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ABSTRACT

A 3D dynamic core of the non-hydrostatic model GRAPES (Global/Regional Assimilation and Prediction System) is
developed on the Yin-Yang grid to address the polar problem and to enhance the computational efficiency. Three-dimensional
Coriolis forcing is introduced to the new core, and full representation of the Coriolis forcing makes it straightforward to share
code between the Yin and Yang subdomains. Similar to that in the original GRAPES model, a semi-implicit semi-Lagrangian
scheme is adopted for temporal integration and advection with additional arrangement for cross-boundary transport. Under
a non-centered second-order temporal and spatial discretization, the dry nonhydrostatic frame is summarized as the solution
of an elliptical problem. The resulting Helmholtz equationis solved with the Generalized Conjugate Residual solver in
cooperation with the classic Schwarz method. Even though the coefficients of the equation are quite different from thosein
the original model, the computational procedure of the new core is just the same. The bi-cubic Lagrangian interpolationserves
to provide Dirichlet-type boundary conditions with data transfer between the subdomains. The dry core is evaluated with
several benchmark test cases, and all the tests display reasonable numerical stability and computing performance. Persistency
of the balanced flow and development of both the mountain-induced Rossby wave and Rossby–Haurwitz wave confirms the
appropriate installation of the 3D Coriolis terms in the semi-implicit semi-Lagrangian dynamic core on the Yin-Yang grid.
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1. Introduction

The dynamic core is the heart of the atmospheric model. It
determines the computing characteristics such as the numer-
ical accuracy and computational efficiency. Use of a high-
order spatial finite differencing scheme, semi-Lagrangian
transport, advanced temporal integration, and other state-
of-the-art techniques has improved model representation
significantly. In addition, with the rapid development of
computer systems, there is increasing demand for global
high-resolution numerical weather predictions. With a con-
ventional latitude–longitude grid, the difference between the
mesh size at the equator and in the polar regions becomes
larger as the model resolution increases. The large and com-
plex computations involved in running global high-resolution
models calls for a quasi-uniform grid on a sphere. For ex-
ample, the Nonhydrostatic Icosahedral Atmospheric Model
(NICAM, Tomita and Satoh, 2004) and Model for Predic-
tion Across Scales–Atmosphere (MPAS-A, Skamarock et al.,
2012) have been developed recently for multi-scale simula-
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tions and cloud-resolving forecasts. Mesoscale phenomena
and even cloud development can be resolved with a global
atmospheric model (Satoh et al., 2010). A global non-
hydrostatic model system, the Global/Regional Assimilation
and Prediction System (GRAPES, Xue and Chen, 2008), was
developed on the latitude–longitude grid system at the Chi-
nese Meteorological Administration. It is a fully compress-
ible model designed for numerical weather prediction across
scales. The height-based terrain-following coordinate isused
to incorporate orography for the convenience of bottom
boundary arrangement. The GRAPES dynamic core is solved
with the semi-implicit semi-Lagrangian (SISL) method con-
taining the spherical departure-point determination (Ritchie
and Beaudoin, 1994) and the non-centered finite differencing
scheme (Semazzi et al., 1995). The 3D vector SISL scheme
(Qian et al., 1998) is adopted to discretize the momentum
equations. The Charney–Phillips grid (Charney and Philips,
1953) and Arakawa-C grid (Arakawa and Lamb, 1997) were
chosen for the staggering of physical variables in the vertical
and horizontal directions, respectively.

In high-resolution cases, however, numerical approaches
developed for the longitude–latitude coordinate face addi-
tional difficulties, such as pole singularity and the conver-
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gence of meridians in the polar regions. The meridians con-
verge closer to the poles, which makes the latitudinal grid
interval null at the pole points. The singularity displays a
problem in vector representation. On the other hand, the sin-
gularity is not a physical property, but a problem of coordi-
nate system selection. The problem can be overcome in a
variety of ways, such as diagnosing the polar wind with the
minimization principle (McDonald and Bates, 1989). In a nu-
merical model, the time step is rigidly limited by the smallest
grid spacing at the poles. This shortcoming turns into a se-
rious issue for effective and economic model integrations in
high-resolution models. In fact, the problem becomes worse
and more complicated in the case of the SISL model. The ex-
istence of tanϕ and secϕ in the horizontal advection terms
reduces the accuracy of computation in high latitude areas
when dealing with the spherical departure-point in the Ritchie
scheme. In a latitude–longitude mesh model, subgrid-scale
processes at midlatitudes may be resolved as grid-scale pro-
cesses in the polar regions due to the relatively high reso-
lution there, which confuses the physical interaction among
scales. Different physics schemes are then required in the
corresponding model for proper simulations.

Owing to the aforementioned problems, model develop-
ment using quasi-uniform grids on a sphere is now an impor-
tant topic for multiscale simulation and numerical weather
forecasting. The most familiar designs of quasi-uniform grids
are the icosahedral grid (Sadourny et al., 1968), the cubed
grid (Sadourny, 1972), and the Yin-Yang grid (Kageyama
and Sato, 2004). The advantages and disadvantages of each
of these grids have been discussed in Williamson (2007), in
which the Yin-Yang grid was selected as an appropriate suc-
cessor to the longitude–latitude coordinate. Most numerical
algorithms based on the longitude–latitude coordinate can
be straightforwardly used on the Yin-Yang grid without any
change. Mesh refinement and the practice of grid nesting are
convenient because of the structured and regular grid distri-
bution. Global and regional models can share the same dy-
namic frame in the Yin-Yang grid system. The disadvan-
tage of the Yin-Yang grid, however, is the existence of inner
boundaries. In this paper, we show the details of the comput-
ing procedure of the SISL method when a 3D Coriolis forcing
is added. Redefinition of the coefficients of the Helmholtz
equation and arrangement of the boundary consideration in
the Generalized Conjugate Residual (GCR) iteration are dis-
played with respect to the dynamic core on the Yin-Yang
grid.

The paper is organized as follows: A brief description
of the Yin-Yang grid with the interpolation scheme for in-
ner boundaries is presented in next section. The detailed
computing procedure of the nonhydrostatic dynamic core of
GRAPES on the Yin-Yang grid (GRAPESYY) follows in
section 3, including the SISL method, computing of the cor-
responding coefficients, and arrangement of cross-boundary
transport. Numerical results of some standard tests are pre-
sented in section 4, and a conclusion to the study is provided
in section 5.

2. The Yin-Yang grid

The Yin-Yang grid, first proposed by Kageyama and Sato
(2004), is composed of two identical component zones. The
pair of zones are combined in a complementary way to cover
the sphere with overlaps at their boundaries. Each compo-
nent zone is a low latitude part of the longitude–latitude grid,
and one is rotated by 90◦ to fit with the other. The grid spac-
ing is quasi-uniform—the minimum/maximum ratio of the
grid spacing is about 0.707—and the coordinate is orthogonal
without any singularity. Therefore, high-order interpolation
schemes and finite difference methods that have been devel-
oped on the longitude–latitude coordinate can be applied on
the Yin-Yang grid. In addition, a set of parallel computation
methods can be easily introduced into the system thanks to
the identical structure of the two zones. Like any other over-
set grid, however, the Yin-Yang grid requires interpolation at
the boundaries, which might reduce the accuracy of numer-
ical integrations and frequent communications between pro-
cessors will definitely decrease the computing speed of the
parallel program. Global conservation is another issue for
the overlapped Yin-Yang grid. The existence of inner bound-
aries becomes a problem for the mass-flux balance between
the component zones. Peng et al. (2006) developed a numeri-
cal constraint to guarantee that the fluxes at the boundariesof
the two components are identical, which achieves local and
global conservation.

To solve the boundary problem of the Yin-Yang grid, a
2D Lagrange interpolation was introduced for boundary data
exchange in Li et al. (2006, 2008) and Baba et al. (2010).
In their work, the results of benchmark tests showed that the
presence of the overset region does not significantly affect
the dynamics on both long and short time scales when the
high-order interpolation methods are applied. In a Yin-Yang
grid system, boundary data exchange occurs in the halo re-
gion that is aligned to the bounds of each domain. Quantities
in the halo region are not updated with temporal integration
of prognostic equations, but with interpolation from another
zone. In this paper, two overset grids are defined for the cubic
Lagrange interpolation. The coordinate conversion between
Yin and Yang grids can be expressed as





cosϕocosλo = −cosϕecosλe

cosϕosinλo = sinϕe

sinϕo = cosϕesinλe

, (1)

whereλ andϕ represent longitude and latitude, respectively,
and the subscriptse and o denote the Yin and Yang grids.
The scalar quantity can be interpolated directly with bi-cubic
Lagrangian interpolation (Li et al., 2006), and vector trans-
formation from the Yang to Yin zone gives
(

ve

ue

)
=

(
−sinλosinλe −cosλo/cosϕe

cosλo/cosϕe −sinλosinλe

)(
vo

uo

)
, (2)

and vice versa.
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3. Dynamical frame of the GRAPES YY

3.1. Prognostic equations

The nonhydrostatic governing equations of the atmo-
sphere on a sphere read

du
dt

= −
cpθ

r cosϕ
∂Π
∂λ

+ frv− fϕw+

(
uvtanϕ

r
−

uw
r

)
, (3)

dv
dt

= −
cpθ

r
∂Π
∂ϕ

− fru+ fλ w−

(
u2 tanϕ

r
+

vw
r

)
, (4)

dw
dt

= −cpθ
∂Π
∂ r

−g+ fϕu− fλ v+

(
u2 tanϕ

r
+

vw
r

)
, (5)

(γ −1)
dΠ
dt

= −ΠD3+
F∗

θ
θ

, (6)

dθ
dt

=
F∗

θ
Π

, (7)

on a spherical coordinate system, whereΠ is the Exner func-
tion,θ is the potential temperature,cp = 1004.64 J kg−1 K−1

represents the specific heat at constant pressure,u, v are
horizontal winds andw is the vertical speed,t means time,
g = 9.80616 m s−2 is the gravitational acceleration,r is the
radius vector of the spherical coordinate,D3 denotes the 3D
divergence,f is Coriolis parameter and

γ =
cp

Rd
,

F∗
θ =

QT +FT

cp
.

Rd represents the ideal gas constant for dry air,QT shows the
source or sink term of heat andFT is the turbulent diffusion,
both of which are 0 in this dry core.

For uniform code design on the Yin and Yang compo-
nents, 3D Coriolis force, different from the original GRAPES
(Chen et al., 2008), is described in the momentum equations.
It also serves to improve the accuracy and flexibility of the
dynamic core. After discretization with the SISL method, the
dynamical equations for the prognostic variablesu,v,w,Π′

andθ ′ at time leveln+1 are written as

un+1 = αε (Lu)n+1∆t +Au , (8)

vn+1 = αε (Lv)n+1∆t +Av , (9)

wn+1 = αε (Lŵ)n+1∆t +Aŵ , (10)

(Π′)n+1 = αε (LΠ)n+1∆t +AΠ , (11)

(θ ′)n+1 = αε (Lθ )n+1∆t +Aθ , (12)

in a height-based terrain-following coordinate ˆz, where
Π′(θ ′) is a perturbation of the Exner function (potential tem-
perature) from its reference statẽΠ(θ̃ ). We note that the
curvature terms in the momentum equations disappear when
a semi-Lagrangian algorithm is used for transporting com-
putation of the 3D vector. The reference state is a height-
dependent function of each variable, which is the horizontal
average of the given initial fields and is different from that
in the original model. In the equations,∆t is the time step
and αε the contribution adjustment factor. Information on

the departure point at time leveln and the nonlinear terms are
included inAx(x = u,v,w,Π′,θ ′), which remains the same as
in the original GRAPES model (Xue and Chen, 2008). Linear
termsLx(x = u,v,w,Π′,θ ′) at time leveln+1 are

Lu = −cpθ̃
(

∂Π′

∂x
+Zsx

∂Π′

∂ ẑ

)
+ frv− fϕw , (13)

Lv = −cpθ̃
(

∂Π′

∂y
+Zsy

∂Π′

∂ ẑ

)
− fru+ fλ w , (14)

Lŵ = −cpθ̃Zst
∂Π′

∂ ẑ
−s−cpθ ′Zst

∂ Π̃
∂ ẑ

+ fϕu− fλ v , (15)

LΠ = −
∂ Π̃
∂ ẑ

ŵ−
Π̃

γ −1
D3|ẑ−

[
zT − ẑ
zT −zs

∂ Π̃
∂ ẑ

−

Π̃
(γ −1)(zT−zs)

]
(uφsx+vφsy) , (16)

Lθ = −w
∂ Π̃
∂z

, (17)

where

s=
zT

zT −zs
cpθ̃

∂ Π̃
∂ ẑ

+g ,

is a residual fraction of the reference atmosphere from the
hydrostatic balance state, and

Zsx = −
zT − ẑ
zT −zs

φsx ,

Zsy = −
zT − ẑ
zT −zs

φsy ,

Zst = −
zT

zT −zs
,

φsx andφsy are the topographic slope,zT is the model top, and
zs is surface height. The terms containingfϕ and fλ are newly
introduced into the equations in comparison to the GRAPES
model. Considering Eqs. (13)–(15), the linear equation setof
Eqs. (8)–(10) can be solved accordingly:

un+1 = ξu1
∂Π′

∂x
+ ξu2

∂Π′

∂y
+ ξu3

∂Π′

∂ ẑ
+ ξu0 , (18)

vn+1 = ξv1
∂Π′

∂x
+ ξv2

∂Π′

∂y
+ ξv3

∂Π′

∂ ẑ
+ ξv0 , (19)

ŵn+1 = ξŵ1
∂Π′

∂x
+ ξŵ2

∂Π′

∂y
+ ξŵ3

∂Π′

∂ ẑ
+ ξŵ0 , (20)

where

ξu1 = −
C11δcpθ̃

C0
, (21)

ξu2 = −
C12δcpθ̃

C0
, (22)

ξu3 = −
(C11Zsx+C12Zsy+C13Zst)δcpθ̃

C0
, (23)

ξu0 =
C11Au +C12Av +C13Aw−C13δ

(
s+cpZst

∂ Π̃
∂ ẑ Aθ

)

C0
,

(24)

ξv1 = −
C21δcpθ̃

C0
, (25)
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ξv2 = −
C22δcpθ̃

C0
, (26)

ξv3 = −
(C21Zsx+C22Zsy+C23Zst)δcpθ̃

C0
, (27)

ξv0 =
C21Au +C22Av +C23Aw−C23δ

(
s+cpZst

∂ Π̃
∂ ẑ Aθ

)

C0
,

(28)

and

ξŵ1 = −
(C31−αw1C11−αw2C21)δcpθ̃

αw3C0
, (29)

ξŵ2 = −
(C32−αw1C12−αw2C22)δcpθ̃

αw3C0
, (30)

ξŵ3 = −

[
(C31−αw1C11−αw2C21)Zsx

αw3C0
+

(C32−αw1C12−αw2C22)Zsy+

αw3C0

(C33−αw1C13−αw2C23)Zst

αw3C0

]
δcpθ̃ , (31)

ξŵ0 =
(C31−αw1C11−αw2C21)Au

αw3C0
+

(C32−αw1C12−αw2C22)Av

αw3C0
+

(C33−αw1C13−αw2C23)Aw

αw3C0
−

(C33−αw1C13−αw2C23)δ
(

s+cpZst
∂ Π̃
∂ ẑ Aθ

)

αw3C0
. (32)

δ = αε ∆t is defined, and matrixCCC is given as

CCC=




η +(δ fλ )2

C0

ηδ fr + δ 2 fλ fϕ

C0
−

δ fϕ − δ 2 fλ fr
C0

δ 2 fλ fϕ −ηδ fϕ

C0

η + η(δ fϕ)2

C0

δ fλ + δ 2 fr fϕ

C0

δ fϕ + δ 2 fλ fr
C0

−
δ fλ − δ 2 fϕ fr

C0

1+(δ fr)2

C0




,

and

αw1 =
zT −z
zT −zs

φsx ,

αw2 =
zT −z
zT −zs

φsy ,

αw3 =
zT −zs

zT
,

η = 1− δ 2cpZst
∂ Π̃
∂ ẑ

∂ θ̃
∂z

,

C0 = (δ fλ )2 +(δ fϕ )2 + η [1+(δ fr)
2] .

Notice that ŵ is the vertical velocity in the height-based
terrain-following coordinate ˆz. The relationship betweenw
andŵ is given by

w =
zT −z
zT −zs

φsxu+
zT −z
zT −zs

φsyv+
zT −z

zT
ŵ , (33)

wherez is the height level. Substitutew into the thermody-
namic equation [Eq. (17)] to obtainθ ′ at the next time level:

θ ′
n+1 = ξθ1

∂Π′

∂x
+ ξθ2

∂Π′

∂y
+ ξθ3

∂Π′

∂ ẑ
+ ξθ0 , (34)

where

ξθ1 =
C31δ 2cpθ̃

C0

∂ θ̃
∂z

, (35)

ξθ2 =
C32δ 2cpθ̃

C0

∂ θ̃
∂z

, (36)

ξθ3 =
C31Zsx+C32Zsy+C33Zst

C0
δ 2cpθ̃

∂ θ̃
∂z

, (37)

ξθ0 = −

[
C31Au +C32Av +C33Aw

C0
−

C33δ
(

s+cpZst
∂ Π̃
∂ ẑ Aθ

)

C0

]
δ

∂ θ̃
∂z

+Aθ . (38)

When u,v,w and LΠ in Eq. (11) are substituted with Eqs.
(18)–(20) and (16), a Helmholtz equation is deduced as

Π′
n+1 = ξΠ1

[(
ξu1

∂
∂x

+ ξu2
∂
∂y

+ ξu3
∂
∂ ẑ

)
Π′ + ξu0

]
+

ξΠ2

[(
ξv1

∂
∂x

+ ξv2
∂
∂y

+ ξv3
∂
∂ ẑ

)
Π′ + ξv0

]
+

ξΠ3

[(
ξŵ1

∂
∂x

+ ξŵ2
∂
∂y

+ ξŵ3
∂
∂ ẑ

)
Π′ + ξŵ0

]
+

ξΠ4





∂
[(

ξu1
∂
∂x + ξu2

∂
∂y + ξu3

∂
∂ ẑ

)
Π′ + ξu0

]

∂x
+

∂
[(

ξv1
∂
∂x + ξv2

∂
∂y + ξv3

∂
∂ ẑ

)
Π′ + ξv0

]

∂y
+

∂
[(

ξŵ1
∂
∂x+ξŵ2

∂
∂y+ξŵ3

∂
∂ ẑ

)
Π′+ξŵ0

]

∂ ẑ



+AΠ, (39)

where

ξΠ1 = −δφsx

(
zT − ẑ
zT −zs

∂ Π̃
∂ ẑ

−
Π̃

(γ −1)(zT−zs)

)
, (40)

ξΠ2 = −δφsy

(
zT − ẑ
zT −zs

∂ Π̃
∂ ẑ

−
Π̃

(γ −1)(zT−zs)

)
, (41)

ξΠ3 = −δ
∂ Π̃
∂ ẑ

, (42)

ξΠ4 = −
δ Π̃

γ −1
. (43)

The related 19Π grid points, which serves the numeri-
cal solution of Eq. (39), are displayed in Fig. 1. It is worth
noting that Eqs. (21)–(43) are all different from those in the
original GRAPES model due to the full consideration of the
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Fig. 1. Distribution of the 19Π grid points involved in the dis-
cretization of the Helmholtz equation.

3D Coriolis term. The Helmholtz equation on the Yin-Yang
grid is solved by using the GCR method with an incomplete
LLLUUU factorization (ILLLUUU) (Liu and Cao, 2008) to speed up the
convergence of the iterative algorithm. The classical Schwarz
method is adopted to update the interface conditions of sub-
domains (Qaddouri et al., 2008). Bi-cubic Lagrangian inter-
polation is used for boundary updating. The threshold of ab-
solute error, which is a sum of the Yin and Yang grids, is set
to be 10−15 for the numerical convergence measurement.

3.2. Semi-Lagrangian advection

3.2.1. Semi-Lagrangian transport on the Yin-Yang grid

Both the nonlinear terms and the departure-point-related
terms are included inAx in Eqs. (8)–(12). The departure point
is calculated according to Ritchie and Beaudoin (1994). Halo
regions are defined for each component zone to avoid multi-
time data exchange during the parallel computation. Neces-
sary data exchange is performed once per time step. When
a departure point is located out of the computational region,
it should be interpolated according to quantities in the halo
zone (Fig. 2). The details are summarized as follows:

(1) Compute the position of the midpoint (λm,ϕm, rm) at
the half-time level on the sphere considering

λm = λa−
um∆t

2racos(ϕa)

[
1+

∆t2

24r2
a
(u2

m tan2 ϕa−v2
m)

]
, (44)

ϕm = ϕa−
vm∆t
2ra

+

(
um∆t
2ra

)2 tanϕa

2
, (45)

rm = ra−
wm∆t

2
. (46)

where (λa,ϕa, ra) represents the arrival point.
(2) Determine the velocity components at the midpoint

(um,vm,wm) with linear interpolation. If the departure point
is located outside the computational domain, grid points in
the halo region help accomplish the interpolation.

(3) Iterate (twice in this paper) the above two steps to

Fig. 2. Determination of the departure point and calculation of
Y∗ on the Arakawa-C staggered grid.

modify the midpoint determination. The departure point (λd,
ϕd, rd) is then defined as

λd = λa−
um∆t

racos(ϕa)

(
1−

vm∆t
2ra

tanϕa

)
, (47)

ϕd = ϕa−
vm∆t

ra
+

(
sec2 ϕa−

2
3

)(
um∆t
2ra

)2 vm∆t
2ra

, (48)

rd = ra−wm∆t . (49)

Note that steps (1) and (3) are the same as in the original
model, while step (2) is modified because of the existence of
inner boundaries. Although the departure points can be out
of the computational domain, they must be limited within the
outer halo region boundaries. In this dynamic frame, four
groups of departure points are calculated at scalar and vector
grid points, separately, to define the coefficients in Eqs. (24),
(28), (32), and (38).

3.2.2. Three-dimensional SISL integration for vectors on
the Yin-Yang grid

The 3D SISL integration scheme (Qian et al., 1998) for
vectors is used to calculateAu,v,w on the Yin-Yang grid. For
scalars, the termAθ ,Π can be interpolated at the departure
point (denoted with superscript “*”) directly:

Ax = (x′)∗ +[αεÑx + βε(Lx +Nx)∗]∆t , x = θ ,Π , (50)

whereLx(x= θ ,Π) is the linear term,Nx(x= θ ,Π) is the non-
linear variation and

βε = 1−αε ,

Ñx = 2(Nx)n− (Nx)n−1 .

We note that the termsξu0,v0,w0 all containAu,v,w,θ in Eqs.
(24), (28) and (32). The prediction of 3D momentum calls
for a good description ofAu,v,w,θ , which depends on the com-
putation of

Yx = [x+ αε(Lx +Nx)∆t] , x = u,v,w,θ , (51)
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at their departure points§denote byY∗
x .

In the non-uniform vertical direction, a cubic Lagrangian
interpolation,

Y∗
x (ẑ) =

4

∑
i=1

Π4
j=1, j 6=i(ẑj − ẑ)

Π4
j=1, j 6=i(ẑj − ẑi)

Yx(ẑi) , x = u,v,w,θ , (52)

is used to ensure high-order accuracy. A second-order formu-
lation for the vertical gradient ofΠ is given as

∂Π
∂ ẑ

∣∣∣∣
ẑΠk

= Πk−1
ẑk− ẑk+1

(ẑk−1− ẑk)(ẑk−1− ẑk+1)
+

Πk
2ẑk− (ẑk−1 + ẑk+1)

(ẑk− ẑk−1)(ẑk− ẑk+1)
+

Πk+1
ẑk− ẑk−1

(ẑk+1− ẑk−1)(ẑk+1− ẑk)
. (53)

This ensures second-order accuracy without guaranteeing
quantity conservation in the vertical transport. An alternative
choice that achieves exact conservation is

∂Π
∂ ẑ

∣∣∣∣
ẑΠk

=
Πk+1−Πk

(ẑk+2− ẑk)
+

Πk−Πk−1

(ẑk+1− ẑk−1)
, (54)

but the accuracy decreases for non-uniform grids, where the
Πk is located at the middle level of ˆzk andẑk+1. In the hori-
zontal directions, four grids are needed in the halo region for
a cubic Lagrangian interpolation at the departure point.

4. Numerical results of benchmark tests

For the validation of the dynamical modification concern-
ing 3D Coriolis and trajectory computation across bound-
aries, several benchmark tests are carried out to check the
computational accuracy and the performance of GRAPES
YY. The model top is defined as 32.5 km, and the model at-
mosphere is divided into 36 non-uniform levels. The hori-
zontal resolution is 2.5◦. There is no viscosity added in the
dry core.

4.1. Steady-state geostrophic flow

This test is a 3D extension of Test 2 in Williamson et al.
(1992). The initial state is defined as

u = u0(cosϕ cosα +cosλ sinϕ sinα) , (55)

v = −u0sinϕ sinα , (56)

w = 0 , (57)

cpθ
∂Π
∂z

= −g , (58)

cpθ
r

∂Π
∂ϕ

= −2Ωusinϕ −
u2

r
tanϕ , (59)

whereu0 is set to be 20 m s−1 andα is flow orientation angle,
which is 0 here. Thirty-day integration results ofΠ′,u,v,w
and the differences between the numerical solution and the
exact one, with a time step of 1800 s, are shown in Figs. 3a–d.

Corresponding results from GRAPES are presented in Figs.
3e–h for comparison. TheΠ′ in Fig. 3a shows its zonal par-
allel contours after the 30-day integration, while the absolute
error is about−1.0×10−4 at the equator and 5.0×10−5 in
midlatitude regions. Zonal wind (Fig. 3b) keeps its initial
state with a perturbation of−0.12 m s−1 at the boundary of
the Yin-Yang grid. Meridional and vertical winds, which dis-
play as absolute error in Figs. 3c and d, show their order of
about 10−3 and 10−7 m s−1, respectively. Meanwhile, errors
of meridional and vertical winds reach 0.1 and 2× 10−3 m
s−1 in the polar regions of the GRAPES model (Figs. 3g
and h). Relatively small error is found with the new dy-
namic core on the Yin-Yang grid. It is clear that obvious
numerical error exists at the boundaries of the overset grid
in GRAPESYY, and the error appears in the pole regions
in the original GRAPES core. The new core shows a much
smaller error than the original one. Owing to fact the analyti-
cal solutions of the meridional and vertical velocities arenull,
numerical errors appear as highly significant. Consequently,
a boundary trail is revealed in Figs. 3c and d. The time se-
ries of the corresponding error normsℓ1, ℓ2 andℓ∞ of both the
scalar and vectors are given for GRAPESYY in Fig. 4. Error
norms increase with time. Theℓ1 andℓ2 norms of theΠ′ are
0.002 and 0.0025 at day 30, while those of the velocity are
0.009 and 0.0095, respectively. This numerical test confirms
the stability of the SISL method and the proper installationof
the 3D Coriolis force in the nonhydrostatic frame.

In the zonal flow case, small interpolation error at the
boundaries is clearly displayed with the meridional wind and
vertical velocity. We find the error ofv andw to be 10−3 and
10−7, respectively, which is negligible in comparison with
the u component. But does the error destroy the model sta-
bility in a non-zero meridional wind case? We also show the
numerical results of the balanced flow with an angle of 45◦

in Fig. 5. This configuration seems to be the harshest for
the Yin-Yang grid because of the orthogonality of the two
sub-zones. Owing to the zonal wind enhancement at high lat-
itudes in this test case, the time step will be tightly limited in
a latitude–longitude grid system. On the quasi-uniform Yin-
Yang grid, however, the time step remains the same as in the
former. A reasonable distribution is found with all the scalar
and vector quantities. The scalarΠ′, zonal wind and verti-
cal wind display equivalent computational error as in Fig. 3.
Even though the meridional wind shows larger error because
of its enhancement, the boundary trail is nearly invisible in
the vector fields.

4.2. Zonal flow over a mountain

In this test, the dynamic core with 3D Coriolis force and
the SISL solver is tested with topography. The initial wind
velocity is the same as the previous one. The mountain height
is given by

h = h0exp

[
−

(
D
R

)2
]

, (60)

whereh0 = 2000 m determines the peak height of the moun-
tain andR = 1500 km is the mountain half width;D, the
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Fig. 3. Numerical results of the steady-state zonal flow test at day 30: (a) perturbation of Exner functionΠ′ (contours)
and the error (shaded, 10−4), (b) u (contours, m s−1) and the error (shaded), (c)v (10−2 m s−1), and (d) vertical wind
(10−7 m s−1) with the GRAPESYY new core in comparison with (e)Π′ (contours) and the error (shaded, 10−4), (f)
u (contours, m s−1) and the error (shaded, m s−1), (g) v (10−1 m s−1), and (h) vertical wind (10−3 m s−1) with the
original GRAPES model.
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Fig. 4. Error normsℓ1, ℓ2 andℓ∞ of (a) Π′ and (b) velocity in
the steady-state flow test during the 30-day integration.

distance to the mountain center(λc,ϕc) = (π/2,π/6):

D = aarccos[sinϕc sinϕ +cosϕc cosϕ cos(λ −λc)] , (61)

The pressure field is initially given a hydrostatic balance
state,

ps(λ ,ϕ)=pspexp

[
−

aN2u0

2g2κ

(u0

a
+2Ω

)
(sin2 ϕ −1)−

N2h
gκ

]
,

(62)
whereN = 0.0182 s−1 is the Brunt–Valsala frequency,κ =
2/7,u0 = 20 m s−1, a= 6371.229 km is mean radius of earth,
Ω is earth’s angular velocity andpsp = 930 hPa denotes the
surface pressure at the South Pole. No analytical solution
is available in this test case, but the results with a spectral
method (Jablonowski et al., 2008) can be referenced. Geopo-
tential height, temperature, and the horizontal wind compo-
nentsu and v at the 700 hPa level of day 15 are given in
Fig. 6 in comparison to the results of the original GRAPES.
All the results of the new core integration are comparable
with those in Jablonowski et al. (2008), even though a low-
resolution configuration is used here. The figures illustrate a
proper evolution of the mountain-induced Rossby wave, and
no boundary trail is found with the non-zero velocity in this
case. The original model, however, displays the Rossby wave
as not well developed, due to the low-resolution configura-
tion. Therefore, we can again confirm good numerical per-
formance via this test case.

Fig. 5. The same as Fig. 3 but for the flow with an orientation angleα of 45◦ with the GRAPESYY core. The
error in (c) is plotted in m s−1.
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Fig. 6. Numerical result of the mountain-wave test at 700 hPa with the GRAPESYY (contours) and original
GRAPES (shaded) model: (a) geopotential height (gpm), (b) temperature (◦C), (c) u (m s−1) and (d)v (m s−1)
at day 15.

4.3. Three-dimensional Rossby–Haurwitz wave

The initial velocity field is given by

u = aMcosϕ+aKcosn−1ϕ cos(cλ )(csin2 ϕ−cos2 ϕ) , (63)

v = −aKccosn−1 ϕ sinϕ sin(cλ ) , (64)

w = 0, (65)

wherec= 4 denotes the wave number, andM = K ≈ 1.962×
10−6 s−1. Profiles of the temperature and pressure are given
by

T = T0−Γ

(
z−

Φ̃
g

)
, (66)

p = pref

(
T
T0

) g
rdΓ

, (67)

where pref = 955 hPa andT0 = 288 K with the moist-
adiabatic lapse rateΓ = 0.0065 km−1. The geopotential is
given as

Φ(λ ,ϕ) = a2A(ϕ)+a2B(ϕ)cos(cλ )+a2C(ϕ)cos(2cλ ),
(68)

where

A(ϕ) =
M(2Ω +M)

2
cos2 ϕ +

K2

4
cos2n ϕ [(c+1)cos2 ϕ+

(2c2−c−2)]−
c2K2

2
cos2(c−1) ϕ , (69)

B(ϕ) =
2(Ω +M)K
(c+1)(c+2)

cosc ϕ [(c2 +2c+2)−(c+1)2cos2 ϕ ] ,

(70)

C(ϕ) =
K2

4
cos2cϕ [(c+1)cos2 ϕ − (c+2)] . (71)

The time step is changed to 600 s in this test for the serious
limitation of linear computational stability. The numerical re-
sults of the geopotential height,u, andv at 500 hPa and sur-
face pressure at day 14 are plotted in Fig. 7. The four-wave
structure propagates correctly in geopotential height, surface
pressure and the horizontal wind field in this low-resolution
model. No obvious numerical deformation of the wave is
observed, and the wave displays smooth propagation at the
Yin-Yang boundaries with the classic Schwarz scheme.

The cost of the classic Schwarz solver is about 24.92%
of the model total expense due to the frequent information
exchange for the boundary constraint of the Helmholtz equa-
tion. Of course, the cost varies with the iteration in the GCR
solver. With the help of the ILU preconditioner, the conver-
gence of the GCR solver shows great efficiency. The iteration
before its convergence is listed in Fig. 8 for the first 100-step
integration. Rapid convergence of the solvers is achieved for
the overset grid, and the iteration tends to decrease with time.
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Fig. 7. Numerical result of the Haurwitz–Rossby wave at 500 hPa withthe new dynamic core on the Yin-Yang
grid: (a) geopotential height (gpm), (b) surface pressure (hPa), (c)u (m s−1) and (d)v (m s−1) at day 14.

Fig. 8. Iterations of the GCR and classic Schwarz solvers before
convergence in the first 100 steps of the 45◦ steady-state flow,
zonal flow over a mountain, and the Rossby–Haurwitz wave test
cases.

The test of the zonal flow over a mountain shows more itera-
tions than the others for its strong time-dependent current.

5. Conclusion

An improved dynamic core of the GRAPES model is suc-
cessfully reconstructed on a quasi-uniform Yin-Yang grid,
which is free of pole singularity. Three-dimensional Corio-

lis force has been introduced to the new frame, which makes
the code identical between the Yin and Yang components.
The departure point across boundaries is fixed with the help
of the halo region, and the SISL scheme for 3D vectors is
implemented into the dynamical core on the Yin-Yang grid.
Numerical results of 3D benchmark tests reveal strong com-
putational stability and reasonable performance. The results
also show the property of the 3D Coriolis installation and the
reconstruction of the Helmholtz equation in the SISL inte-
gration. The new nonhydrostatic core displays reasonable
numerical results in three idealized tests with or without to-
pography. The classic Schwarz method, which updates the
boundary with a bi-cubic Lagrangian interpolation, is gener-
ally efficient for the constraint of global convergence of the
numerical solution. On the other hand, relatively expensive
cost and numerical oscillations at the boundary are also ob-
served in the SISL integration. Further investigation on the
interpolation procedure of the determination of coefficients
for the Helmholtz equation in the classical Schwarz method is
demanded by the SISL integration of non-hydrostatic models
on the Yin-Yang grid. Additional developments, such as the
boundary constraint, parallelization for large computations,
and consideration of vapor and the installation of physics,
will be pursued in future work.
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