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ABSTRACT

This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time
and its relationship to sea surface temperature predictionusing the seasonal hindcasts of the Beijing Climate Center Climate
System Model, BCCCSM1.1(m). For the South and Southeast Asian summer monsoon, reasonable skill is found in the
model’s forecasting of certain aspects of monsoon climatology and spatiotemporal variability. Nevertheless, deficiencies
such as significant forecast errors over the tropical western North Pacific and the eastern equatorial Indian Ocean are also
found. In particular, overestimation of the connections ofsome dynamical monsoon indices with large-scale circulation and
precipitation patterns exists in most ensemble mean forecasts, even for short lead-time forecasts.

Variations of SST, measured by the first mode over the tropical Pacific and Indian oceans, as well as the spatiotemporal
features over the Niño3.4 region, are overall well predicted. However, this does not necessarily translate into successful
forecasts of the Asian summer monsoon by the model. Diagnostics of the relationships between monsoon and SST show
that difficulties in predicting the South Asian monsoon can be mainly attributed to the limited regional response of monsoon
in observations but the extensive and exaggerated responsein predictions due partially to the application of ensembleaver-
age forecasting methods. In contrast, in spite of a similar deficiency, the Southeast Asian monsoon can still be forecasted
reasonably, probably because of its closer relationship with large-scale circulation patterns and El Niño–SouthernOscillation.
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1. Introduction

Dynamical monsoon prediction is an important issue in
scientific research and operational forecasting due to promi-
nent socioeconomic demands. Given its remarkable techni-
cal difficulties, substantial effort has been devoted to improv-
ing the accuracy of monsoon forecasts during the past several
decades.

Atmosphere-alone models forced by prescribed lower-
boundary conditions have been used in seasonal monsoon
forecasting for a number of decades (Charney and Shukla,
1981; Zeng et al., 1990, 1997; Shukla, 1998). Although at-
mospheric models have shown reasonable skill (e.g., Kang
et al., 2002; Wang et al., 2004; Zhou et al., 2009), they
nevertheless exhibit noticeable shortcomings due to the lack
of air–sea interaction, which is especially important for the
Asian summer monsoon (e.g., Wang et al., 2005; Wu and
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Kirtman, 2005). Instead, coupled atmosphere–land–ocean
models offer overall better performance, and thus have grad-
ually become the major tool of dynamical climate prediction
(e.g., Palmer et al., 2004; Li et al., 2005; Saha et al., 2006;
Weisheimer et al., 2009; Ma and Wang, 2014). Previous stud-
ies have also proven that one-tier monsoon prediction by cou-
pled models is more skillful than two-tier prediction by atmo-
spheric models that use previously forecasted SST (e.g., Kug
et al., 2008; Kumar et al., 2008; Zhu and Shukla, 2013).

While monsoon forecasting with coupled climate system
models shows promising results, it is also highly limited or
affected by many factors such as model resolution, initial
conditions, model physics and dynamics, and ensemble fore-
casting methods (e.g., Pope and Stratton, 2002; Krishnamurti
et al., 2006; Fu et al., 2009; Yang et al., 2011; Kumar and Kr-
ishnamurti, 2012; Wen et al., 2012). State-of-the-art climate
models remain incapable of accurately reproducing the re-
alistic climatology and spatiotemporal variation of monsoon
(e.g., Wang et al., 2008; Lee et al., 2010; Li et al., 2012; Ra-
jeevan et al., 2012; Jiang et al., 2013; Liu et al., 2013, 2014a).
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Also, compared with large-scale monsoon features related to
strong oceanic–atmospheric events such as El Niño–Southern
Oscillation (ENSO), it is harder for coupled climate models
to predict the regional characteristics of monsoon (e.g., Yang
et al., 2008; Drbohlav and Krishnamurthy, 2010). In addi-
tion, they possess limited skill in predicting the relationships
among different scales of monsoon variability (Achuthavarier
and Krishnamurthy, 2010; Joseph et al., 2010; Liu et al.,
2014b). In brief, the improvement of dynamical monsoon
forecasting still faces various scientific and technical prob-
lems.

In China, the especially urgent concern of accurately fore-
casting the Asian monsoon has propelled many meteorolo-
gists to develop numerical climate models and apply these
models in short-term climate prediction (Ding et al., 2004;
Wang et al., 2015). Although the forecasting of tropical SST
and ENSO has exhibited continuous success (Zhou and Zeng,
2001; Zheng et al., 2006, 2009; Zhu et al., 2013) and the fore-
cast method has been developed from the two-tier approach
(Zeng et al., 1990, 1997; Lang et al., 2004) to the one-tier
approach (Li et al., 2005; Liu et al., 2014b; Ma and Wang,
2014), dynamical prediction of the Asian monsoon remains
an arduous task because of its large uncertainty (Wang, 1997;
Wang et al., 2015). In spite of the challenges, the develop-
ment of dynamical monsoon prediction by improving numer-
ical models and forecast methods remains a major research
topic. At present, whether or not a model can reasonably
simulate or predict monsoon features is one of the most im-
portant criteria to assess the model’s performance. How to
fully diagnose the performance of a model in reproducing the
variability of monsoon and its interaction with other climate
phenomena is a vital issue for guiding further work on model
development. In this study, we analyze the performance of
a coupled climate system model used at the Beijing Climate
Center (BCC) in terms of its seasonal forecasting of the Asian
summer monsoon. Several questions are addressed: (1) To
what degree can the model reproduce the observed climatol-
ogy and interannual variability of the Asian summer mon-
soon? (2) What skill does the model possess regarding its
forecasting of various major dynamical monsoon indices? (3)
And to what extent can the model’s deficiencies in monsoon
forecasting be attributed to its inability to capture the rela-
tionship between the monsoon and underlying SST?

In section 2, a brief overview of the model and the ob-
servational data used in the study is provided. In sections
3–5, we analyze the model’s predictions of monsoon clima-
tology and interannual variability, several major dynamical
monsoon indices and their relationships with large-scale cir-
culation and precipitation patterns, and SST variability and
its connection with monsoon, respectively. A summary of
the results and a further discussion are presented in section 6.

2. Model and data

The model adopted in this work is version 1.1 of the
BCC Climate System Model (Wu et al., 2013) with a mod-
erate atmospheric resolution [BCCCSM1.1 (m)]. The at-

mospheric component of the model is the BCC Atmospheric
General Model with a T106 horizontal resolution and 26 hy-
brid sigma/pressure layers in the vertical direction (Wu etal.,
2010). The land component is version 1.0 of the BCC At-
mosphere and Vegetation Interaction Model. The ocean and
sea ice components are version 4 of the Geophysical Fluid
Dynamics Laboratory Modular Ocean Model and the Sea Ice
Simulator, respectively. The different components are cou-
pled without any flux adjustment. BCCCSM1.1 (m) is one
of the climate system models joining phase 5 of the Coupled
Model Intercomparison Project (CMIP).

Several seasonal hindcast experiments aimed at sum-
mer monsoon prediction are implemented using the
BCC CSM1.1 (m). The hindcasts are initiated from the first
day of each calendar month from 1991 to 2013 and ended
with a 9-month forecast integration. The atmospheric initial
conditions are obtained from the four-times daily air temper-
ature, winds, and surface pressure fields of the National Cen-
ters for Environmental Prediction (NCEP) Reanalysis, and
the oceanic initial conditions are from the sea temperature
of the NCEP Global Oceanic Data Assimilation System. The
reanalysis data are used to initialize the model by a nudging
method, which operates from late 1980s to the end of 2013.
Each hindcast experiment includes 15 members, produced by
a lagged average forecasting with a combination of different
atmospheric and oceanic initial conditions at the end of the
month preceding the beginning of the hindcast.

In addition, CMIP-type and Atmospheric Model Inter-
comparison Project (AMIP)–type simulations from 1990 to
2013 are also implemented with the same greenhouse gas
forcing as in the hindcasts. The former is a coupled free
run by BCCCSM1.1(m), while the latter is an ensemble
mean of four integrations by the atmospheric component of
BCC CSM1.1(m), which are initialized with different atmo-
spheric initial conditions and forced by observed monthly
SST and sea ice from the Hadley Centre Sea Ice and Sea Sur-
face Temperature dataset (Rayner et al., 2003). The data with
the same period of time as the hindcasts are used in this study.

The observational data used for model verification in-
clude multi-level zonal wind and meridional wind from the
NCEP/Department of Energy (DOE) Reanalysis 2 (Kana-
mitsu et al., 2002), the Optimum Interpolation Sea Surface
Temperature (Reynolds et al., 2002), and the monthly pre-
cipitation from the Global Precipitation Climatology Project
(Adler et al., 2003).

In this study, summer monsoon refers to the June–July–
August mean monsoon, and monsoon climatologies are com-
puted based on the data from 1991 to 2013. The forecasts
of the summer mean initialized on 1 June are defined as 0-
month lead forecasts, and the runs initialized on 1 May are
used as the 1-month lead forecasts, and so forth until the 6-
month lead forecasts initialized on 1 December. For an objec-
tive assessment and better description of the performance of
the forecast system, in addition to focusing on the ensemble
mean features, the average results of individual members are
also partially addressed to properly present the ability ofthe
model itself.
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3. Monsoon climatology and interannual vari-
ability

Observed, simulated, and predicted climatologies of pre-
cipitation and 850-hPa winds are shown in Fig. 1. The hind-
casts basically capture the general distribution of maximum
precipitation centers. However, overestimated rainfall ap-
pears over the south of the Indian subcontinent, the western
Indo-China Peninsula, and the tropical western North Pacific.
Underestimated rainfall is seen over the northern Bay of Ben-
gal, the South China Sea, the eastern equatorial Indian Ocean,
and the Maritime Continent. The biases of wind match those
of precipitation, and they both show little increase from 0 to
6 months of lead time over most regions except some sparse
areas. Compared to the long-term simulation, although small
differences appear over the tropical Pacific and Indian oceans
due partially to different initializations, an overall reflection
of the distributions of biases is found, implying a quick for-
mation and stable maintenance of prediction biases from the
beginning of the forecast (Liu et al., 2013). Some of the bi-
ases, especially the dry biases over the Bay of Bengal and
South China Sea and the cyclonic wind bias over the north-
western Pacific, are also fairly common in other state-of-the-
art climate forecast models with varying degrees of magni-
tude (e.g., Lee et al., 2010; Drbohlav and Krishnamurthy,
2010; Liu et al., 2013).

We further examine the standard deviations of the inter-

annual variation of summer mean 850-hPa zonal wind and
precipitation (Fig. 2). The observed low-level zonal wind
shows strong interannual variability over the western trop-
ical Pacific, with a maximum center near the east of the
Philippine Sea (Fig. 2a). The forecast with the shortest lead
time reproduces the observed features reasonably, but witha
more intense center that shifts southeastward toward the date-
line (Fig. 2c). As the lead time increases, the stronger-than-
observed center near the dateline shows a gradual decrease
in error (Figs. 2c and d). For precipitation, the 0-month lead
prediction shows a remarkable overestimation of the inter-
annual variance over the southeastern Arabian Sea, western
Indo-China Peninsula, and most of the western tropical Pa-
cific (Fig. 2g), which weakens apparently in the long-lead
forecast (Fig. 2h). The CMIP-type simulations (Figs. 2b and
f) show a similar spatial distribution of variance, although
weaker, compared to the short-lead forecast, suggesting the
possible existence of obvious initial error over the tropical
western Pacific and northern Indian Ocean for summer mon-
soon forecasts by BCCCSM1.1(m).

Figure 3 shows the model’s forecast skill for wind, pre-
cipitation, and SST measured by the magnitude of the tempo-
ral correlation coefficient (TCC). For the 0-month lead fore-
cast, significant TCCs between predicted and observed 850-
hPa zonal wind are situated over most of the tropical Indian
and Pacific oceans, except the Arabian Sea (Fig. 3a). As the
lead time increases, the area with significant skill becomes

Fig. 1. Climatologies of summer precipitation (shading; units: mmd−1) and 850-hPa winds (vectors; units: m s−1) for
(a) observations, (b) CMIP simulation, and (c) hindcasts initialized on 1 June. Also shown are biases of (d) CMIP, (e)
0-month lead and (f) 6-month lead forecasts.
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Fig. 2. Standard deviations of interannual variability of the summer mean for 850-hPa zonal wind (units: m
s−1; left column) and precipitation (units: mm d−1; right column) from 1991 to 2013. Panels (a) and (e) are
for observations, (b) and (f) for CMIP simulations, (c) and (g) for 0-month lead predictions, and (d) and (h) for
6-month lead predictions.

gradually smaller and its central magnitude decreases obvi-
ously (Figs. 3b–d). The forecast becomes unskillful over
most regions at the 6-month lead time. The prediction of pre-
cipitation shows considerable skill over the tropical central
Pacific at the shortest lead time, but quickly becomes unskill-
ful at other lead times, except near the equator (Figs. 3e–h).
Precipitation is controlled by complicated physics other than
large-scale circulation, which partially results in the low pre-
diction skill and poor predictability for precipitation incli-
mate models. In contrast, the prediction of SST is often more
skillful over most of the tropical region, especially the central
eastern Pacific, and the TCCs at short lead times are almost
universally significant (Figs. 3i–l). This feature shows the
long persistence of the predictable signal from slowly vary-
ing components of the climate system and the possible ex-
istence of the predictability source for monsoon variations

(e.g., Charney and Shukla, 1981; Shukla, 1998).
We also assess the forecast error and predictability error,

defined as the difference between the ensemble mean fore-
cast and observation and the difference between two forecasts
with different initializations, respectively (e.g., Lorenz, 1982;
Drbohlav and Krishnamurthy, 2010). Here, the root-mean-
square error (RMSE) between two ensemble mean forecasts
initiated one month apart is used as the predictability error.
For instance, at the 1-month lead time, the forecast error isthe
RMSE between the 1-month lead forecast and observation,
and the predictability error is the RMSE between the 1-month
lead forecast and 0-month lead forecast. Forecast error origi-
nates from errors in both the initial conditions and model im-
perfection, whereas predictability error is largely dependent
on error in the initial conditions only, assuming the model
to be perfect. In spite of some differences among forecasts
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Fig. 3. Spatial distributions of temporal correlations between ensemble mean predictions and observations for summer
mean (a–d) 850-hPa zonal wind, (e–h) precipitation, and (i–l) SST from 1991 to 2013. Results for forecasts of 0-, 2-,
4-, and 6-month lead times are shown in each panel in sequence. The shading level above 0.41 represents the statistical
significance of correlation above the 95% confidence level.

of different lead times, the forecast error of 850-hPa zonal
wind is mainly distributed over the eastern equatorial Indian
Ocean, the western tropical Pacific, and the northern subtrop-
ical Pacific (Figs. 4a–d). The predictability error at the 1-
month lead time shows a maximum over the tropical west-
ern North Pacific, denoting that forecasts of zonal wind suf-

fer more from initial error over this region than other regions
(Fig. 4e). In contrast, model imperfection should contribute
more to the forecast error of wind over the eastern tropical In-
dian Ocean. The error distribution of precipitation basically
matches that of zonal wind, but maximum centers of forecast
error are also found over the south of the Indian subcontinent
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Fig. 4. Spatial distributions of forecast error (left column) and predictability error (right column) of interannual varia-
tion of 850-hPa zonal wind (units: m s−1) from 1991 to 2013. Panels for ensemble mean predictions from short to long
lead times are shown from top to bottom.

and the western Indo-China Peninsula, where predictability
error is likewise evident. These disparities between forecast
errors and predictability errors are generally consistentwith
the differences between the hindcast and CMIP-type simula-
tions, as shown in Figs. 1 and 2. As the lead time increases,
the predictability errors of zonal wind and precipitation grad-
ually decrease, suggesting that long-lead predictions become
more similar to each other and less dependent on the initial
conditions because of the domination of slowly varying com-
ponents.

4. Predictions of dynamical monsoon indices

In this section, we explore the model’s forecast skill in
terms of the variability of monsoon and its relationship with
large-scale circulation and precipitation patterns, witha focus
on several dynamical monsoon indices. Possibly due to the
existence of the “spring predictability barrier” phenomenon
(Webster and Yang, 1992), long-lead predictions of the sum-
mer monsoon are often poor, as shown in Fig. 3. Thus,

the model’s predictions with lead times ranging from 0 to 3
months are the main concern in this section.

Figures 5a–c show the interannual variations of mon-
soon indices including the Southeast Asian summer mon-
soon (SEASM), the Webster–Yang (WY), and the South
Asian summer monsoon (SASM) indices. The SEASM in-
dex is defined as the horizontal shear of 850-hPa zonal wind
between (5◦–15◦N, 90◦–130◦E) and (22.5◦–32.5◦N, 110◦–
140◦E) (Wang and Fan, 1999). The WY index is defined
as the vertical shear of zonal winds between the 850- and
200-hPa levels averaged over (0◦–20◦N, 40◦–110◦E) (Web-
ster and Yang, 1992), and the SASM index is defined as the
vertical shear of meridional winds between the 850- and 200-
hPa levels averaged over (10◦–30◦N, 70◦–110◦E) (Goswami
et al., 1999). The ensemble predictions capture the observed
interannual variability of the SEASM index well, with a TCC
of 0.75 at the minimum lead time and 0.6 at the 3-month lead
time (Fig. 5a). In contrast, the forecasts of the WY index
are overall unskillful, which can be largely attributed to the
model’s obvious incapability in reproducing the variability
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Fig. 5. Left panels: interannual variations of (a) SEASM index, (b)WY index, and (c) SASM index for observations
and predictions of different lead times. The decimals shownin brackets are the temporal correlation coefficients be-
tween observations and predictions. Right panels: interannual variations of pattern correlations between observations
and predictions of different lead times for (d) 850-hPa zonal wind over the SEASM region, (e) vertical shear of zonal
wind over the WY index region, and (f) vertical shear of meridional wind over the SASM region. The decimals shown
beside the figure legends are averaged correlation coefficients from 1991 to 2013.

of this index after 2007 (Fig. 5b). With a small spatial scale
and small amplitude of variation, the SASM index is also un-
successfully forecasted (Fig. 5c). Low SASM forecast skill
is also found in other climate forecast systems (e.g., Kim et
al., 2012; Jiang et al., 2013), possibly because the interannual
variation of the SASM is affected not only by ENSO, but also
by regional factors that are harder to predict, such as tropi-
cal eastern Indian Ocean SST. Nevertheless, the uncertainty
in the observational data may also partially account for the
above feature since the sudden drop of the WY index near
2009 does not appear in the European Centre for Medium-
Range Weather Forecasts Interim Reanalysis (ERA-Interim)

or the NCEP Climate Forecast System Reanalysis (e.g., Kim
et al., 2012; Jiang et al., 2013). When compared to ERA-
Interim, the TCCs between hindcasts and observations are
0.71 and 0.69 for the WY index, and 0.27 and 0.32 for the
SASM index, at 0- and 3-month lead times, respectively (Fig.
6).

To examine the prediction skill with respect to the spatial
variability of monsoon, we display the pattern correlationco-
efficients (PCCs) between observations and ensemble mean
predictions at different lead times for 850-hPa zonal wind
or vertical wind shear over the regions applied to define the
monsoon indices. As shown in Figs. 5d and e, reasonable
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Fig. 6. As in Figs. 5a–c, but the observational data is replaced
by European Centre for Medium-Range Weather Forecasts In-
terim Reanalysis.

skill is found over both the SEASM region and WY index
region. For the latter in particular, the PCC is about 0.53 at
the minimum lead time and drops to 0.35 at the 3-month lead
time. In contrast, the spatial variability of vertical windshear
over the SASM region is poorly captured, as is its temporal
variability (Fig. 5f).

The relationships between the above dynamical monsoon
indices and the associated large-scale circulation and precip-
itation patterns are further evaluated and shown in Figs. 7

and 8. In observations, a stronger-than-normal SEASM of-
ten corresponds to westerly wind anomalies across the Mar-
itime Continent and the tropical western Pacific surrounded
by anomalies of cyclonic wind convergence over both of its
sides in the two hemispheres, in association with more pre-
cipitation over the tropical western Pacific and less precipi-
tation over an extensive belt from Australia across Indone-
sia to the Indian subcontinent (Fig. 7a). Compared to the
observations, the member-average predictions indicate that
the model captures a less significant connection between the
SEASM and winds and precipitation, which is nearly con-
fined to the tropical western North Pacific (Figs. 7b–e).
However, the ensemble mean predictions present an overes-
timated basin-wide atmospheric response, marked in partic-
ular by the strong cyclonic wind anomaly over the western
North Pacific and easterly wind anomaly over the equato-
rial eastern Pacific, as well as the horseshoe-pattern-likewet
anomaly over the western Pacific and dry anomaly over the
western Indian Ocean (Figs. 7f–i). The 0-month forecast
shows the best skill, but it still exhibits a farther northward
cyclonic wind response and cannot reproduce the observed
belt of insufficient precipitation (Fig. 7f). As the lead time
increases, the link between the SEASM and the wind and
precipitation over the western Indian Ocean shows a gradual
intensification.

The observed WY index shows a close connection with
the low-level winds over the southern Asian monsoon region
and some sparse areas over the tropical Pacific (Fig. 8a).
In contrast, the member-average predictions clearly overes-
timate the relationship between the WY index and the zonal
wind over the equatorial central-eastern Pacific. Further-
more, the ensemble mean results show that a stronger-than-
normal WY index corresponds to a remarkable westerly wind
anomaly over the southern Asian monsoon region and east-
erly wind anomaly over the tropical central-eastern Pacific,
and is coupled with significant cyclonic wind anomalies over
both the western North and South Pacific. Associated with
this feature, obvious dry–wet differences between the trop-
ical western Indian Ocean and the Indian subcontinent, and
between the tropical central-eastern Pacific and the tropical
western Pacific, are found (Figs. 8b–e).

As shown by Fig. 8f, a strong SASM index is signif-
icantly related to the southerly wind anomaly over the re-
gion from the Arabian Sea to the Bay of Bengal and the wet
anomaly over the Indian subcontinent. Also, it is closely tele-
connected to the circulation anomaly over parts of the sub-
tropical Pacific. Compared with observations, the individual
members are unable to reasonably capture both the local and
remote connection of the SASM index with circulation and
precipitation patterns. For ensemble mean predictions, not
only the local strong anomalies of meridional wind and pre-
cipitation, but also the significant north wind anomaly over
the western Indian Ocean and easterly wind anomaly over
the tropical central Pacific, appear to match an anomalously
high SASM index. For the 2- and 3-month lead forecasts in
particular, zonal wind anomalies extend from the equatorial
central Pacific to the Maritime Continent (Figs. 8g–j).
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Fig. 7. Patterns of regressions (vectors) of 850-hPa winds on the SEASM index and correlations (shading) between
precipitation and the monsoon index for observations and predictions of different lead times. The results are examined
by the (b–e) member average of individual predictions and (f–i) ensemble mean of predictions. The shading level above
0.41 represents the statistical significance of correlation above the 95% confidence level. Decimals shown in the upper
right corners are the pattern correlation coefficients between observations and predictions.

5. SST variability and its connections with
monsoon

The predictability of monsoon is partially attributed to the
memory of the underlying surface state, and thus it is particu-
larly important to assess the model’s ability in predictingSST
over the tropical Pacific and Indian oceans. Predictions of
two commonly-used SST indices, the Niño3.4 index and In-
dian Ocean dipole (IOD) index, are examined in Fig. 9. The

former is defined as the SST averaged over (5◦S–5◦N, 170◦–
120◦W) and the latter is defined as the difference in SST be-
tween (10◦S–10◦N, 50◦–70◦E) and (10◦S–0◦N, 90◦–110◦E)
(Saji et al., 1999). The Niño3.4 index is predicted well in
all target seasons except summer, when ENSO’s amplitude is
often small and long-lead forecasts suffer from the influence
of the spring predictability barrier (Fig. 9a). The forecasts
of the IOD index, however, are generally poor at most lead
times except for the target autumn and winter (Fig. 9b). For
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Fig. 8. As in Fig. 7, but for the results of ensemble mean predictionsfor the WY index (left column) and SASM index
(right column).

the June–July–August mean, the TCCs between observations
and 0-, 1-, 2- and 3-month lead predictions are 0.92, 0.91,
0.83, and 0.66 for the Niño3.4 index (Fig. 9c), and 0.65,
0.52, 0.33, and 0.09 for the IOD index (Fig. 9e), respectively.
Besides, the PCCs of SST over the El Niño region (5◦S–5◦N,
160◦E–90◦W) and the IOD region attain average maxima of
0.71 and 0.48 at the 0-month lead time, respectively (Figs. 9d
and f). Compared to the results shown in Figs. 5d–f, the in-
terannual variations of PCCs for regional SST forecasts often
show insignificant correlations with those of PCCs for mon-
soon forecasts, except for the PCC variations for the SEASM
and Niño SST (R = 0.41) and for the SASM and IOD SST
(R = 0.53) at the 0-month lead time. The prediction skill in
terms of the tropical large-scale monsoon feature is highlyre-
lated to ENSO amplitude (Kim et al., 2012), and in this study
some particular years with extremely anomalous Niño3.4 in-

dex or IOD index values also have high PCCs over certain
monsoon regions (Figs. 9c, e and 5d–f). However, overall,
there is no significant interannual relationship between the
amplitude of ENSO/IOD and the forecast skill of regional
monsoon.

We further conduct an empirical orthogonal function
analysis of the tropical Pacific and Indian Ocean SST, for
both observation and prediction. The first mode of the Pa-
cific SST is characterized by out-of-phase anomalies over the
eastern and western tropical Pacific, with a maximum cen-
ter over the central-eastern equatorial Pacific. The extensive
significant anomaly over the eastern Pacific is captured well
by the 0- and 1-month lead forecasts, but its spatial range
quickly reduces to a narrow band near the equator at the lead
times of 2 and 3 months (Fig. 10b). In the tropical Indian
Ocean, the observed first spatial mode shows a generally con-
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Fig. 9. Temporal correlations of (a) Niño3.4 index and (b) IOD index between observations and predictions as a func-
tion of lead time and target season. Also shown are the interannual variations of (c) Niño3.4 index and (e) IOD index,
and the pattern correlations between observations and predictions of different lead times for SST over the (d) Niño3 and
Niño4 region and (f) IOD region. The decimals shown in brackets in (c) and (e) are the temporal correlations between
observations and predictions, and those in (d) and (f) are the multi-year averaged pattern correlations.

sistent anomaly over much of the ocean, with maximum cen-
ters near the eastern and western sides. The predictions, how-
ever, show a less extensive range of uniform anomaly and
unrealistic maximums over the central areas (Fig. 10d). As
a result, the PCCs between observed and predicted spatial
modes over the Indian Ocean are obviously lower than those
over the Pacific, although the TCCs of the principal compo-
nents between observations and predictions are often signifi-
cant (Figs. 10a and c).

To some extent, the model’s good performance in pre-
dicting the principal SST mode over the tropical Pacific also
means a skillful forecast of ENSO variability, since the cor-
relation between the corresponding principal component and
Niño3.4 SST index is as high as 0.9 for observations. For the
principal SST mode over the tropical Indian Ocean, although
it is highly related to ENSO, as proven by previous studies
(e.g., Klein et al., 1999; Saji et al., 2006; Du et al., 2013),
its linear TCCs with both the principal SST mode over the

tropical Pacific and the Niño3.4 SST index are insignificant
for both observations and predictions, indicating a weak con-
nection of SST variability between the two oceans in summer
during the past two decades. Also, this mode is rarely related
to the IOD index because the latter is often represented by
the second SST mode, rather than the first mode (Saji et al.,
1999).

As an important underlying forcing, SST contributes sub-
stantially to the interannual variability of monsoon. The re-
gressions of low-level atmospheric circulation on the prin-
cipal components of SST over the tropical Pacific and In-
dian oceans are presented in Fig. 11. The correlations of
the SST mode over the tropical Pacific with circulation and
precipitation patterns are often significant over the Maritime
Continent, the equatorial Pacific, and the South Pacific in ob-
servations (Fig. 11a). The predictions basically capture the
observed relationships, but their magnitudes are obviously
overestimated, especially over the subtropical Pacific in the
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Fig. 10. First principal components (first and third columns) and spatial modes (second and fourth columns) for the EOF anal-
ysis of SSTs over the tropical Pacific (left two columns) and Indian Ocean (right two columns). Observations (first row) and
ensemble mean predictions of different leads (second to fifth rows) are shown. The percentages in the annotation are the vari-
ances of the modes, and the decimals are the temporal or pattern correlation coefficients between observations and predictions.

two hemispheres and part of the Indian Ocean, implying that
a stronger-than-observed response of the subtropical circu-
lation to the tropical SST is always predicted (Figs. 11b–e).
For the SST mode over the tropical Indian Ocean, strong re-
sponses of circulation and precipitation in observations are
limited to some local areas only in the South Asian summer
monsoon region and the subtropical Pacific (Fig. 11f). The
forecasts, however, tend to show an exaggerated connection
between SST mode and circulation over the tropical Indian
Ocean and central-western Pacific (Figs. 11g–j).

The relationships between the first principal components
of SST and various dynamical monsoon indices are further
exhibited in Table 1. The correlations with the Niño3.4 SST
index and IOD index are also shown in the table. The ob-
served SEASM index is significantly correlated with Niño3.4
SST index, but insignificantly with the first principal compo-
nent of SST over the tropical Pacific, although the latter two
factors are highly connected with each other. This feature
is because the interrelation between the SEASM and SST is
mainly limited to the near-equatorial region, compared with
the subtropical region. The predictions partially capturethe
close relationship between the SEASM and the SST over the
Pacific, but only at the lead time of 3 months. Both the
WY index and SASM index show a weak connection with

the principal component of tropical Pacific SST in observa-
tions, but in most predictions these relationships are seriously
overestimated. In contrast, to some extent, the correlations
of these two indices with the principal component of the In-
dian Ocean SST are underestimated in predictions compared
to observations. In addition, overestimated relationships be-
tween the IOD index and SEASM and WY indices, as well
as underestimated relationships between the IOD index and
SASM index, are found in most predictions.

The above results reveal the possible influence of unre-
alistic SST forcing on the failure of monsoon forecasts. We
further compare hindcasts and an AMIP-type simulation to
better understand this possible influence. In the AMIP simu-
lation, the TCCs between simulated and observed WY index,
SEASM index, and SASM index are 0.34, 0.27, and−0.03,
respectively, which are slightly higher than those in the 0-
month lead forecasts for the former but obviously lower than
most predictions for the latter two. This feature implies that
inclusion of ocean–atmosphere coupling is of critical impor-
tance to SEASM and SASM forecasts in the model, although
a SST drift may also be introduced. Figure 12 shows the pat-
terns of regression of winds against the monsoon indices and
principal components of SST, and correlations between these
indices and precipitation, in the AMIP simulation. Compared
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Fig. 11. Patterns of regressions (vectors) of 850-hPa winds on first principal components of SSTs over the tropical
Pacific (left column) and Indian Ocean (right column), and ofcorrelations (shading) between precipitation and the first
principal components for (a, f) observations and (b–e and g–j) ensemble mean predictions of different lead times. The
shading level above 0.41 represents the statistical significance of correlation above the 95% confidence level. Decimals
shown in the upper right corners are the pattern correlationcoefficients between observations and predictions.

to the forecasts shown in Figs. 7, 8 and 11, overall simi-
lar features are found in the AMIP simulation, albeit with
relatively weaker magnitudes over many regions, especially
the subtropical Pacific. This feature indicates that the con-
nections among SST, monsoons, and large-scale circulation
patterns in the AMIP simulation are reproduced and further
exaggerated by the coupled ensemble forecasts. In particu-
lar, the atmospheric response to tropical Pacific SST in the
AMIP simulation shows a higher PCC with the observation
than those in all predictions, suggesting that the unrealistic
SST forcing of monsoon is less significantly highlighted in
the AMIP run compared to the coupled forecasts. This fea-
ture can also be seen in Table 1, in which the correlations

between the first principal component of Pacific SST and the
WY and SASM indices is often less significant in both the
AMIP and CMIP simulations than in most predictions. Of
course, the important role of SST could also be related to the
configuration of the AMIP simulation itself or the enhance-
ment of signals by ensemble average forecasting methods.
Nevertheless, the strong responses of circulation and precip-
itation over the tropical central-eastern Indian Ocean to the
principal component of Indian Ocean SST, as shown in Figs.
11g–j for ensemble predictions, do not appear in the AMIP
simulation (Fig. 12e), partially showing the negative impacts
of ocean–atmosphere coupling and initial conditions on the
monsoon forecasts by the coupled BCCCSM1.1(m).
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Table 1. Temporal correlation coefficients of various dynamical monsoon indices with the first principal components of SST over the trop-
ical Pacific (Pac.) and Indian Ocean (IO), Niño3.4 index andIOD index. Results for observations (Obs), 0- to 3-month lead predictions
(L0–L3), AMIP-type and CMIP-type simulations are given line by line. Values in bold exceed the 95% confidence level.

TCCs with SEASMI TCCs with WYI TCCs with SASMI

Pac. PC1 IO PC1 Niño3.4 IOD Pac. PC1 IO PC1 Niño3.4 IOD Pac. PC1 IO PC1 Niño3.4 IOD

Obs 0.34 −0.34 0.58 0.25 0.04 −0.52 −0.07 −0.04 −0.18 −0.33 −0.08 0.42
L0 −0.15 −0.31 0.26 −0.31 −0.64 −0.19 −0.37 −0.31 −0.39 −0.05 −0.43 0.26
L1 −0.31 −0.33 0.23 −0.46 −0.75 −0.15 −0.40 −0.51 −0.48 −0.24 −0.46 0.46
L2 0.09 −0.27 0.33 −0.50 −0.56 −0.03 −0.35 −0.69 −0.62 0.27 −0.60 −0.08
L3 0.49 0.33 0.48 −0.68 −0.31 0.39 −0.32 −0.75 −0.53 0.06 −0.54 0.01

AMIP 0.12 −0.49 0.14 −0.05 −0.47 −0.11 −0.44 −0.26 −0.41 0.20 −0.22 0.22
CMIP 0.23 0.21 0.21 0.01 −0.42 −0.05 −0.48 −0.13 −0.14 −0.10 −0.21 0.31

Overall, the predictions overestimate the relationships be-
tween the basin-wide SST mode and regional circulation
and precipitation over the tropical Pacific and Indian oceans,
which should be closely associated with the evident forecast
error and predictability error, as shown in Fig. 4. Monsoon
forecast skill is dependent on the model’s ability to accurately
capture the links of monsoon with SST and large-scale circu-
lation. Therefore, the unskillful forecasts of the WY index
and SASM index (Fig. 5) are partially attributed to the ob-
viously overestimated links of monsoon with SST and circu-
lation over the tropical Pacific, as well as the unreasonable
contribution from the variability of SST and circulation over
the tropical Indian Ocean (Table 1, Figs. 8 and 11). In con-
trast, although with an unrealistic signature of SST mode, the
more extensive response of the SEASM to large-scale circu-
lation and its closer connection to ENSO compared to the
SASM and WY indices should be partially responsible for
the reasonable forecast of the SEASM index (Figs. 5, 7, and
11).

6. Summary and discussion

In this study, we analyze the performance of BCC
CSM1.1(m) in terms of its seasonal forecasting of the Asian
summer monsoon using various hindcast experiments initial-
ized with different initial conditions. Despite reasonable skill
regarding monsoon climatology and interannual variability,
predictions show apparent biases for winds and precipitation
over the monsoon region, as well as an apparent overesti-
mation of the interannual variance over the tropical western
Pacific. Compared to the insignificant TCCs of precipitation
between observations and predictions over most of the mon-
soon region, significant skill with respect to 850-hPa zonal
wind is found over the tropical western Pacific, in associ-
ation with the skillful prediction of SST over most of the
tropical ocean, especially the central-eastern Pacific. Nev-
ertheless, forecasts often show gradually decreasing skill
with increasing lead time and become unskillful over many
regions when the lead time is longer than 4 months. Com-
parisons between forecast error and predictability error fur-
ther indicate that the prediction of wind often suffers ap-
parent initial errors over the tropical western North Pacific,
and the rainfall forecast is affected by obvious initial errors

Fig. 12. As in Fig. 11, but for regressions on the (a) SEASM
index, (b) WY index, (c) SASM index, and the first principal
components of SSTs over the (d) tropical Pacific and (f) Indian
Ocean in the AMIP-type simulation.
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over the south of the Indian subcontinent and the western
Indo-China Peninsula, as well as the tropical western Pacific.

The ensemble mean predictions show varying skill for
different dynamical monsoon indices. The temporal variabil-
ity of the SEASM index is more skillfully predicted than that
of the WY index and SASM index. Nevertheless, the spa-
tial pattern correlation over the region in which the WY in-
dex is defined is the highest, followed by the SEASM region
and the SASM region. Although high skill in some particu-
lar years is associated with extremely anomalous Niño3.4 or
IOD SST index, overall there is no significant linear corre-
lation between the amplitude of ENSO/IOD and the forecast
skill of regional monsoon. Nevertheless, significant corre-
lations between the interannual variations of PCCs for the
SEASM and Niño SST, and between those for the SASM and
IOD SST, are found at the shortest lead time. Furthermore,
the relationships between these monsoon indices and the cir-
culation and precipitation patterns are examined. Compared
to the less extensive response of circulation to the dynami-
cal monsoon indices shown by averaging the results of indi-
vidual members, the ensemble mean predictions significantly
overestimate the connection of the SEASM with the low-level
winds over the western North Pacific and the equatorial east-
ern Pacific, as well as with the precipitation over the subtrop-
ical Pacific. Meanwhile, the relationships between the WY
index and the circulation and precipitation over the tropical
oceans, and between the SASM index and the winds over the
monsoon region and equatorial Pacific, are also exaggerated
obviously.

The temporal and spatial variations of the SST in both ob-
servations and predictions are examined by an empirical or-
thogonal function analysis. Reasonable skill is found for the
primary spatial mode and the principal component of tropi-
cal Pacific SST, in spite of a clear decline with an increase in
lead time. In contrast, predictions show limited skill in terms
of the tropical Indian Ocean SST, especially its spatial mode.
The relationships between the first principal component of
Pacific SST and the winds over the subtropics, and between
the first principal component of Indian Ocean SST and the
winds over the tropical Indian Ocean and central-western Pa-
cific, are always exaggerated by most ensemble mean pre-
dictions. The observed connections of the WY index and
SASM index with the principal component of the Pacific SST
are clearly overestimated in most forecasts, while their links
with the tropical Indian Ocean SST are often underestimated.
Comparisons with the AMIP-type simulation show that un-
realistic connections among monsoons, atmospheric circula-
tion, and tropical Pacific SST in the atmosphere-only model
are similarly reproduced and further exaggerated by the cou-
pled ensemble forecasts, suggesting the existence of an un-
reasonable atmospheric response to tropical SST in both the
simulation and predictions.

Our analyses indicate some shortcomings regarding mon-
soon forecasts, providing information for further develop-
ment of BCCCSM1.1(m). The predictions show reason-
able skill with respect to the interannual variability of trop-

ical SST, but the model is incapable of reproducing the ap-
propriate interaction between monsoon and SST. The vari-
ous degrees of overestimation or underestimation of the rela-
tionships partially account for the unskillful forecasts of the
Asian monsoon. Therefore, in addition to further improve-
ments in the forecasting of the underlying boundary condi-
tions, a realistic description of the connection between mon-
soon and surface conditions, especially between the Asian
monsoon and the tropical SST over the Pacific and Indian
oceans, is of critical importance.

It should also be noted that a considerable proportion of
the above-described overestimation originates from the en-
semble averaging process, in which internal noise is greatly
filtered out and signals from external forcings are excessively
highlighted. This feature indicates that ensemble forecasting
methods sometimes obviously improve the prediction skill
for many climate factors at the cost of losing the reasonable
relationships among them. In this case, although we have
to use various ensemble methods to improve the dynamical
forecast skill, the number of members to compose an ensem-
ble forecast is critical, being neither too large nor too small.
In this context, the optimal use of ensemble forecasting meth-
ods deserves further assessment and exploration.

In addition, the uncertainty of observational data and its
influence on the evaluation of forecast results deserves more
attention. As mentioned in section 4, the forecast of the WY
index is poor compared to NCEP/DOE Reanalysis 2 data but
good compared to the ERA-Interim data. This is because of
the different variations of the index in different datasets, as
shown in this and other studies (e.g., Kim et al., 2012; Jiang
et al., 2013; Ma and Wang, 2014). Thus, a comprehensive
validation based on more observational data is necessary.

Acknowledgements. We would like to thank the two anony-
mous reviewers for their thoughtful and helpful comments. This
study was partially supported by the National Basic Research Pro-
gram of China (Grant Nos. 2015CB453200 and 2014CB953900),
China Meteorological Special Program (Grant Nos. GYHY
201206016 and GYHY201306020), the National Natural Sci-
ence Foundation of China (Grant Nos. 41305057, 41275076, and
41375081), and the Jiangsu Collaborative Innovation Center for Cli-
mate Change, China.

REFERENCES

Achuthavarier, D., and V. Krishnamurthy, 2010: Relation between
intraseasonal and interannual variability of the South Asian
monsoon in the national Centers for environmental predic-
tions forecast systems.J. Geophys. Res., 115, D08104, doi:
10.1029/2009JD012865.

Adler, R. F., and Coauthors, 2003: The version-2 global precipita-
tion climatology project (GPCP) monthly precipitation anal-
ysis (1979–present).Journal of Hydrometeorology, 4, 1147–
1167.

Charney, J. G., and J. Shukla, 1981: Predictability of monsoons.
Monsoon Dynamics, J. Lighthill and R. P. Pearce, Eds., Cam-
bridge University Press, 99–108.

Ding, Y. H., and Coauthors, 2004: Advance in seasonal dynamical



AUGUST 2015 LIU ET AL. 1171

prediction operation in China.Acta Meteorologica Sinica, 62,
598–612. (in Chinese)

Drbohlav, H. K. L., and V. Krishnamurthy, 2010: Spatial structure,
forecast errors, and predictability of the South Asian mon-
soon in CFS monthly retrospective forecasts.J. Climate, 23,
4750–4769.

Du, Y., S. P. Xie, Y. L. Yang, X. T. Zheng, L. Liu, and G. Huang,
2013: Indian ocean variability in the CMIP5 multimodel en-
semble: The basin mode.J. Climate, 26, 7240–7266.

Fu, X. H., B. Wang, Q. Bao, P. Liu, and J. Y. Lee, 2009: Impacts of
initial conditions on monsoon intraseasonal forecasting.Geo-
phys. Res. Lett., 36, L08801, doi: 10.1029/2009GL037166.

Goswami, B. N., V. Krishnamurthy, and H. Annmalai, 1999: A
broad-scale circulation index for the interannual variability of
the Indian summer monsoon.Quart. J. Roy. Meteor. Soc., 125,
611–633.

Jiang, X. W., S. Yang, Y. Q. Li, A. Kumar, X. W. Liu, Z. Y. Zuo,
and B. Jha, 2013: Seasonal-to-interannual prediction of the
Asian summer monsoon in the NCEP Climate Forecast Sys-
tem Version 2.J. Climate, 26, 3708–3727.

Joseph, S., A. K. Sahai, and B. N. Goswami, 2010: Boreal sum-
mer intraseasonal oscillations and seasonal Indian monsoon
prediction in DEMETER coupled models.Climate Dyn., 35,
651–667.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo,
M. Fiorino, and G. L. Potter, 2002: NCEP-DEO AMIP-II Re-
analysis (R-2).Bull. Amer. Meteor. Soc., 83, 1631–1643.

Kang, I. S., and Coauthors, 2002: Intercomparison of the clima-
tological variations of Asian summer monsoon precipitation
simulated by 10 GCMs.Climate Dyn., 19, 383–395.

Kim, H. M., P. J. Webster, J. A. Curry, and V. E. Toma, 2012:
Asian summer monsoon prediction in ECMWF System 4 and
NCEP CFSv2 retrospective seasonal forecasts.Climate Dyn.,
39, 2975–2991.

Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface
temperature variations during ENSO: Evidence for a tropical
atmospheric bridge.J. Climate, 12, 917–932.

Krishnamurti, T. N., A. K. Mitra, T. S. V. V. Kumar, W. T. Yun, and
W. K. Dewar, 2006: Seasonal climate forecasts of the South
Asian monsoon using multiple coupled models.Tellus A, 58,
487–507.

Kug, J. S., I. S. Kang, and D. H. Choi, 2008: Seasonal climate
predictability with tier-one and tier-two prediction systems.
Climate Dyn., 31, 403–416.

Kumar, A., Q. Zhang, J. K. E. Schemm, M. L’Heureux, and K.
H. Seo, 2008: An assessment of errors in the simulation of
atmospheric interannual variability in uncoupled AGCM sim-
ulations.J. Climate, 21, 2204–2217.

Kumar, V., and T. N. Krishnamurti, 2012: Improved seasonal
precipitation forecasts for the Asian monsoon using 16
atmosphere-ocean coupled models. Part I: climatology.J. Cli-
mate, 25, 39–64.

Lang, X. M., H. J. Wang, and D. B. Jiang, 2004: Extrasea-
sonal short-term predictions of summer climate with IAP9L-
AGCM. Chinese Journal of Geophysics, 47, 22–28. (in Chi-
nese)

Lee, J. Y., and Coauthors, 2010: How are seasonal predictionskills
related to models’ performance on mean state and annual cy-
cle?.Climate Dyn., 35, 267–283.

Li, C. F., R. Y. Lu, and B. W. Dong, 2012: Predictability of the
western North Pacific summer climate demonstrated by the
coupled models of ENSEMBLES.Climate Dyn., 39, 329–

346.
Li, W. J., and Coauthors, 2005: Research and operational applica-

tion of dynamical climate model prediction system.Journal
of Applied Meteorological Science, 16, 1–11. (in Chinese)

Liu, X. W., S. Yang, A. Kumar, S. Weaver, and X. W. Jiang,
2013: Diagnostics of subseasonal prediction biases of the
Asian summer monsoon by the NCEP climate forecast sys-
tem.Climate Dyn., 41, 1453–1474.

Liu, X. W., S. Yang, Q. P. Li, A. Kumar, S. Weaver, and S. Liu,
2014a: Subseasonal forecast skills and biases of global sum-
mer monsoons in the NCEP Climate Forecast System version
2. Climate Dyn., 42, 1487–1508.

Liu, X. W., and Coauthors, 2014b: Relationships between interan-
nual and intraseasonal variations of the Asian-western Pacific
summer monsoon hindcasted by BCCCSM1. 1(m).Adv. At-
mos. Sci., 31, 1051–1064, doi: 10.1007/s00376-014-3192-6.

Lorenz, E. N., 1982: Atmospheric predictability experiments with
a large numerical model.Tellus, 34, 505–513.

Ma, J. H., and H. J. Wang, 2014: Design and testing of a
global climate prediction system based on a coupled climate
model.Science China Earth Sciences, 57, 2417–2427, doi:
10.1007/s11430-014-4875-7.

Palmer, T. N., and Coauthors, 2004: Development of a European
Multimodel Ensemble System for Seasonal-to-Interannual
Prediction (DEMETER).Bull. Amer. Meteor. Soc., 85, 853–
872.

Pope, V. D., and R. A. Stratton, 2002: The processes governing
horizontal resolution sensitivity in a climate model.Climate
Dyn., 19, 211–236.

Rajeevan, M., C. K. Unnikrishnan, and B. Preethi, 2012: Evalua-
tion of the ENSEMBLES multi-model seasonal forecasts of
Indian summer monsoon variability.Climate Dyn., 38, 2257–
2274.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.
Alexander, D. P. Rowell1, E. C. Kent, and A. Kaplan, 2003:
Global analyses of sea surface temperature, sea ice, and night
marine air temperature since the late nineteenth century.J.
Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and
W. Q. Wang, 2002: An improved in situ and satellite SST
analysis for climate.J. Climate, 15, 1609–1625.

Saha, S., and Coauthors, 2006: The NCEP climate forecast system.
J. Climate, 19, 3483–3517.

Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Ya-
magata, 1999: A dipole mode in the tropical Indian Ocean.
Nature, 401, 360–363.

Saji, N. H., S. P. Xie, and T. Yamagata, 2006: Tropical Indian
Ocean variability in the IPCC twentieth-century climate sim-
ulations.J. Climate, 19, 4397–4417.

Shukla, J., 1998: Predictability in the midst of chaos: A scientific
basis for climate forecasting.Science, 282, 728–731.

Wang, B., and Z. Fan, 1999: Choice of South Asian summer mon-
soon indices.Bull. Amer. Meteor. Soc., 80, 629–638.

Wang, B., I. S. Kang, and J. Y. Lee, 2004: Ensemble simulations
of Asian–Australian monsoon variability by 11 AGCMs.J.
Climate, 17, 803–818.

Wang, B., Q. H. Ding, X. H. Fu, I. S. Kang, K. Jin, J. Shukla, and
F. Doblas-Reyes, 2005: Fundamental challenge in simulation
and prediction of summer monsoon rainfall.Geophys. Res.
Lett., 32, L15711, doi: 10.1029/2005GL022734.

Wang, B., and Coauthors, 2008: How accurately do coupled cli-
mate models predict the leading modes of Asian-Australian



1172 MONSOON FORECAST SKILL BY BCCCSM VOLUME 32

monsoon interannual variability?Climate Dyn., 30, 605–619.
Wang, H. J., 1997: A preliminary study on the uncertainty of

short-term climate prediction.Climatic and Environmental
Research, 2, 333–338. (in Chinese)

Wang, H. J., and Coauthors, 2015: A review of seasonal climate
prediction research in China.Adv. Atmos. Sci., 32(2), 149–
168, doi: 10.1007/s00376-014-0016-7.

Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selec-
tively interactive systems.Quart. J. Roy. Meteor. Soc., 118,
877–926.

Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new
multi-model ensemble for seasonal-to-annual predictions-
Skill and progress beyond DEMETER in forecasting tropical
Pacific SSTs.Geophys. Res. Lett., 36, L21711, doi: 10.1029/
2009GL040896.

Wen, M., S. Yang, A. Vintzileos, W. Higgins, and R. H. Zhang,
2012: Impacts of model resolutions and initial conditions on
predictions of the Asian summer monsoon by the NCEP Cli-
mate Forecast System.Wea. Forecasting, 27, 629–646.

Wu, R. G., and B. P. Kirtman, 2005: Roles of Indian and Pacific
Ocean air–sea coupling in tropical atmospheric variability.
Climate Dyn., 25, 155–170.

Wu, T. W., and Coauthors, 2010: The Beijing Climate Center at-
mospheric general circulation model: Description and its per-
formance for the present-day climate.Climate Dyn., 34, 123–
147.

Wu, T. W., and Coauthors, 2013: Global carbon budgets simu-
lated by the Beijing Climate Center climate system model
for the last century.J. Geophys. Res., 118, 4326–4347, doi:
10.1002/jgrd.50320.

Yang, S., Z. Q. Zhang, V. E. Kousky, R. W. Higgins, S. H. Yoo,
J. Y. Liang, and Y. Fan, 2008: Simulations and seasonal pre-
diction of the Asian summer monsoon in the NCEP climate

forecast system.J. Climate, 21, 3755–3775.
Yang, S., M. Wen, R. Q. Yang, W. Higgins, and R. H. Zhang, 2011:

Impacts of land process on the onset and evolution of Asian
summer monsoon in the NCEP Climate forecast system.Adv.
Atmos. Sci., 28, 1301–1317, doi: 0.1007/s00376-011-0167-8.

Zeng, Q. C., C. G. Yuan, W. Q. Wang, and R. H. Zhang, 1990:
Experiments in numerical extraseasonal prediction of climate
anomalies.Chinese J. Atmos. Sci., 14, 10–25. (in Chinese)

Zeng, Q. C., and Coauthors, 1997: Seasonal and Extraseasonal
predictions of summer monsoon precipitation by GCMs.Adv.
Atmos. Sci., 14, 163–176, doi: 10.1007/s00376-997-0017-x.

Zheng, F., J. Zhu, R. H. Zhang, and G. Q. Zhou, 2006: Ensemble
hindcasts of SST anomalies in the tropical Pacific using an in-
termediate coupled model.Geophys. Res. Lett., 33, L19604,
doi: 10.1029/2006GL026994.

Zheng, F., J. Zhu, H. Wang, and R. H. Zhang, 2009: Ensemble
hindcasts of ENSO events over the past 120 years using a
large number of ensembles.Adv. Atmos. Sci., 26, 359–372,
doi: 10.1007/s00376-009-0359-7.

Zhou, G. Q., and Q. C. Zeng, 2001: Predictions of ENSO with
a coupled atmosphere-ocean general circulation model.Adv.
Atmos. Sci., 18, 587–603, doi: 10.1007/s00376-001-0047-8.

Zhou, T. J., B. Wu, and B. Wang, 2009: How well do atmospheric
general circulation models capture the leading modes of the
interannual variability of the Asian–Australian monsoon?J.
Climate, 22, 1159–1173.

Zhu, J. S., and J. Shukla, 2013: The role of air-sea coupling in sea-
sonal prediction of Asia–Pacific summer monsoon rainfall.J.
Climate, 26, 5689–5697.

Zhu, J. S., G. Q. Zhou, R. H. Zhang, and Z. B. Sun, 2013: Im-
proving ENSO prediction in a hybrid coupled model with an
embedded entrainment temperature parameterisation.Int. J.
Climatol., 33, 343–355.


