertainty in the parameter estimatiatae|

* Corresponding author: GyuWon LEE to spatial structure, as if the parameters were the true val-
Email: gyuwon@knu.ac.kr ues. This is an optimistic assessment of predictive acgurac
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To overcome this problem, there are several ways to accoul jon:s— « Yangp'yéng~
for the uncertainty, including bootstrapping (Wang andI\Wal Kwangiu o ubal

2003) and Bayesian statistics (Diggle et al., 1998; Hanklcoc ..

and Stein, 1993). The Bayesian approach allows explicit ac An

counting of uncertainties in the model parameters by treat
ing them as random quantities, rather than as unknown cor
stants as in the classical approach. Within this framework
parameter estimation and prediction can be conducted-simu
taneously without the separation in the two-stage proadur
above. This framework accounts for the uncertainty ignorec
by model parameter estimation, leading to more realistie sp  ,*"
tial prediction, with better uncertainty assessment. Idi-ad
tion, any a priori knowledge about the unknown quantities
can be incorporated into the inference.

The second problem is that spatial data sets in prac
tice often violate the assumptions required for krigingd an
it is neglected in spatial analysis. Kriging may be used tc -
find the best linear unbiased predictor (BLUP), as it fully
complies with the validity of all the required assumptions,
such as normality, stationarity, and homoscedasticialts
and Srivastava, 1989). Furthermore, the effect of violat-
ing the assumption on spatial prediction would be substan
tial. This paper will investigate suitable remedies for the ‘
violations. 1265

The main objective of this study is to obtain an opti-
mal spatial interpolation for QPE to assess prediction un-_ . . )
certainty appropriately and fulfill the required assumpsio F.Ig. 1. Locations of the 100 rain gauges !n.thg study area. The
To this end, we compare several kriging variants: (1) trans-d_'ﬁerem symbols represent the total precipitation oveh@urs:
formation; (2) detrending; (3) spatial correlation fuoct E;rniles haves 50 mm, triangless 100 mm, and squares 100
and (4) Bayesian kriging. Very few studies have explored

these issues simultaneously in a single framework. We focus

on a short-term and time-specific analysis rather than lorfgin band moved southeast to northwest. The total rainfall
term and event-specific ones. The data and methodology &f&ounts were recorded up to a maximum of 173 mm in the

shown in section 2 and the analysis results are discusse@YSis region. o _
section 3. The precipitation data are summarized in Table 1. Since

only wet stations are used in the analysis, the number of sta-
tions considered varies from 33 to 76 over the time steps of
2. Data and method the study period. There was intense precipitation durimgeso
time steps, e.g. time steps 4 (42 mmt) 6 (59.5 mm h1),
and 13 (84.5 mmh'). Data variation, measured by the stan-
The rain gauge data are collected by tipping bucket radard deviation (SD), was not constant over time, rangingfro
gauges in an Automatic Weather System (AWS) with 0.5 min402 mm h! to 10.262 mm h'. This finding motivates
resolution. Thus, 0.5 mmTt is used as the cut-off thresholdhourly-specific spatial analysis rather than aggregatatyan
to reject dry areas experiencing no rain from the analysis. s#s over all time steps in a single event.
total of 100 AWS stations are used over the area of (34.33 )
37.03N, 126.84-128.25E). The rainfall intensities are cal-2-2- Transformation
culated from the difference between the AWS-observed 15 Some inherent characteristics of precipitation lead to vi-
minute accumulated rainfall amounts every minute. Tlaation of the normality and constant variance (homoscedas
one hour average rainfall intensity is calculated to miaini ticity) conditions necessary for OK to be BLUP. For instance
the measurement random error. Figure 1 displays the lopaecipitation data are commonly skewed, due to their inter-
tions of the rain gauges in the study area. The event to iétency; data transformations have been commonly adopted
analyzed is a stratiform precipitation event with embeddéo remedy this. Although square root and logarithmic trans-
convection related to the passage of the monsoon front th@mations have been used (e.g., Schuurmans et al., 2007,
occurred on 23 August 2012. The convective line develop®¥drworn and Haberlandt, 2011), they do not always suffi-
over the southeast of the domain associated with the mafently account for the departure from the assumptions. An
soon front (Fig. 2). Two lines intensified from 0600—0908@lternative option is the family of power transformations,
LST, and the systems became weaker and spread widely. Trietuding the Box—Cox transformation, which is the most

Rainfall
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2.1. Data and pre-processing
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Fig. 2. Radar images of the estimated rainfall rate every threeshfoom 0000 to 2100 LST 23
August 2012.

Table 1. Summary of the 24 hour precipitation data. Q1 is quartile 3 jsquartile 3, Max is maximum, and SD is standard deviation.

Time Number of Q1 Median Mean Q3 Max SD

(LST) wet stations (mmht) (mmh1 (mmh1) (mmh1 (mmh1) (mmh1
1 33 0.5 1.5 2.3 3.0 9.0 2.2
2 42 0.5 1.0 2.3 25 18.0 3.1
3 41 0.5 1.5 25 25 17.0 3.4
4 40 0.5 1.5 35 4.0 42.0 6.7
5 50 1.0 3.0 4.8 7.4 25.0 5.2
6 47 1.0 2.3 5.5 5.8 59.5 9.7
7 49 0.5 2.0 4.0 5.5 23.5 4.9
8 54 0.6 2.0 4.4 5.9 30.0 6.000
9 58 1.0 2.0 4.2 6.0 23.9 5.0
10 52 1.5 3.0 5.2 7.5 22.0 4.8
11 62 1.0 25 3.8 5.5 17.0 3.6
12 62 1.5 25 3.9 4.9 22.0 4.1
13 67 1.0 2.0 4.2 4.8 84.5 10.3
14 70 1.0 2.3 3.0 4.0 9.0 25
15 76 0.5 2.0 2.8 4.0 12.0 25
16 68 0.5 2.3 2.9 35 19.0 3.1
17 64 0.5 2.0 3.1 3.6 20.5 3.8
18 57 0.5 2.0 2.4 35 8.5 2.1
19 51 1.0 1.5 2.4 25 16.5 2.7
20 51 0.8 2.0 2.3 3.3 11.5 2.1
21 48 1.0 2.0 2.2 3.0 7.0 1.4
22 45 1.0 2.0 2.1 3.0 7.5 1.4
23 55 1.0 1.5 2.0 25 9.5 1.8
24 74 1.0 1.5 2.1 25 7.5 1.5
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widely used (Box and Cox, 1964). This is given by: these functions, the circular correlation function is ¢desed
in this study, a first in the study of rain. Table 2 presents the
YA -1 A£0 forms of the functions. Surprisingly, as shown in the result
Z= A below, the new correlation function is the most frequergly s
log(Y), A =0, lected as the optimal spatial correlation function overetim

For every time step, three correlation models are fitted, and
where Z is the transformed datay is the original data one of them is selected according to a model selection cri-
larger than the threshold, and is the transformation pa- terion, known as the Bayesian Information Criterion (BIC).
rameter. This transformation is typically applied to pwsit Therefore, a different correlation model is fitted to eaoteti
data, which exclude dry areas in this study. The transfatep.
mation is data-driven because the transformation paramete The mean of the function often spatially varies over the
is determined according to profile log-likelihoods over theegion of interest, while one of the required assumptioms fo
value within some ranges. In this paper, we consider a timBLUP is a constant mean. In this case, detrending can deal
specific rather than an event-specific transformation, imzawith the non-constant mean problem. A trend surface is com-
the same transformation over time in an event seems torhenly modeled using spatial coordinates or available govar
unreasonable due to variation of the precipitation pracess ate information, and the residuals between the obsengtion

. and the fitted trends delineate the spatial structure. As a re
2.3. Variogram model sult, this detrending, or removal of trends, can reduce the
Kriging requires spatial pattern information. An empirivariability of the predictive distribution. We examine the
cal variogram is first computed and fitted to a theoretical vagffect of detrending on spatial prediction for spatial cbor
iogram in order to estimate spatial parameters, such as silites, longitude and latitude.
range, and nugget, via
29(h) = _ 1 z Z(s)— z(sj)]Z ’ OK is a linear interpolation method that is unbiased and
2IN(h)] (s,5)EN(h) minimizes the variance of the observations. The weightings
of the linear interpolator are found by solving a system of
whereN(h) is the set of pairs of observatioAiss ) andZ(sj) equations with some constraints in order to achieve thedsoun
such that distance between two locatialfs,s;) is equal to properties. Several variants of OK are considered in this
spatial laghand|N(h)| is the number of the pairs. Variogram-study. Trans-Gaussian OK (TOK) is a variant of kriging with
based parameter estimation is generally inefficient bec#usa transformed Gaussian random field when the transforma-
is based on the smoothed variogram, which is not the origbn is known (Cressie, 1993). Application of the Box—Cox
inal but a summary of the data. Likelihood-based methoglansformation is assumed to transform non-normally dis-
are a general means to make use of the data generating pibuted data into a normal distribution. Bayesian OK (BOK)
cess, but this approach requires a distributional assomptiand Bayesian trans-Gaussian OK (BTOK) perform OK and
such as normality. In this study, we adopt a maximum likg<OK from a Bayesian perspective. The kriging variants with
lihood estimation that is widely implemented in statisticajetrending based on spatial coordinates are also condidere
inference. Maximum likelihood estimators require a spa- Bayesian analysis requires estimation of prior distribu-
tial distribution to construct the likelihood function. this tions for unknown parameter@). Combining the likelihood
case, leZ = (Z(sy),...,Z(sn))" denote the vector of trans-functionL(6|Z) with a prior distributiorP(8) leads to an ex-

formed observations, with a multivariate normal distribnt pression for the posterior distributiqri8|Z) via normalized
with meanun, and covariance matrix(0), wherenis anx 1 Bayes’ Theorem:

vector of ones, an@ is the vector of spatial parameters such L(8]Z)p(6)
as partial sill and range. The resulting log-likelihooddtian p(0|Z) = — P .
is given by / L(8|Z)p(0)d6

2.4. Interpolation method

The posterior distribution provides a probability statemne

1 n
(1,8]2) = =5 In|>(6)| - 5In2m about the parameters and allows for uncertainty in all

- % (Z—- Hn)Tz(e)fl(Z —un). Table 2. The three spatial correlation functiorfsjs a range param-
eter that varies for each function, ahds spatial lag.
The maximum likelihood estimators can be obtained by max
imizing the log-likelihood function with respect to the par-  exponentialp(h) = exp(—ﬂ>
etersy and 8. The resulting estimator has meaningful statis- ¢ ,
gﬁzl lgirr?lzgglisggz)c:ler some mild regularity condltlonS)(CoSIDhericalI o(h) = 171.5% +0.5(£) _0<h<¢
Exponential and spherical functions have often been used

: 2 hy h | h?
as spatial correlation functions in variogram modeling an@ircular  p(h) = 7T00571 (5) s 1- (5) , 0<h< g
kriging analysis (Chiles and Delfiner, 1999). In addition t
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parameters. Similarly, the Bayesian predictive distidut wherela(x) is the indicator function, which is 1 for € A,
p(Z(s0)|Z) for an arbitrary and unobserved locatigncan and O otherwise. It is expected that the coverage probabilit

be obtained as is close to the nominal value (e.g, 95%).
. The methods considered in this study are evaluated on
P(Z(%0)|Z) = / P(Z(0)|Z,0)p(6(Z2)d6 . two spatial scales, regional and local (Xie et al., 2011)e Th

regional-scale evaluation is performed over the entirdystu
In this study, we choose non-informative priors due to a laglfea for each time step, while the local-scale evaluation-co
of a priori information about the parameters. pares the performance of the different spatial interpofati
I methods at each station over all time steps.
2.5. Validation

Cross-validation is carried out to evaluate the influence of
data transformation, detrending, spatial autocorratatmd 3. Results
different interpolation methods (i.e. classical and Béyes
on interpolation performance. L& k) andZ(i,k) denote
the observed and predicted values from the leave-one-out Data transformation is employed to examine the assump-
cross-validation at théh monitoring station in théth time tions required for the optimal spatial interpolation metbo
step, respectively. The mean absolute error (MAE) is thé&fost statistical interpolation methods assume data are nor

3.1. Transformation

employed to evaluate the quality of the interpolations, mally distributed. Figure 3 describes the distributionsavf
e and transformed precipitation datasets over 24 time steps u
MAE = 1 z 1Z(i,k) — Z(i,k)| , ing boxplots. The raw precipitation data include outliers i
N 4 all time steps, but not the transformed data. This highsight

the advantage of data transformation because outlierly easi

where ny is the number of wet stations in thidh time lead to non-normal data distributions. Robust distrilngio

step. This criterion measures the unbiasedness of the-crqss ! ! :
are more appropriate for data with outliers, such astthe

validation prediction. A correlation coefficient is used t%l'

.distribution.
evaluate the agreement between the observed and predlcge ther statistical measures and testing are further used to

values, study the impact of the power transformation on distributio
ko — . = normality (Table 3). Skewness is a measure of the extent of
> (Z(i,k) = Z(K)(Z(i,k) — Z(k)) symmetry of a distribution, and kurtosis is a descriptothef t
Rﬁ = ! = ) shape of a distribution, measuring the peakedness or ftatnes
Kk K — . . . . L. . T
CY SN2 5001 SN2 of a distribution. Positive kurtosis indicates a peakediidis
Iz (2(i,k) - 2(k)) IZ (201, k) = 2(k)) bution, while negative kurtosis corresponds to a flat digtri

_ _ tion. The normal distribution has zero skewness and kurto-
whereZ (k) andZ (k) are the means of the observed and prsis by definition. Table 3 reports that positive skewness and
dicted values over all the wet stations on #tk time step, large kurtosis are found in raw data over all time steps-indi
respectively. This measure is the square of Pearson’s-coating asymmetric and positively skewed distributionsisTh
lation coefficient ranging between 0 and 1. Similar to this expected for rainfall data, which are typically skewed to
coefficient of determination in regression analysis, theffto ward heavy rain. After transformation, such data have sig-
cient measures how good a spatial interpolator is conguctificantly reduced kurtosis. For testing normality quamtit
from the observed data. tively, the Kolmogorov—Smirnov test is performed, and the

To compare the prediction uncertainty, two measures aesults are presented in Table 3, before and after tranaform
employed, the length of the prediction interval and the cotien. For raw data, none of the stations’ data have a nor-
erage probability. The prediction intervia} is formed from mal distribution, although two stations fulfill that assuiop
the predicted value and its prediction error, and a widerint at the 0.05 significance level, after applying the transérm
val represents greater uncertainty. The former is the geerdion. Although the remaining stations haperalues less than
length of the cross-validation prediction interval ovéivett 0.05, the symmetry is much enhanced in terms of both skew-

stations at a given time step, ness and kurtosis. Figure 4 presents normal quantile—giant
1 plots of the raw and Box—Cox transformed datasets over two
Le=—" (U(i,k) - L(i,k)), time steps with transformation parameter estimates. learc
Nic 4 that the transformation improves the normality. A significa

eviation from normality is found in the tails of the distri-
ution of the raw data, though this is greatly reduced in the
transformed data.

whereU (i,k) andL(i,k) are the upper and lower bounds OE
the prediction intervals at statidrat a given time stef, re-

spectively. The coverage probability is computed by cowgnti
how many times the observed values fall in the prediction i%tz. Variogram fitting

tervals, o _ _
To optimize fitting of the variogram, we consider two po-

1 .
o= N« IZ liLiiuGi) (20:K) tential factors that can improve spatial prediction. Thet fis
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Fig. 3. Boxplots for the raw and transformed data over 24 hour tirapsst

Table 3. Distribution measures and Kolmogorov—Smirnov normalitst tmetrics of the raw and transformed data. The symbol tatds
statistical non-significance at the 0.05 level.

Raw Transformed

Time Skewness Kurtosis p-value Skewness Kurtosis p-value
1 1.510 1.674 0.000 0.013 —1.317 0.010
2 3.300 13.289 0.000 0.189 —1501 0.000
3 2.584 7.074 0.000 0.213 —1.399 0.000
4 4.694 23.696 0.000 0.030 —1.314 0.003
5 1.638 2.947 0.000 0.069 —1.306 0.045

6 3.893 17.97 0.000 0.030 —1.103 0.098*
7 2.049 4.438 0.000 0.001 —1.384 0.000
8 2.397 6.155 0.000 0.217 —1.166 0.003
9 1.943 3.694 0.000 0.058 —1.183 0.024

10 1.413 1.760 0.000 —-0.132 —0.860 0.195*
11 1.487 2.031 0.000 —0.055 —1.086 0.030
12 2.488 7.564 0.000 —0.406 —0.605 0.026
13 7.138 52.905 0.000 —0.150 —0.663 0.001
14 0.979 —0.192 0.000 —0.087 —1.226 0.000
15 1.383 1.861 0.000 —0.078 —1.369 0.000
16 2.594 9.097 0.000 —0.154 —1.286 0.000
17 2.726 8.677 0.000 —0.189 —1.375 0.000
18 1.279 1.033 0.000 —0.053 —1.264 0.000
19 3.197 12.929 0.000 —0.193 —0.681 0.003
20 2.032 5.926 0.000 —0.045 —1.082 0.001
21 0.877 0.895 0.002 —0.031 —0.954 0.017
22 1.350 2.685 0.048 —0.218 —0.739 0.038
23 2.559 8.024 0.000 0.140 —0.572 0.008

24 1.336 1.325 0.000 —0.055 —0.684 0.000
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Fig. 4. Normal quantile—quantile (Q—Q) plots of raw (left) and B@ox transformed (right) data at two
time steps (0500 LST above and 0900 LST below). The estintededformation parameterd) are
0.075 and 0.03, respectively.

the spatial correlation function, which models spatialistr Table 5. Frequency table for the significant trend effects of raw and
ture, and therefore leads to poor spatial prediction if gjgec transformed data for every time step. “None” indicates niatian
incorrectly. This effect is more pronounced for classiati-e of mean, while “Lon” or “Lat” indicates the variation mean tine
mation, which assumes that the selected function is trueein fongitudinal or latitudinal direction.

prediction stage. Surprisingly, the spatial correlatiomdtion

. N o . . Dat N L Lat Lon + Lat
varies significantly in time. We find that the under-usedgirc e one on a on+ra
lar correlation function is most suitable (Table 4). Dettieg Raw 8 1 7 8
does not significantly affect the selection, whereas t@mnsf Transformed 4 2 8 10

mation does.
Thg 5|gn|f|car_1c_e of the trend (i.e. th_e variation of th%? Evaluation

mean in space) is investigated at each time step, and Table _ ) o )

5 summarizes the result. Over 67% of raw and 83% of trans- 1ne comparison of different spatial interpolation methods

formed time steps have a significant trend effect. This mig-Shown interms of MAE in Fig. 5 as a box-plot. The BTOK

tivates modeling of the trend surface in order to charamteri@PProach results in the smallest median, whereas the TOKD

the spatial structure for spatial interpolation. In paras, @PProach has the largest. In general, the Bayesian methods
latitude is an important factor for the modeling trend irsthioutperform the traditional methods in terms of MAE. The

analysis. Figure 1 illustrates the significant latitudivatia- distributions of the MAE values of BTOK and TOK are nar-
tion of the total rain amount. rower than those of the other methods. There are no outlying
values (circles in Fig. 5) of MAE in BTOK and BTOKD.

Table 4. Frequency table for the correlation functions selected for The BTO.K .has the Iargefst Correlatlor} coefficient and the
every time step. “Raw” is raw data; “Trans” is transformedaa s_mallest \{ar|at|on. Detrending does not improve the cafrel
“Trend” is constant mean; “Detrend” is spatially varyingane tion. Particularly, BOKD and BTOKD have low correlation
coefficient values. Overall, the Bayesian methods perform
Exponential Spherical Circular better than the classical methods, in terms of both criteria
In contrast to detrending, transformation enhances thé unb

Raw-Trend 6 5 13 s .

Raw-Detrend 5 7 12 asedness of the spatial interpolation.

Trans-Trend 7 5 12 Local-scale evaluation at each rain gauge is shown in Fig.
Trans-Detrend 6 7 11 6. Similar to the regional scale, transformation-basecmet

ods without detrending have, in general, a smaller MAE on
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Fig. 5. Boxplots of the mean absolute error (top) and correlatiogffament
(bottom) values on the regional scale. The horizontal thiak indicates the
median values. The bottom and top of the box indicate thedirdtthird quar-
tiles. The thin lower (upper) bar is the minimum (maximumuea The cir-
cles indicates outliers. OK, Ordinary kriging; OKD, Ordipakriging with
detrend; TOK, Trans-Gaussian kriging; TOKD, Trans-Gaarsdiriging with
detrend; BOK, Bayesian ordinary kriging; BOKD, Bayesiadinary kriging
with detrend; BTOK, Bayesian trans-Gaussian ordinaryikggand BTOKD,
Bayesian trans-Gaussian ordinary kriging with detrend.
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Fig. 6. Boxplots of mean absolute error (top) and correlation ccieffit (bot-
tom) values at the local scale. The symbols are the same ég.i4.F

the local scale, and Bayesian methods overall outperfoem th Overall, the Bayesian methods generally have reasonable
classical methods. TOK and BTOK perform best in termsinges of coverage probability, while the classical meshod
of the local MAE. As for correlation coefficients, TOK anchave some extreme probabilities (Fig. 7). The coverage-prob
BTOK have larger values than the other methods. Detrerabilities for the Bayesian methodg-#xis) are reasonably
ing has a negative effect on both MAE and the correlati@pread with some consistency, while those of the classical
coefficient, whereas transformation and the Bayesian methethods range too widely with extreme values.
ods provide some improvement. The average lengths of the prediction intervals based on
Two aspects of uncertainty estimation are compardtie spatial interpolation methods are shown in Fig. 8. As
First, the average coverage probabilities for each timp s@ddressed earlier, the width of the intervals represents un
are compared for the classical and Bayesian methods for eaeltainty in the prediction. As expected, Bayesian methods
kriging variant. Second, prediction intervals are conggd have generally longer widths than the classical ones, and
with 95% nominal probability. Hence, a good prediction inthis indicates that the Bayesian approach evaluates a more
terval has a coverage probability close to the nominal prolreaalistic uncertainty in spatial prediction. There is nstsyn-
bility. atic effect of transformation and detrending on the length.
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sisting of 100 AWS stations in South Korea. A stratiform
precipitation event is analyzed with one hour average rain-
fall intensity in order to minimize measurement error. The
proposed kriging variants are applied to the dataset and com
pared with several criteria at regional and local levels.
Overall, the methods improve spatial interpolation. For
instance, we find that transformation plays an importarg rol
in improving spatial interpolation and is not constant over
each time and event. Hence, it is challenging to find an ap-
propriate transformation for each time step and event. The
same transformation is commonly applied to all time steps
in the event. Time-specific transformation is recommended,
even though this may demand slightly more computational
resources. In summary, a desirable method for a reliable QPE
must be flexible and sophisticated enough to account for dy-
namic precipitation processes, as opposed to a staticagipro

The scatterplot of prediction intervals (Fig. 9) ensurest thy, 4 assumes the same transformation or spatial structere o
Bayesian methods have longer intervals. There are some $ige in a given event.

nificant length differences between BTOK and TOK. Overall,

As used in this study, parametric spatial functions typi-

the Bayesian approaches have realistic and larger untrtag,y model spatial structure. However, they are often t00

estimation. Figure 10 presents the spatial precipitat&iin e

mated by BTOK for four time steps.

4. Summary and discussion

restrictive to explain the structure adequately. A flexigpa-

tial structure function is necessary to characterize tte sp

tial structure of precipitation, e.g. by using a nonparamet
ric approach (Yao, 1998). As a parametric approach, the
Matérn class of covariance functions is a reasonablenater

In this paper, we investigate two problems commonljve (Handcock and Stein, 1993).

found and often neglected in the spatial interpolation cEQP

Detrending is used as a means of correcting the non-

uncertainty underestimation and violation of assumptiorgationarity of the underlying process. In this study, tlead
along with their effects on spatial prediction and uncetai is modeled using only the spatial coordinates, longitude an
estimation. The methods addressed are considered toeesttitude. Although detrending appears to influence the se-
the problems, and implemented in a single framework. Thection of the spatial correlation function, this methoddia
proposed method is illustrated with a rain gauge dataset canpacts on the evaluation of spatial interpolation. Howeite
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Fig. 9. Scatterplots of the length of the prediction intervals.
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Fig. 10. Spatial precipitation estimated by BTOK at four time steP500 LST (upper-left);
1100 LST (upper-right); 1700 LST (lower-left); 2300 LSTwWer-right).

is possible that detrending can be a powerful tool if thedremrior distribution is often chosen regularly. In this cafes
is modeled adequately with the other potential variables. Fsubsequent resultis dominated by likelihood or data inferm
the sake of convenience, only spatial coordinate variagkes tion when the sample size is sufficiently large. Furthermore
considered in this study. Elevation and weather radar daiéhough the sample size is large in spatial predictiongfhe
could help to characterize the precipitation field and sepplfective sample size is much smaller than the original sample
ment spatial variation. size due to the high correlation between the spatial data. It
A Bayesian approach is introduced to assess predictignclear that prior information enhances not only parameter
uncertainty related to the uncertainty of parameter estima estimation but also the spatial prediction. The second con-
in variogram analysis. There are some obstacles when coearn is that the Bayesian approach usually requires intensi
ducting Bayesian prediction practically, to the first of alni computation for evaluating the integral related to findingp
is eliciting prior information. When there is little a prion-  terior and predictive distribution. If some convenientopri
formation about the parameters, a non-informative or défudata are used, a conjugate prior distribution, the evalnati
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becomes simple because they can be evaluated analyticalBressie, N., and H.-C. Huang, 1999: Classes of nonseparable
Otherwise, more feasible evaluation strategies are naggss spatio-temporal stationary covariance functidgurnal of the

such as Markov chain Monte Carlo (MCMC) methods. For ~ American Satistical Association, 94, 1330-1340.
large sample sizes, the problem becomes more serious dueitggle, P- J., J. A. Tawn, and R. A. Moyeed, 1998: Model-based

high dimensionality leading to inversion of the high dimen-

sion matrix.

Temporal processes are often modeled to account for the
temporal variation of the precipitation process. It is ebvi

geostatistics (with discussionf\pplied Satistics, 47, 299—
5

Dirks, K. N., J. E. Hay, C. D. Stow, and D. Harris, 1998: High-
resolution of rainfall on Norfolk Island, Part Il: Intergion
of rainfall data.J. Hydrol., 208, 187—193.

ous that temporal processes can enhance the modeling aagin R. and C. Frei, 2012: Data transformation and unbeEst

prediction of the underlying process if the level of tempora
variation is significant and the corresponding temporal pro

in geostatistical combination of radar and rain gaugelly-
drometeor., 13, 1332-1346.

cess can take account of the variation appropriately. Thef@ranke, R., 1982: Scattered data interpolation: Test osmeth-

are a variety of spatial-temporal processes availablenfer t

ods.Mathematics of Computations, 33, 181-200.

purpose (Guttorp et al., 1994; Cressie and Huang, 1999; Gefenton, M. G., 2007: Separable approximations of space-tioa

ton, 2007; Ma, 2008). However, it is necessary to be aware
that these do not always improve the spatial prediction be2uttorp.
cause complicated models can worsen it. The complexity of
the processes also increases the computation time, which ¢

be an important concern in practical operations.

variance matrice€nvironmetrics, 18, 681—-695.

P., W. Meiring, and P. D. Sampson, 1994: A space-tim
analysis of ground-level ozone daEnvironmetrics, 5, 241—
254,

ﬁandcock, M. S., and M. L. Stein, 1993: A Bayesian analysis of
kriging. Technometrics, 35, 403—-410.

In QPE, it is usual to observe outliers in the precipitationsaaks E. H., and R. M. Srivastava, 1988troduction to Applied

dataset. Classical variogram estimation is sensitive te ou

Geostatistics. Oxford University Press, Oxford, 561 pp.

liers, which can propagate in spatial predictions. TOK- andy, S., C. Charles, and A. Degré, 2011: Geostatisticatputation

BTOK-transformed datasets have no outliers. As such, trans
formation is helpful to not only comply with the required as-
sumptions, but also to deal with outliers. Transformatian c

also remedy heteroscedasticity, required in kriging féfilFu
ing second-order stationarity (Erdin and Frei, 2012).
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