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ABSTRACT

A 3D dynamic core of the non-hydrostatic model GRAPES (Gligtegional Assimilation and Prediction System) is
developed on the Yin-Yang grid to address the polar probledrit@enhance the computational efficiency. Three-dimeasio
Coriolis forcing is introduced to the new core, and full regentation of the Coriolis forcing makes it straightforaver share
code between the Yin and Yang subdomains. Similar to thagmtiginal GRAPES model, a semi-implicit semi-Lagrangian
scheme is adopted for temporal integration and advectitim additional arrangement for cross-boundary transponded
a non-centered second-order temporal and spatial dizatietn, the dry nonhydrostatic frame is summarized as theiso
of an elliptical problem. The resulting Helmholtz equatisnsolved with the Generalized Conjugate Residual solver in
cooperation with the classic Schwarz method. Even thougltdefficients of the equation are quite different from thiose
the original model, the computational procedure of the nese s just the same. The bi-cubic Lagrangian interpolatemes
to provide Dirichlet-type boundary conditions with datartsfer between the subdomains. The dry core is evaluatéd wit
several benchmark test cases, and all the tests displaynedale numerical stability and computing performancesiBancy
of the balanced flow and development of both the mountaindad Rossby wave and Rossby—Haurwitz wave confirms the
appropriate installation of the 3D Coriolis terms in the s@émplicit semi-Lagrangian dynamic core on the Yin-Yangdgr
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1. Introduction tions and cloud-resolving forecasts. Mesoscale phenomena

. . . nd even cloud development can be resolved with a global
The dynamic core is the heart of the atmospheric mOdelzlttmospheric model (Satoh et al., 2010). A global non-

determines the computing characteristics such as the RUMEr, i otic model system, the Global/Regional Assintfati

ical accuracy a.m.d computatpnal efficiency. U;e of a hlgﬁnd Prediction System (GRAPES, Xue and Chen, 2008), was
order spatial finite differencing scheme, semi-Lagrangia . . ) .
4 . eveloped on the latitude—longitude grid system at the Chi-

transport, advanced temporal integration, and other -staie . - . .
nese Meteorological Administration. It is a fully compress

of-the-art techniques has improved model representau.%lpe model designed for numerical weather prediction acros

significantly. In addition, V.V'th the r"?‘p'd development o cales. The height-based terrain-following coordinatesid
computer systems, there is increasing demand for global. ;

. d ) - . 0 incorporate orography for the convenience of bottom
high-resolution numerical weather predictions. With a-con

ventional latitude—longitude grid, the difference betwéiee boundary arangement. The GRAPES dynamic core is solved

mesh size at the equator and in the polar regions beco with the semi-implicit semi-Lagrangian (SISL) method con-

es. : . L )
larger as the model resolution increases. The large and C';P%[nng the spherical departure-point determinationdfie

lex computations involved in runnina alobal hiah-resigat and Beaudoin, 1994) and the non-centered finite differgncin
P P S 99 9 scheme (Semazzi et al., 1995). The 3D vector SISL scheme
models calls for a quasi-uniform grid on a sphere. For eX-. . ; )
. . dé(?lan et al., 1998) is adopted to discretize the momentum

ample, the Nonhydrostatic Icosahedral Atmospheric Mo luations. The Charney—Phillips grid (Charney and Philips
(NICAM, Tomita and Satoh, 2004) and Model for Predics J ' y Ps g y WP

tion Across Scales—Atmosphere (MPAS-A, Skamarock et a]f953) and Arakawa-C grid (Arakawa and Lamb, 1997) were

2012) have been developed recently for multi-scale simuﬁeﬁosen _for the sFagg_ermg of phys_|cal variables in the et
and horizontal directions, respectively.

In high-resolution cases, however, numerical approaches
* Corresponding author: PENG Xindong developed for the longitude—latitude coordinate face -addi
Email: pengxd@cams.cma.gov.cn tional difficulties, such as pole singularity and the conver
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gence of meridians in the polar regions. The meridians cad- The Yin-Yang grid

verge closer to the poles, which makes the latitudinal grid _ -
interval null at the pole points. The singularity displays The Yin-Yang grid, first proposed by Kageyama and Sato

problem in vector representation. On the other hand, the s n004)’ Is composed of wo identical component zones. The

gularity is not a physical property, but a problem of coord 0air of zones are combined in a complementary way to cover

. the sphere with overlaps at their boundaries. Each compo-
nate system selection. The problem can be overcome in a : . . .

: : : . .. ..nhentzone is a low latitude part of the longitude—latitudd gr
variety of ways, such as diagnosing the polar wind with thaend one is rotated by 9@o fit with the other. The grid spac-
minimization principle (McDonald and Bates, 1989). In a nu- y ' 9 P

) . L ing is quasi-uniform—the minimum/maximum ratio of the
merical model, the time step is rigidly limited by the smalle _ * N . .
. . . . . rid spacing is about 0.707—and the coordinate is orthdgona
grid spacing at the poles. This shortcoming turns into a se-, . : ) . i
‘ ; . . : . “without any singularity. Therefore, high-order intergaa
rious issue for effective and economic model integrations | 2
schemes and finite difference methods that have been devel-

high-resolution models. In fact, the problem becomes worse . . : .
. : oped on the longitude—latitude coordinate can be applied on
and more complicated in the case of the SISL model. The ex-", . . " .
. . . . e Yin-Yang grid. In addition, a set of parallel computatio
istence of tanp and seap in the horizontal advection terms - ;

T . methods can be easily introduced into the system thanks to
reduces the accuracy of computation in high latitude areas . . .

. . . L .. the identical structure of the two zones. Like any other ever

when dealing with the spherical departure-pointin theliéc

scheme. In a latitude—longitude mesh model, subgrid-scsi‘;}et grid, however, the Yin-Yang grid requires interpolat

S . fhe boundaries, which might reduce the accuracy of numer-
processes at midlatitudes may be resolved as grid-scale prQ, . : o
) : ; ; ical integrations and frequent communications between pro
cesses in the polar regions due to the relatively high reso- : L .
cessors will definitely decrease the computing speed of the

lution there, which confuses the physical interaction agof] arallel program. Global conservation is another issue for

scales. Dn‘_ferent physics schem_es are then required in ﬁ%g overlapped Yin-Yang grid. The existence of inner bound-
corresponding model for proper simulations.

Owina to the aforementioned problems. model develoa[ies becomes a problem for the mass-flux balance between
9 P ' e component zones. Peng et al. (2006) developed a numeri-

ment using qua5|-l_m|form grlds ona sphere is now an IMPAQYY| constraint to guarantee that the fluxes at the boundafries
tant topic for multiscale simulation and numerical weath

: . . Do %he two components are identical, which achieves local and
forecasting. The most familiar designs of quasi-uniforidgr

: . Igbal conservation.
are the icosahedral grid (Sadourny et al., 1968), the cubd To solve the boundary problem of the Yin-Yang grid, a
grid (Sadourny, 1972), and the Yin-Yang grid (Kageya : . .
) L agrange interpolation was introduced for boundary data
and Sato, 2004). The advantages and disadvantages of %a;(%rhan ein Li et al. (2006, 2008) and Baba et al. (2010)
of these grids have been discussed in Williamson (2007),,in 9 ' ' | )

. X . . In'their work, the results of benchmark tests showed that the
which the Yin-Yang grid was selected as an appropriate suc-

cessor to the longitude—latitude coordinate. Most nuraéri resence of the overset region does not significantly affect

algorithms based on the longitude—latitude coordinate cF?ne dynamics on both long and short time scales when the

be straightforwardly used on the Yin-Yang grid without an |gh-order interpolation methods are applied. I_n a Yingan
! . . . §I’Id system, boundary data exchange occurs in the halo re-
change. Mesh refinement and the practice of grid nesting ate o . .
: .. - gion that is aligned to the bounds of each domain. Quantities
convenient because of the structured and regular gnddsﬂ . : ) .
. . In the halo region are not updated with temporal integration
bution. Global and regional models can share the same c(J:¥ . : o .
. . . . . prognostic equations, but with interpolation from aresth
namic frame in the Yin-Yang grid system. The disadvan- . . : :
i . : . ._—zone. In this paper, two overset grids are defined for theccubi
tage of the Yin-Yang grid, however, is the existence of inner . : . .
) : : grange interpolation. The coordinate conversion betwee
boundaries. In this paper, we show the details of the comp%% and Yana arids can be expressed as
ing procedure of the SISL method when a 3D Coriolis forcing 99 P
is added. Redefinition of the coefficients of the I_—|e|mh_o|tz_ COSPo COSAG = — COSPeCOSAe
equation and arrangement of the boundary consideration in . .
the Generalized Conjugate Residual (GCR) iteration are dis €OSpoSinAo = sinpe ) 1)
played with respect to the dynamic core on the Yin-Yang Singo = CcoSPeSinAe
grid. _ _ _
The paper is organized as follows: A brief descriptiowhereA and¢ represent longitude and latitude, respectively,
of the Yin-Yang grid with the interpolation scheme for inand the subscripts and o denote the Yin and Yang grids.
ner boundaries is presented in next section. The detailtitle scalar quantity can be interpolated directly with bicu
computing procedure of the nonhydrostatic dynamic core bggrangian interpolation (Li et al., 2006), and vector gan
GRAPES on the Yin-Yang grid (GRAPESRY) follows in formation from the Yang to Yin zone gives
section 3, including the SISL method, computing of the cor- ) )
responding coefficients, and arrangement of cross-boyndarf Ve | _ —sinAosinde  —C0SAo/COSPe | (Vo @
transport. Numerical results of some standard tests are pra ue COSAo/COSPe  —SiNAoSiNAe Uo |
sented in section 4, and a conclusion to the study is provided
in section 5. and vice versa.
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3. Dynamical frame of the GRAPES.YY

3.1. Prognostic equations

the departure point at time levelnd the nonlinear terms are
included inAy(x = u,v,w,M’, 8'), which remains the same as
in the original GRAPES model (Xue and Chen, 2008). Linear

The nonhydrostatic governing equations of the atmesymsl(x = u,v,w,M’, &) at time leveln+ 1 are
sphere on a sphere read

o= —cob (O 2,9 L py 13

du cpf an uvtang  uw u= GO Gy ey )TV TeW, (13)

- = — + frv—fow+ -——1, 3

dt rcosp oA r L 5 on’ . on’ ¢ ; 14

dv  co0am Ptang v V=0 (a—y+ SVE) “huthw, 44

—=————fiu+ fHw-— +—, 4) ~

at ro ' ' Lo = —codzed s ce’z‘m+fu fyv, (15)

d_W—_C 9‘9_'_'_ foue v sztal,]<’)—|_M ) W = p Stdi p Stdi ¢ AV

at gy T9TTeU— R r r)’ o . M zr—2 dn

dn F ni v bl P

(V—l)HZ—nDs—FF , (6) .

4 _Fe (7) (y—D(zr - ZSJ (U0t vRy) 4o
on a spherical coordinate system, whBris the Exner func- Lo = Wz 17
tion, 6 is the potential temperature, = 100464 J kg * K~ o
represents the specific heat at constant pressyre, are z ~on

. . ) : . __ 8
horizontal winds andv is the vertical speed, means time, S= 7 — ZSCp FL +9,

_ 2 bt N
9 __9'80616 m s©is the g_rawtatlonz_;ll accelerationis the s 5 residual fraction of the reference atmosphere from the
radius vector of the spherical coordinaik, denotes the 3D hydrostatic balance state, and

divergencef is Coriolis parameter and

ZT—2
C = - }
y:_p’ SX 7 — 2z X
Rd - zT—Z
Fg:QT;Fr' VT T
p T
ZSt:_ZT_257

Ry represents the ideal gas constant for dry@ijrshows the
source or sink term of heat arfg is the turbulent diffusion, @xandgsy are the topographic slopz; is the model top, and
both of which are 0 in this dry core. zsis surface height. The terms containifygandf, are newly

For uniform code design on the Yin and Yang compadntroduced into the equations in comparison to the GRAPES
nents, 3D Coriolis force, different from the original GRA®E model. Considering Egs. (13)—(15), the linear equationfet
(Chen et al., 2008), is described in the momentum equatioks|s. (8)—(10) can be solved accordingly:
It also serves to improve the accuracy and flexibility of the

; , e c ¢ on’ on’ on’
dynamic core. After discretization with the SISL method; th Uny1 = EulW + £u20— + Eusg +éw, (18)
dynamical equations for the prognostic variableg w, M’ on dﬂy/ on
and@’ at time leveln+ 1 are written as Vi1 = 5\,10_ + 5\20_ + E‘BT +&0, (19)
X y 2
Un1 = Og(Lu)niaAt+Ay, ®) an’ an’ an’
Wni1 = éui—— + &ie—— + &ae—z +éwo, (20
Vo1 = G (L) + Ay ©) il = G- + i ay Gie—z +éio,  (20)
Wni1 = O (Lw)ns 10t +Ag (10) where
(M)nt1 = ae(Ln)npadt+An (11) = Cllécpé 21)
(0")n+1 = Ae(Lo)ns18t + Ag (12) v Co
in a height-based terrain-following coordina®g Where £, = _ C1206,6 , (22)
n'(6') is a perturbation of the Exner function (potential tem- Co .
perature) from its reference staig0). We note that the _ (Cr1Zsx+CaraZsy +C13Zs1) 0Cp 0 (23)
curvature terms in the momentum equations disappear whe‘rﬁB N Co ’

a semi-Lagrangian algorithm is used for transporting com-
putation of the 3D vector. The reference state is a height

C11Au + C12Ay + C13Aw — C130 (s+ cpZstll Ae)

dependent function of each variable, which is the horizonta !
average of the given initial fields and is different from that
in the original model. In the equation4t is the time step

and a; the contribution adjustment factor. Information on Sv1 =

C215Cp6

CO ’

Co

)

(24)
(25)
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Ep— _0225Cpé (26) wherez is the height level. Substitut® into the thermody-
vz C namic equation [Eq. (17)] to obta# at the next time level:
(CorZsx + CooZsy+ Co3Zst) oCp 6
— , 27 o’ on’
b G 27) = D i D T . (34
Ca1Au + CooA + Co3Aw — C30 (s+ cpzst%—';'Ae)
&o = , where
Q) ~ ~
(28) E . C3162cp6ﬁ (35)
and 0= T a7
~ 2¢.0 90
(Cgl— awiCi1— Gmczl)CSCpe oo = M@ , (36)
dw = — 0aCo ; (29) C 0z
~ C31Zsx + C32Zsy + C33Z ~ 00
Fap = _ (Ca2— awaCi2 — awzCz2) 5cp6 (30) fo3 = ‘ngsy B 52 pea— (37)
aws3Co ’
S (Ca1— OwiCr1 — OwsCo1)Zsx . Eo0 — — Ca1Au+ CaoAv +CazAw
W aws3Co Co
S amcéi@_CZMCZZ)ZSYJr Casd 5+ coZaif o) 529 . (38)
—— +Ag.
(Ca3— awiC13 — aweCo3)Zst| < . & Co 0z
s 5cp0 (31)
c CW3 c Whenu,v,w andLp in Eq. (11) are substituted with Egs.
&io = (Ca1— Owa 11(;0%2 21)Au + (18)—(20) and (16), a Helmholtz equation is deduced as
w3
Cz2— 0w1C12 — aw2Ca2) A 7]
(Cez Wlavléco weCz2) Y+ My =¢&m (ful +Eu2 +5u3 )l’l +Eu0:|
(Ca3— aw1Cr3 — awCo3) Aw d 0
Wa\,\BCO - én2 (fvl +f\/z +E\B )n/+fvo}+
Caz— QwiCi3 — OyoCp3)d y AN a
(Cs3— AwnCr3 — 0waCas) (S+ Créstoz 9) . (32) éns3 (fwl +sz +va3 > ]
aws3Co
3 = a:At is defined, and matri€ is given as ; [(Eulﬁ + Eu2a_y + Eu3a_2) n'-+ Euo} N
na
N+(86)%  ndf+&hfs  8fp - N1, ox
Co Go Co I
2 +&nd+& n'+¢&
o | Fhfe-nsfe n+n©fe?  8hH+8f [( 1ox Vzdya “"Z) VO]
Co Co Co y
5fs+ 8200 f Oty —0%Myfy 14 (5f)2 0 |(&m+Ewey+Esa) M+ &l
& G Co 5% A, (39)
and
T—2Z where
Qw1 = 7r — ZS%X ’ - -
T — Z omn M )
-z =-9 - — , (40
Qwp = ZT_ZS%y’ El‘ll %X(ZT_ZS 02 (y_l)(ZT_Zs) ( )
_ =% -5 zZr—200 M ) 41
e = =7 tnz "’sy(zT—zs 7 -Da-=)
a1 a8 an
2 -5
n=1-95 CpZStﬁ =5 énz= -0 FER (42)
Co = (8f))? +(5fp) 2401+ (5f)7 . &na = — 6[_]1 (43)
Notice thatw' is the vertical velocity in the height-based 4
terraiAr!—fol_Iowing coordinate.” The relationship betweew The related 197 grid points, which serves the numeri-
andw is given by cal solution of Eq. (39), are displayed in Fig. 1. It is worth
zZr—2 Zr—z. noting that Egs. (21)—(43) are all different from those ia th

T—Z
w= u v W 33 i i i
7 — ZSQ"sx + 71— Zs(l’sy + 7T ’ (33) original GRAPES model due to the full consideration of the
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Fig. 1. Distribution of the 191 grid points involved in the dis-
cretization of the Helmholtz equation. Fig. 2. Determination of the departure point and calculation of
Y* on the Arakawa-C staggered grid.
3D Caoriolis term. The Helmholtz equation on the Yin-Yang
grid is solved by using the GCR method with an incompletaodify the midpoint determination. The departure pom (
LU factorization (LU) (Liu and Cao, 2008) to speed up thepq,ry) is then defined as

convergence of the iterative algorithm. The classical Salaw U At Ve At

method is adopted to update the interface conditions of sub-Aq = Ag— ———— ( - ;‘—tandJa) , (47)
domains (Qaddouri et al., 2008). Bi-cubic Lagrangian inter raCos(¢a) fa

polation is used for boundary updating. The threshold of ab—¢ _¢ Vit + (seég 2\ [/ UmAt\ % vt (48)
solute error, which is a sum of the Yin and Yang grids, is set 9 — *8~ ~_ a3 2ra 2ra

to be 10°1° for the numerical convergence measurement. Mg = ra— WmAt . (49)

3.2. Semi-Lagrangian advection Note that steps (1) and (3) are the same as in the original

3.2.1. Semi-Lagrangian transport on the Yin-Yang grid  model, while step (2) is modified because of the existence of

. : inner boundaries. Although the departure points can be out
Both the nonlinear terms and the departure-point-relatgl, . computational domain, they must be limited within the

terms are included i in Egs. (8)-(12). The departure point uter halo region boundaries. In this dynamic frame, four

is calculated according to Ritchie and Beaudoin (1994)0Ha? .
roups of departure points are calculated at scalar andwect

regions are defined for gach component zone to aVOId mUIIIIr_id points, separately, to define the coefficients in Eg4),(2
time data exchange during the parallel computation. Nec S

. : 8), (32), and (38).

sary data exchange is performed once per time step. When

a departure point is located out of the computational regidh2.2. Three-dimensional SISL integration for vectors on

it should be interpolated according to quantities in theohal the Yin-Yang grid

zone (Fig. 2). The deta|l_s_are summar_|zed_ as follows: The 3D SISL integration scheme (Qian et al., 1998) for
(1) Compute the position of the midpointe, ¢m, m) at  vectors is used to calculate,y on the Yin-Yang grid. For

the half-time level on the sphere considering scalars, the terngn can be interpolated at the departure

point (denoted with superscript “*”) directly:

UmAt Mz,
Am = Aa— 1 tarf ¢ — V2 44 o
n e g | 2 BT8R 0 ) s, x—on, 60)
B VmAAt UmAt \ 2 tang, 45 wherelLy(x= 0,M) is the linear termiNy(x= 6, 1M) is the non-
Om = Pa— 2ra T 2ra 2 (45) linear variation and
rm = ra_ WI';At . (46) Bg = 1_ aE 9

N>< = Z(Nx)n— (Nx)n—l .

X . . . We note that the term§,o,owo all containA g in Egs.
(2) Determine the velocity components at the mldeI?£4), (28) and (32). The prediction of 3D momentum calls

(Um, Vm, Wm) with linear interpolation. If the departure poin S X
is located outside the computational domain, grid points i & good description oA, vw e, Which depends on the com

the halo region help accomplish the interpolation. putation of
(3) lterate (twice in this paper) the above two steps to Yy = X+ de(Ly - N)AL, x=uvw,8,  (51)

where @, @4, ra) represents the arrival point.
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at their departure pointsdenote byy;'. Corresponding results from GRAPES are presented in Figs.
In the non-uniform vertical direction, a cubic LagrangiaBe—h for comparison. Th@’ in Fig. 3a shows its zonal par-
interpolation, allel contours after the 30-day integration, while the dltso

error is about-1.0 x 10~* at the equator and.Gx 102 in
midlatitude regions. Zonal wind (Fig. 3b) keeps its initial
state with a perturbation 6£0.12 m s'* at the boundary of
the Yin-Yang grid. Meridional and vertical winds, which dis

is used to ensure high-order accuracy. A second-order fornplety as absolute error in Figs. 3c and d, show their order of

4Nt (2-2)
Yy2) =Y M Tv@a), x=uvwe, (52)
ANk -2)

lation for the vertical gradient dfl is given as about 103 and 107 m s, respectively. Meanwhile, errors
of meridional and vertical winds reach 0.1 anck20~3 m
oy _ n %4 — % I st in the polar regions of the GRAPES model (Figs. 3g
02 - N kfl(ik,l—ik)(ik,l—ikﬂ) and h). Relatively small error is found with the new dy-
23 — (i1 + %1 namic core on the Yin-Yang grid. It is clear that obvious
nk(A 5 1)k —Z1) + numerical error exists at the boundaries of the overset grid
% Zk*lA | et in GRAPESYY, and the error appears in the pole regions
M1~ Zf — & . (53) in the original GRAPES core. The new core shows a much
(%1 = 2c-1) (B — &) smaller error than the original one. Owing to fact the analyt

This ensures second-order accuracy without guarantee?ﬁésomtions of the meridional and vertical velocities auéd,
numerical errors appear as highly significant. Consequentl

uantity conservation in the vertical transport. An altgive . A )
d y P a boundary trail is revealed in Figs. 3c and d. The time se-

choice that achieves exact conservation is : :
ries of the corresponding error norms¢, and/., of both the
scalar and vectors are given for GRAPES in Fig. 4. Error
norms increase with time. Thig and/, norms of thel’ are
0.002 and 0.0025 at day 30, while those of the velocity are
but the accuracy decreases for non-uniform grids, where th€09 and 0.0095, respectively. This numerical test cosfirm
My is located at the middle level @k andZ ;. In the hori- the stability of the SISL method and the proper installatbn
zontal directions, four grids are needed in the halo region fthe 3D Coriolis force in the nonhydrostatic frame.
a cubic Lagrangian interpolation at the departure point. In the zonal flow case, small interpolation error at the
boundaries is clearly displayed with the meridional wind an

] vertical velocity. We find the error ofandw to be 10 and
4. Numerical results of benchmark tests 1077, respectively, which is negligible in comparison with

For the validation of the dynamical modification concernthe u component. But does the error destroy the model sta-

ing 3D Coriolis and trajectory computation across bound!ity ina lnon zlero rfne;]ndlbor:al er:jdﬂcase y r\1Ne also Th%\]’r\’ the
aries, several benchmark tests are carried out to check fygnerical results of the balanced flow with an angle of 45
computational accuracy and the performance of GRAPE Fig. 5. This configuration seems to be the harshest for

YY. The model top is defined as 32.5 km, and the model dpe Yin-Yang grid because of the orthogonality of the two

mosphere is divided into 36 non-uniform levels. The hor?-Ub'Zones' Owing to the zonal wind enhancement at high lat-

zontal resolution is 25 There is no viscosity added in theitlmle_S in this te_st case, the time step will be tig_htly_lirdita i

dry core. a Iatltud_e—longltude grid _system. On th_e qua5|-un|f0rm-Y|n
Yang grid, however, the time step remains the same as in the

4.1. Steady-state geostrophic flow former. A reasonable distribution is found with all the scal

nd vector quantities. The scaldf, zonal wind and verti-

ol M —Me  Mc—Mig
02|y, (Ga2—2) (Ze1—2c1)

; (54)

This test is a 3D extension of Test 2 in Williamson et af

(1992). The initial state is defined as cal wind display equivalent computational error as in Fig. 3
' Even though the meridional wind shows larger error because
U = Up(cos¢ cosa + cosA sing sina) (55) of its enhancement, the boundary trail is nearly invisible i
. . the vector fields.
V= —ugsing sina , (56)
w=0, (57) 4.2. Zonalflow over a mountain
c ea_ﬂ — g (58) In this test, the dynamic core with 3D Coriolis force and
P~ oz ’ the SISL solver is tested with topography. The initial wind
cp6 oM . u? velocity is the same as the previous one. The mountain height
T% = —ZQUS|n¢ - T tan¢ 5 (59) iS giVen by
D\ 2
whereug is set to be 20 ms! anda is flow orientation angle, h=hoexp [— (ﬁ) ] ) (60)

which is 0 here. Thirty-day integration results af, u,v,w
and the differences between the numerical solution and thlberehy = 2000 m determines the peak height of the moun-
exact one, with a time step of 1800 s, are shown in Figs. 3atain andR = 1500 km is the mountain half widtiD, the
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Fig. 3. Numerical results of the steady-state zonal flow test at @ay(&§ perturbation of Exner functidit’ (contours)
and the error (shaded, 1f), (b) u (contours, m s1) and the error (shaded), (€102 m s1), and (d) vertical wind
(107 m s1) with the GRAPESYY new core in comparison with (¢}’ (contours) and the error (shaded; ) (f)

u (contours, m s1) and the error (shaded, i), (g) v (101 m s71), and (h) vertical wind (10° m s~1) with the
original GRAPES model.
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distance to the mountain centét, ¢.) = (17/2,11/6):

D = aarccos$singcsing + cospc cosp cogA —A¢)], (61)

The pressure field is initially given a hydrostatic balance

state,

(A, )= pspex _%(@Jrzg)(sin%_l)_'\'—zh

PsiA, @)= Psp®P =52 \a oK |’
(62)

whereN = 0.0182 s ! is the Brunt—Valsala frequency, =
2/7,up=20m s1 a=6371229 kmis mean radius of earth,
Q is earth’s angular velocity anpsp = 930 hPa denotes the
surface pressure at the South Pole. No analytical solution
is available in this test case, but the results with a splectra
method (Jablonowski et al., 2008) can be referenced. Geopo-
tential height, temperature, and the horizontal wind compo
nentsu andv at the 700 hPa level of day 15 are given in
Fig. 6 in comparison to the results of the original GRAPES.
All the results of the new core integration are comparable
with those in Jablonowski et al. (2008), even though a low-
s ‘ ‘ ‘ ‘ i resolution configuration is used here. The figures illusteat
0 T T T B proper evolution of the mountain-induced Rossby wave, and
0 5 10 15 20 25 30 no boundary trail is found with the non-zero velocity in this
case. The original model, however, displays the Rossby wave
Fig. 4. Error normsty, £ and /e of (a) N’ and (b) velocity in as not well developed, due to the low-resolution configura-

the steady-state flow test during the 30-day integration. tion. Therefore, we can again confirm good numerical per-
formance via this test case.

(b)
90N

60N
30N

180 120w 60W 0 60E  120E 180 120W 60W

d — 1 T T 1
-0.4 0 0.4 0.8 (WO*“)%(N> -0.1 -0.06 -0.02 0.02 0.06

60E 120E 180 120W 60W 0 0 60E 120E 180 120W 60W

0
— T T
—-0.08 -0.04 0 0.04 0.08 -1.8 -1 -0.2 0.6 1.4 (10°7)

Fig. 5. The same as Fig. 3 but for the flow with an orientation amglef 45> with the GRAPESYY core. The
error in (c) is plotted in ms.
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90N
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Fig. 6. Numerical result of the mountain-wave test at 700 hPa with @RAPESYY (contours) and original
GRAPES (shaded) model: (a) geopotential height (gpm),eimyperature°C), (c)u (m s 1) and (d)v (m s 1)

at day 15.
4.3. Three-dimensional Rossby—Haurwitz wave (22 —c—2)] - ﬁ co2C g | (69)
The initial velocity field is given by
2(Q+M)K
u = aMcosp+aKcod ¢ cogch)(csif p—cod ¢) ,(63) B(P)= % cos ¢[(c*+2c+2)—(c+1)*cos' ¢] ,
v = —aKccod 1 singsin(ch), (64) (70)
w=0, (63) C(¢)= —co§°¢[(c+ 1)cog¢ — (c+2)]. (71)

wherec = 4 denotes the wave number, avid= K ~ 1.962x
108 s1. Profiles of the temperature and pressure are giv&he time step is changed to 600 s in this test for the serious
by limitation of linear computational stability. The numeaice-
sults of the geopotential height, andv at 500 hPa and sur-
) face pressure at day 14 are plotted in Fig. 7. The four-wave
T=To-T (Z_ _> ’ (66) structure propagates correctly in geopotential heighfasa
5 pressure and the horizontal wind field in this low-resolutio
o pref(T ) i 67) model. No obvious numerical deformation of the wave is

To observed, and the wave displays smooth propagation at the
Yin-Yang boundaries with the classic Schwarz scheme.
where pret = 955 hPa andlp = 288 K with the moist-  The cost of the classic Schwarz solver is about 24.92%
adiabatic lapse rate = 0.0065 km'*. The geopotential is of the model total expense due to the frequent information
given as exchange for the boundary constraint of the Helmholtz equa-

tion. Of course, the cost varies with the iteration in the GCR
(A, ¢) = aZA(d’) ~|—aZB(¢)cos(c)\)+a2C(¢)cos(20/\), solver. With the help of the ILU preconditioner, the conver-
(68) gence of the GCR solver shows great efficiency. The iteration
before its convergence is listed in Fig. 8 for the first 108st
M(2Q + M) integration. Rapid convergence of the solvers is achiesed f
A9)=——F— cos'g & 0032 "p[(c+1)cosP+  the oversetgrid, and the iteration tends to decrease wik ti

where
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Fig. 7. Numerical result of the Haurwitz—Rossby wave at 500 hPa thigdhnew dynamic core on the Yin-Yang
grid: (a) geopotential height (gpm), (b) surface presshiay, (c)u (m s 1) and (d)v (m s 1) at day 14.
18 lis force has been introduced to the new frame, which makes
steady—state flow the code identical between the Yin and Yang components.
16 1 zonal_flow over’ a mountain—-— The departure point across boundaries is fixed with the help
A Rossby—Haurwitz wave —— ) .
14 ‘_-\,‘ of the halo region, and the SISL scheme for 3D vectors is
194 =\ _ _ i implemented into the dynamical core on the Yin-Yang grid.
WAIW Y Numerical results of 3D benchmark tests reveal strong com-
10 1 putational stability and reasonable performance. Thetesu
8 - also show the property of the 3D Coriolis installation ang th
reconstruction of the Helmholtz equation in the SISL inte-
6 - /L AN AR AR A1 AR AR gration. The new nonhydrostatic core displays reasonable
4 L VAWV UWWW numerical results in three idealized tests with or withaut t
74 pography. The classic Schwarz method, which updates the
VV VV VWV V\.Nl boundary with a bi-cubic Lagrangian interpolation, is gene
0 T T T T ally efficient for the constraint of global convergence af th

20 40 60 80

100

numerical solution. On the other hand, relatively expemsiv
cost and numerical oscillations at the boundary are also ob-

Fig. 8. Iterations of the GCR and classic Schwarz solvers beforeseryed in the SISL integration. Further investigation om th

convergence in the first 100 steps of the 4fady-state flow,
zonal flow over a mountain, and the Rossby—|

cases.

The test of the zonal flow over a mountain shows more ite
tions than the others for its strong time-dependent current

5. Conclusion

interpolation procedure of the determination of coeffitsen

Haurwitz wave tesq i a Heimholtz equation in the classical Schwarz metsod i

demanded by the SISL integration of non-hydrostatic models
on the Yin-Yang grid. Additional developments, such as the
géundary constraint, parallelization for large compoiagi
and consideration of vapor and the installation of physics,
will be pursued in future work.
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