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ABSTRACT

The impact of assimilating radiances from the Advanced Miave Sounding Unit-A (AMSU-A) on the track prediction
of Typhoon Megi (2010) was studied using the Weather Rebeard Forecasting (WRF) model and a hybrid ensemble three-
dimensional variational (En3DVAR) data assimilation (Dgystem. The influences of tuning the length scale and vagianc
scale factors related to the static background error cawee (BEC) on the track forecast of the typhoon were studied.
The results show that, in typhoon radiance data assimilaianoderate length scale factor improves the predictichef
typhoon track. The assimilation of AMSU-A radiances usii}/8R had a slight positive impact on track forecasts, even
when the static BEC was carefully tuned to optimize its penfnce. When the hybrid DA was employed, the track forecast
was significantly improved, especially for the sharp nodtivturn after crossing the Philippines, with the flow-defeam
ensemble covariance. The flow-dependent BEC can be estiimatée hybrid DA and was capable of adjusting the position
of the typhoon systematically. The impacts of the typhopeetfic BEC derived from ensemble forecasts were revealed by
comparing the analysis increments and forecasts gendwgitdae hybrid DA and 3DVAR. Additionally, for 24 h forecasts,
the hybrid DA experiment with use of the full flow-dependeatkground error substantially outperformed 3DVAR in terms
of the horizontal winds and temperature in the lower and rodesphere and for moisture at all levels.
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1. Introduction Satellite radiances can be assimilated into NWP models with

.retrieval assimilation or direct assimilation (DA) metisod

The accuracy of tropical cyclqne (TC) track predlf:t|on 'With the retrieval assimilation method, the retrieved temp
one of the most important tasks in weather forecasting, cri

) N ure and humidity information from radiances using physi-
cial for saving lives and property. Over the past two decades o .

S . ; cal or statistical retrieval methods (Goldberg, 1999) qre a
significant improvements have been made in TC track foré:

. . lied in a similar way as with conventional data. The DA
casts due to the increased use of remote sensing data, other | . 2 . . :
method involves assimilating radiance observations tyrec

advanced observations, and improved numerical weather pr . : . .
. e ito NWP models, and is considered superior to retrieval as-
diction (NWP) models (Houze et al., 2007; Singh et al., 2008; . . : .
Similation because the observational error statisticsraree

Rappaportetal., 2009; Cangialosi and Frankiin, 2011). HOVéllccurate (Eyre, 1989; Andersson et al., 1994; Derber and Wu,

ever, great challenges remain, especially for recurviacks . . ) . i
(George and Gray, 1977; Thu and Krishnamurti, 1992; Ho}-998’. Engh;h et aI.,. 2000; BOUtF'er af‘d Kelly, 2001). More
over, its rapid, real-time processing without the retristaps

land and Wang, 1995; Zhang et al., 2013b), because a recurv- : .

) i o IS an advantage for operational data usage, enabling the ear

ing track of a TC involves more uncertainties than an nofi- . . . :
Introduction of the radiance data into operational systems

recurving one. As one of the most important types of obser- For most operational centers, a three-dimensional varia-

vations for NWP, satellite radiance data can provide Vdmatfional (3DVAR: e.g., Parrish and Derber, 1992; Lorenc et al

temperature ar_1d humidity mf_ormauom gspemally oveaare 000; Barker et al., 2004) DA scheme is employed to obtain
where conventional observations are limited (Derber and e initi " i ’ .

) . } i : e initial conditions. In 3DVAR, observational informeauti
1998; English et al., 2000; McNally et al., 2000, BOUttIedanis spread to model grid points to correct the background field
Kelly, 2001; Le Marshall et al., 2006; McNally et al., 2006)'>.>° ; grid point . g

with the assumption of an isotropic, nearly homogeneous,
static, time-invariant with flow-independent backgroumd e
* Corresponding author: SHEN Feifei ror covariances (BECs). However, these assumptions cannot

Email: ffshen.nuist@gmail.com generally be used for TC assimilation applications due¢o th
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strong vortical and nongeostrophic motions of TCs (Hamilinportant ways. First, this work investigates the effecasf

and Snyder, 2000); the true flow-dependent nature of thienilating AMSU-A radiance observations on track predic-

background errors is not captured. Recently, severalesudions, while Wang (2011) did not assimilate any satellite ra

have demonstrated that forecasts from ensemble-based di@nce data. Second, in this study, each ensemble member is

can produce comparable or better forecasts than those fropadated by running the hybrid analysis system multiple $ime

3DVAR in a variety of weather applications (e.g., Li and Liuwith perturbed observations, whereas Wang (2011) used an

2009; Torn and Hakim, 2009; Hamill et al., 2011; Weng einsemble transformation Kalman filter (ETKF) to generate

al., 2011; Zhang et al., 2011; Dong and Xue, 2012). the analysis ensemble. Moreover, we systematically exam-
Ensemble Kalman filter (EnKF) methods benefit from thimed the influence of the static BEC related length scale fac-

use of flow-dependent BEC but suffer from rank deficiendgr and variance scale factor on the prediction of the trdck o

due to the smaller ensemble members used. The covariaa¢gphoon for radiance DA.

localization method is often adopted to alleviate this prob The remainder of this paper is organized as follows. In

lem. The variational technique is quite efficient and abkection 2, we provide a brief introduction to the WRF Hybrid

to process complex nonlinear observations and apply phiBA system system, together with aspects on radiance data

ical constraints, but it is lacking in terms of the inclusioin assimilation. An overview of Typhoon Megi (2010) and the

flow-dependent BECs. To reconcile the advantages and digperimental settings are described in section 3. Section 4

advantages of the variational and EnKF methods, increasprgsents the main results. Conclusions and further digruss

effort is being made to hybridize the two approaches, rathame provided in the last section.

than settling for one particular method. A hybrid DA ap-

proach that couples the ensemble DA technique into the vari-

ational framework (e.g., Hamill and Snyder, 2000; Loren@. The WRF Hybrid En3DVAR DA system

2003; Wang et al., 2008a; Zhang et al., 2009; Wang, 2010; gnd radiance data assimilation

Schwartz et al., 2013) has shown great promise for weather

applications. Many previous studies have shown that hybadi. The WRF Hybrid En3DVAR DA system

approaches yield comparable or better forecasts than those . ) )

based purely on 3DVAR that do not incorporate ensemble "€ WRF Hybrid DA system works by including the

BECs, and can outperform forecasts initialized by stamalo€Xtended control variables originally proposed by Lorenc

EnKFs (e.g., Buehner, 2005; Buehner et al., 2010; Hami@#003). The theoretical details can be found in Wang et al.
ot al. 2011"Wang 2011- Li et al. 2012 Zha;wg and Zhan(@007a, 2008b). We list the most important mathematical for
2012- Schwartz et al.. 2013: Wan(::] etal 2013: Zhang et Lulations in this section. The final analysis incremérs a

2013a; Pan et al., 2014; Schwartz and Liu, 2014). sum of two terms, described as

The hybrid approach is popular for the following three K
reasons. First, thg hybrid _tet_:hnique can be easily im- X =X+ Y (aoXek) - (1)
plemented in pre-existing variational DA frameworks (g.g. K1

Wang et al., 2007b; Zhang et al., 2013a; Pan et al., 2014).
Second, with a model-space covariance localization tedbn the right hand side of Eq. (1), the first test is the
nique, the assimilation of non-local observations, such Bxrement associated with the static BEC in 3DVAR. The
satellite radiance data, may be more effective in hybrigcond term of Eq. (1) represents a local linear combina-
frameworks than in EnKFs that use observation-space loctbn of ensemble perturbations, aads the increment asso-
ization (Campbell et al., 2010). And third, the hybrid meathociated with the flow-dependent ensemble covariance. Viector
can save computational cost by using the ensembles aacdk = 1,---,K) are the extended control variables (Lorenc,
coarser resolution than deterministic hybrid analysig.(e.2003) forK ensemble members, and varialilg is thekth
Rainwater and Hunt, 2013), and by producing similar resukkmisemble perturbation normalized K — 1. Symbolo de-
as EnKFs but with a smaller ensemble compared to the tradétes the element-by-element product of the vecagrand
tional EnKF. Xek- The coefficients ofy for each ensemble member vary
However, to the best of our knowledge, no study has yit space due to the necessary ensemble covariance localiza-
been published that applies the Weather Research and Fticat, which is conducted in the model state variable space.
casting (WRF) Hybrid En3DVAR DA to the assimilation ofWithout localization, the coefficients @ will be the same
radiance data from the Advanced Microwave Sounding Unand can be represented by scalars (Lorenc, 2003). The anal-
A (AMSU-A) for improving TC track prediction. Accord- ysis incremenk; and the coefficients cd are obtained by
ingly, this preliminary study examines the potential besefiminimizing the following hybrid cost function:
of this computationally efficient procedure for improvinG T
track forecasting when assimilating AMSU-A radiance data.  J(X;,a) = B1J1 + BoJe + Jo
More specifically, this study investigates the impacts of 1, Ta 1 1, 1a1
DA on TC track forecasting within the WRF Hybrid DA sys- = ﬁli(x/l) B (xy) + [525(3) A (a)+
tem (Barker et al., 2012), similar to in Wang (2011). How- 1
ever, this work differs from that of Wang (2011) in several 5(3/0 —HX)TR (Y, —HX) , 2)
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where a sum ofl; andJe with different weight replaces thetotal column water vapor) and their coefficients. The coeffi-
usual WRF 3DVAR background teri. Here,J; is associ- cients are updated via a variational minimization procgss b
ated with the static covariance matBx Je is associated with including them in the cost function [Eq. (2)] as control vari
the ensemble covariance for the extended control veatorables (Derber and Wu, 1998; Auligné et al., 2007; Dee and
which is formed by concatenatingvectorsa,, k=1,--- ,K  Uppala, 2009).

asa' = (a],al,---,af), which in turn is controlled by the

block diagonal matrixA for spatial correlationJ, is the ob- o ) )

servation term associated with the observation error ¢ovad. Case description and experimental design

ance matrixR. As in 3QVAR,y; =Y. —.H (Xp) is the. inno- 3.1 Overview of Typhoon Megi (2010)

vation vector. Herey, is the observation vectogy is the )

background state vector, aitiis the observation operator.  SUPer Typhoon Megi (2010)—one of the most destruc-
In Eq. (2),H is the linearized observation operator. Tw(yve TCs over the western North Pa_cn‘lc anq So_uth China Seg
coefficients,8; and 3, determine respective weights giverll 2010—was chosen for our experiments in this study. Megi
to the flow-dependent ensemble covariance and static eovig10) was identified as a tropical disturbance by the Joint

ance (Hamill and Snyder, 2000; Etherton and Bishop, 200@Phoon Warning Center (JTWC) when it was about 600
Wang et al., 2007b), which are constrained as km to the east of the Philippines at 0000 UTC 12 October

2010. Megi (2010) then developed quickly that same day.

1 + 1 -1. (3) The JTWC classified the vortex as a tropical depression be-
B B fore 0900 UTC 13 October. Then, later, on 14 October, the
2.2. AMSU-A radiance assimilation procedures Japan Meteorological Agency (JMA) upgraded Megi (2010)

The AMSU-A 1b radiance data are ingested into the WRP & severe tropical storm and the JTWC gpgraded it to a
3DVAR and WRF Hybrid DA system in this study. AMSU-ACategory-1 typhoon. On 15 October, Megi (2010) moved
is a line-scanned microwave sensor with 15 sensitive ch _rthwg;twards and graduallyl_n_ten_smed Into atyphoor_l ove
nels, each with a 2343 km swath width. It measures 30 pixél Pacific tp the ea_st_qf the Philippines. As shown in Figs. 1
in each swath, with an approximate 48 km diameter footpriﬂpd 2, Megi (2010) initially moved nor_thwestward, f’mq then_
at nadir. In this study, a subset of AMSU-A channels is ch grn_ed wes'g-southwestward. It expengncgd a raplq Intensi
sen to be assimilated. Channels 1-2 and 15 are located fR°" during 16-18 Octoper, rga_tchlng Its peak intensity
window regions and are thus not assimilated since they 1200 UTC 17 October, W't.h minimum sea_level pressure
sensitive to uncertain surface parameters, cloud andgpre SLP) of 8915 hPa and maximum surface wind (MSW) of
itation. Channels 3—14 are sensitive to temperature, am to 72m s°. Megi (2010) made landiall over Luzon Is-

which only channels 5-7 are assimilated because they p Iéj as asupertyphoon at_0425 urcis Octqber gnd. bepame
under the model top (20 hPa). weaker after crossing the island. After that, it re-intéadi

The Community Radiative Transfer Model (CRTM,; Harf@Pidly from category-2 to category-4 (MSLP: 935 hPa) early

et al., 2006; Liu and Weng, 2006) is coupled within the
WRFDA system (Barker et al., 2012) described in section 2.2 __
as the observation operator for AMSU-A radiance. This is*0 N
then used to calculate the simulated radiances with the ten
perature and moisture information from model states. Ra30°
diance data over mixed surfaces and observations with larg
scan angles are rejected. A radiance observation with larg
bias (the bias-corrected observation minus the CRTM mod20°N
eled radiance), exceeding either 15 K oiidrejected, where
r is the specified observation error standard deviation fo
brightness temperature. Following Liu et al. (2012), we use
the full-sky AMSU-A radiances in this study without any spe-
cial cloud detection procedure. Better results for traaiefo 0°
casts are obtained when the thinning mesh is set to rough! o
6-8 times the grid resolution for the Typhoon Megi (2010)10°S |-xfiiiioiii.
case. Thus, we determine a 120 km thinning mesh as th ——
first attempt to study assimilating AMSU-A radiances using 90°E  105°E
hybrid methods. We correct the systematic biases from ob-
served radiances before assimilation using the same methddd- 1. The WRF model domain and the 6 hourly track of
asin Liu et al. (2012) and Xu et al. (2013). The radiance bias'YPhoon Megi (2010) (black typhoon symbols) during 0000
is expressed inside a modified forward operator with a lin-JTC 13 October to 0600 UTC 24 October 2010. Also shown
ear combination of several predictors (the scan positios, t :‘S a snapshot of AMSU-A radiance observations (green dots
" rom NOAA-15, red dots from NOAA-16, and blue dots from
square and cube of the scan position, the 1000-300 hPa a TOP-2) assimilated at 0000 UTC 18 October 2010.
200-50 hPa layer thicknesses, surface skin temperatute, an

10°N

120°E

135°E 150°E
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80 Table 1. List of experiments.
| Experiment Description
. f60 — NOAMA Only conventional observation DA using
& ] é WRF 3DVAR with static covariance
= N s from NMC method
=W 540 g 33DVAR_AMA Radiance DA using WRF 3DVAR with
d 2] static covariance from NMC method
= i 20 = HYBRID_AMAS Radiance DA using hybrid method with full
I weight given to static covariance, with
1/B1=0inEg. (2)
I 0 HYBRID_AMAF Radiance DA using hybrid method with full
S weight given to flow-dependent covari-
\@b“ ance, with 8, = 1in Eq. (2)

Similar to the NOAMA experiment, the 3DVARMA
Fig. 2. Time series of the minimum sea level pressure (unit: €xperiment also assimilated AMSU-A radiances from the
hPa) and the maximum surface winds (units: ™)sof Ty- NOAA-15, 16, 18 and METOP-2 satellites, besides the con-
phoon Megi (2010) from the China Meteorological Adminis- ventional observations in NOAMA. Figure 1 shows a snap-
tration best-track data. shot of AMSU-A radiance observations assimilated at 0000
UTC 18 October 2010, for which time AMSU-A radiance
on 19 October. At 0000 UTC 20 October, Megi (2010) expetata from NOAA-18 are not available. The other two exper-
rienced a sharp turn from westward to northward, an unusitdents (HYBRIDAMAS and HYBRID.AMAF) employed
track change that was not forecast by any of the leading ape hybrid DA method with 40 ensemble members using the
erational centers. On 23 October, it made a second landfaban of the ensemble forecasts as the background. They
as a tropical storm at Zhangpu in Fujian Province, and finallyere identical except with different weighting factors

dissipated gradually the next day. and 3, listed in Table 1. It should also be noted that both
32 WRF model confi i 3DVAR_AMA and HYBRID_AMAS used the static back-
e model configuration ground error and the only difference between 3DVARIA

The WRF model (Skamarock et al., 2008) was used #d HYBRID.AMAS was the data assimilation background.
conduct all the experiments. WRF is a three-dimension8DVAR_AMA used the deterministic forecast as the back-
compressible, non-hydrostatic atmospheric model usiggound, whereas HYBRIDAMAS used the ensemble mean
terrain-following, mass-based sigma coordinate levels; instead for the same purpose. If the difference in the result
governing equations are written in flux form. All experiof 3SDVAR_AMA and HYBRID_AMAF are found to be large,
ments were conducted over the single domain with a 15 khile those of 3DVARAMA and HYBRID_AMAS are quite
horizontal grid spacing. There were 45@100 grid points similar to each other, it will suggest that this differense i
horizontally and 43 vertical levels with the model top atainly contributed to by the flow-dependent ensemble co-
20 hPa. The following parameterizations were used: thariance, rather than the use of the ensemble forecast mean
WREF Single-Moment 6-Class scheme (Hong et al., 2004); the the background. In addition to the above four experiments
Kain—Fritsch cumulus parameterization (Kain and Fritsciye also conducted experiments with different weighting fac
1990, 1993; Kain, 2004) with a modified trigger functionors of 75%, 50%, and 25% toward the ensemble contribu-
(Ma and Tan, 2009); the Yonsei University (YSU) boundanyon. The results did not significantly improve upon the re-
layer scheme (Noh et al., 2003); the 5-layer thermal diffosi sults of HYBRID.AMAF, similar to the findings of Li et al.
model for land surface processes scheme; the RRTM lofg012). Therefore, we focus on comparing HYBRAMAF
wave radiation scheme (Mlawer et al., 1997); and the MMind 3DVAR in this paper.

shortwave radiation scheme (Dudhia, 1989). To reduce spurious correlations caused by sampling er-
33 Dat imilati i ror due to the limited ensemble member, a 750 km horizontal
- Data assimilation setup localization radius was applied to the ensemble covariance

Several initial experiments were configured to compaggd a standard vertical localization described in Wang.et al
the fundamental difference in using flow-dependent anéste014, Eq. (12)] was applied. In all the DA experiments, all
BEC and to evaluate the impact of DA when assimilatingbservations withint1.5 h were assumed to be valid at the
AMSU-A data on the subsequent forecast of Typhoon Meghalysis time. The static BEC statistics in the 3DVAR system
(2010). Table 1 summarizes the design of the experimentsyere derived from the differences between the 24 h and 12

The NOAMA experiment assimilated conventional obh forecasts valid at the same time, using the National Meteo-
servations only from the operational Global Telecommunicgplogical Center (NMC) method (Parrish and Derber, 1992).
tion System dataset of the National Centers for Environmenhese forecasts were generated using the WRF model on
tal Prediction (NCEP) with the traditional 3DVAR methodthe same model grid for each day of September 2010, using
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the GFS (Global Forecast System) analyses as the initial amere also examined since the key with ensemble-based DA is
boundary conditions. The static BEC matrix was obtaingde use of an ensemble to estimate the flow-dependent fore-
using the WRFDA utility called CV5 (Barker et al., 2012) forcast error. The differences in the analyses increments from
five control variables (stream function, unbalanced tempeBDVAR and the hybrid DA are further diagnosed to evalu-
ture, surface pressure and velocity potential, and redtiv ate how these differences contribute to the differenceén th
midity). All experiments were initialized at 1800 UTC 17 Ocirack forecasts. RMSE profiles of the 24-h forecasts are also
tober 2010 (Fig. 3), using the NCEP operation&0< 0.5° displayed when using a set of conventional observations as
GFS analysis data as the initial and lateral boundary condiference.
tions. With the initial and lateral boundary conditionskast o
time, the initial ensemble was generated by taking Gaussfah:  Sensitivity to the length scale
random draws with the static BECs and zero mean (Torn et Itis well known that WRF 3DVAR CV5 BE modeling us-
al., 2006) and adding the perturbations to the GFS analysigy the NMC method tends to overestimate the error covari-
The deterministic and ensemble fields produced at 1800 U&6ce of winds; and therefore, the spatial correlation scale
17 October initialized the 6-h WRF forecasts, which servazkcessively large (Lee et al., 2006). In this case, smallesc
as backgrounds for the first 3DVAR, and hybrid analyses albserved information can be filtered out in the analysis, step
0000 UTC 18 October. A 120 h deterministic forecast wamnd the locally observed information is easily spread out to
separately initialized at 0000 UTC 18 October by the analysarge spatial distances (Daley, 1991). The impact on typhoo
with 3DVAR and the hybrid configurations. The 6 h cyclindorecasts of tuning the background error has been revealed
forecast-analysis experiments were carried out for alkexp by several numerical studies using conventional obsemati
ments until 0000 UTC 23 October. For the following cyclegGu et al., 2005; Guo et al., 2006). However, to the best of
the background was the previous cycle’'s 6 h WRF forecamir knowledge, there are currently no specific studies pub-
(initialized from the hybrid mean analysis). For those eg¢l lished on tuning the BECs to optimize the impact of using
24 h deterministic forecasts were carried out to evaluate tAMSU-A radiance observations on the prediction of typhoon
impact of cycling assimilation on forecasts. Digital filiei- tracks. In order to compare with the hybrid DA method as
tialization (DFI; Lynch and Huang, 1992; Huang and Lynchgbjectively as possible, we conducted a set of sensitivity e
1993) using a twice-DFI scheme and the Dolph filter (Lynclperiments to investigate the impact of the tuned backgreund
1997) with a 2 h backward integration were applied to all 12&ror covariance by tuning the LENCALING parameters
h forecasts. Each ensemble member was updated by runmafined as the final percentage of the length scale of the back-
the hybrid analysis system multiple times with perturbed olground error in use for the five variables (perturbationsstre
servations. The covariance relaxation method of Zhang etfainction, velocity potential, temperature, humidity, asa-
(2004) was employed to maintain ensemble spread, wherefiige pressure) and VABCALING parameters as the final
final inflated ensemble perturbation is a weighted averagepafrcentage of the variance of background error for the same
prior perturbation (as the background ensemble) and podtee variables on the prediction of Typhoon Megi (2010). For
rior perturbation (the ensemble analysis). In this stuldg, tboth LEN.SCALING and VAR SCALING, 1.0 is the default
weight for the posterior perturbation was set to 0.8. value in WRF 3DVAR, which means that no reduction is con-
ducted for the length scale or the background error variance
First, how the physical length scale corresponds to dif-
4. Resultsand discussions ferent LENSCALING settings is revealed by the results of
several single observation tests. A 1 m!au-wind incre-

In this section, we evaluate the analyses and forecastent was added in at the 19th model level at 0000 UTC
of each of the DA experiments. The model predictions df8 October. Figure 4 shows the temperature and horizontal
Megi (2010)’s track were verified against the best-track-anavind increments obtained in response to theind differ-
yses of the China Meteorological Administration (CMA) (Ywence for LENSCALING = 1.0, 0.5 and 0.1 with a fixed
et al., 2007). Aspects of the ensemble spread performaiR _SCALING (1.0) in DA. We can see that the radius

17/+ 8 18/00 1%00 2&/00 214)0 2%)0 2%00

RS S —
6 hdurs | CTRL GTS data assimilation (3DVAR)
S = = = =)
[ ™ pinug rﬂl I | 3DVAR GTS+AMSUA data assimilation (3DVAR)
| HYBRID GTS+AMSUA data assimilation (HYBRID)

Fig. 3. Experimental design of NOAMA, 3DVARAMA, HYBRID _AMAS, and HY-
BRID_AMAF. The 6 h spin-up run was conducted from 1800 UTC 17 thio0Qg00 UTC 18
October 2010. The 6 h cycling forecast-analysis experimemtre carried out starting at 1800
UTC and ending at 2300 UTC.
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of influence of the increments was quite large when we set
LEN_SCALING to 1.0, whereas it was much smaller for
LEN_SCALING =0.1. The results indicate that tuning of the
length scale factor could be necessary to optimize the per-
formance of radiance data assimilation, even with the back-
ground error calculated locally using the NMC method.

For the case of Typhoon Megi (2010), we set VAR
SCALING to 1.0, 0.5 and 0.1. For each chosen value of
VAR _SCALING, LEN_SCALING was varied from 0.1 to
1.0 in steps of 0.1. In total, there were 30 different com-
binations of LENSCALING and VARSCALING. Figure 5
shows the predicted typhoon tracks and their corresponding
forecast errors as a function of forecast time from the 38-for
cast runs. For most cases, AMSU-A radiance assimilation
reduced the forecast track errors compared to the NOAMA
experiment. The track from the NOAMA experiment had an
east bias that caused the typhoon to land unexpectedly-in Tai
wan. With the AMSU-A observations assimilated, it seems
that with a fixed value of VARSCALING, the predicted ty-
phoon tracks shifted gradually westward when we increased
the value of LENSCALING. This indicates that with larger
LEN_SCALING, the NMC method tends to overestimate the
length scale, which determines the pattern and the extent to
which the observed radiance information spreads out.

In Figs. 5a and b, for VARSCALING = 1.0, and when
LEN_SCALING was larger than 0.5, the predicted tracks
shifted too far west, with a track error even larger than that
in the NOAMA experiment. With the smallest value of
LEN_SCALING (0.1), the forecast track stayed almost the
same as NOAMA. With reduced VABCALING (0.5), pre-
dicted tracks with westward bias were still observed froe th
AMSU-A assimilation experiments for most cases, and the
shift was also obvious with an increasing LE3\CALING,
but not as exaggerated as those cases with $ARLING =
1.0 (Figs. 5¢ and d). The assimilations with moderate values
(0.5and 0.6) for LENSCALING produced a smaller forecast
error than the other runs. When VABCALING was further
reduced to 0.1 (Figs. 5e and f), the predicted tracks for most
values of LENSCALING were closer to the best track, com-
pared to those in Figs. 5a and b. Nevertheless, the redillts st
showed a westward bias tendency of the track with increas-
ing LEN_SCALING (Fig. 5e). From Fig. 5f, it seems that
the forecasts with LENSCALING = 0.5 and 0.6 had smaller
track error than those from others forecasts. Based on the
above results, we conclude that the tuning of LERALING
in the recursive filter process of the static BEC is meanihgfu
to the analysis from data assimilation and subsequent numer
cal prediction. On the other hand, it seems there is no optima
setting in terms of tuning VABSCALING for radiance data
assimilation. Accordingly, for all the experiments dissed
in the following section, we used VABCALING =1 and
LEN_SCALING =0.5.

4.2. Ensemble performance

Since a high-quality prior ensembile is the key to success-
ful hybrid analyses, it is important to evaluate the ensembl
performance. Figure 6 shows the ensemble spread of wind
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Fig. 5. The (a, ¢, e) tracks and (b, d, f) forecast track error inéd at 0000 UTC 18 October 2010 using the
settings (a, b) VARSCALING = 1.0 and LENSCALING = 0.1-1.0 in steps of 0.1; (c, d) VARCALING

= 0.5 and LENSCALING = 0.1-1.0 in steps of 0.1; and (e, f) VARCALING = 0.1 and LENSCALING =
0.1-1.0in steps of 0.1. The gray curve is the control run witltAMSU-A data and the black curve is the best
track.

and temperature on the 19th model level after the 6 h forgpread is large, observations in areas with large ensemble
cast valid at 0000 UTC 18 October, when Typhoon Megpread are most likely to have a large impact in the hybrid
(2010) intensified. The 6 h forecast ensemble directly preystem. Likewise, observations are less likely to influence
vides the flow-dependent background error in the hybrid sytee analyses in areas where the spread is smaller. Thersatter
tem. Since there are more forecast uncertainties where thiecting the features of the observation locations anéoiet
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rological conditions can be seen in Figs. 6a and b. The sprehd static background error from the WRFDA modeling was
was large over the Tibetan Plateau in the west, where few dérgely underestimated, consistent with the results in §Van
servations were available to constrain the model. Conlyerset al. (2014); whereas, the ensemble spread was much closer
spread was smallest over Eastern China, where observatimnthe RMSEs compared to the static background error. For
were plentiful. A local maximum of spread was obvious failemperature, both the ensemble spread and the static back-
wind and potential temperature in the northeast of the ghiliground error were greater than the corresponding RMSEs be-
pines, where Typhoon Megi (2010) moved, reflecting thteveen model level 34 and model level 41. For other levels,
forecast uncertainty for a TC. The ensemble spread also stige ensemble spread was much closer to the RMSESs, while
gests larger forecast uncertainties around Megi (201@)itha the static background error underestimated the forecast er
its environment. rors. Overall, the ensembles were reasonably well caérat
The ensemble spread can represent the ensemble niBaafinal background error from the hybrid system, as a mix
forecast error in a well-calibrated system (Houtekametl.et af the flow-dependent and the static background error, plays
2005). The forecast RMSEs, ensemble spread, and the statimportant role in the data assimilation procedure.
background error from the WRFDA (Wang et al., 2014) us-
ing the NMC method and the WRFDA modeling are shown i3 TC track forecasts
Figs. 7a and b. The forecast RMSEs were obtained by com- The predicted typhoon tracks and track errors from
paring the forecast ensemble mean with the GFS analyfd©AMA, 3DVAR _AMA, HYBRID _AMAS and HYBRID_
The static background error from the WRFDA modeling waSMAF are shown in Figs. 8a and 8b for the 120 h forecast
estimated based on the ensemble perturbations using Gadwmsn 0000 UTC 18 October through 0000 UTC 23 October
sian random draws with the static BECs and zero mean. T2@&10. The best track is also shown in Fig. 8a. The center
ensemble mean RMSEs of wind were less than 3 fasid  of the typhoon is defined as the location of MSLP. All exper-
the temperature was less than 1 K at most levels. For windaents had similar track forecasts for the first 24 hours for
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along with the best track.

model integration. In NOAMA, the predicted typhoon trackthan that for its environment (Fig. 9b), while in 3DVAR
had a substantially large eastward bias compared to the b&gtA, the analysis increment for Megi (2010) was compa-
track, with an average track error close to 238 km within tirable or less than the increment for the environment (Fig.
120 h. In fact, such a strong bias has been observed by s@&}. In 3DVAR, there was an increase in the geopotential
eral other global forecasting models initialized in a sanil height to the northeast of the Philippines and a decrease in
time period. This phenomenon could be partly attributed tbe geopotential height in southern China. The increment
the abnormal heavy northwesterly flows associated with tfe Megi (2010) from HYBRIDAMAF was much stronger
trough over mainland China (Kieu et al., 2012). The foresompared to that from 3DVARRMA. The increment in HY-
casts with radiance assimilation produced a much improvB&ID_AMAF showed an obvious dipole pattern, which could
position and subsequent westward movement that occurpacsh Megi (2010) to move to the northeast of the background
between 24 h and 48 h. Of note is that the tracks from &tirecasted position. This suggested that HYBERADAF
the radiance DA experiments were rather closer, with a traslas able to adjust the position of Megi (2010) in the back-
error of less than 100 km during the first 84 h forecast. Afiround forecast after the DA with the typhoon-specific incre
ter that, the vortices of 3SDVARRMA and HYBRID_AMAS ment, which may have contributed to the better prediction of
tended to move too quickly to the northwest and the track éhe subsequent recurving track. The results indicate that H
rors increased with forecast time to almost 300 km; where&RID_AMAF can systematically correct the position of the
the track forecast from HYBRIDAMAF agreed much better typhoon by the DA with a flow-dependent ensemble covari-
with the best track. Note that the tracks of 3DVA®MA and ance, even without other techniques such as the extra vortex
HYBRID_AMAS were very close, with mean track errors ofelocation procedure, which is widely employed by the oper-
110 km and 106 km, respectively. These results suggest tatibnal SDVAR system.
the improvement in HYBRIDAMAF compared to 3DVAR o ] ]
can be mainly attributed to the use of the row—depende‘hf'- Eorecast verification against conventional observa-
ensemble covariance, more so than the use of the ensemble tONS
mean as the background forecast. HYBRAMAF had the The performances of forecasts with 24 h lead times
smallest mean track error (48 km), especially for foreat | from the different DA experiments are evaluated in this sub-
times longer than 24-h with the recurving track predicted. kection. The RMSE profiles of horizontal wind, tempera-
general, the forecast track from the HYBRIEMAF experi- ture, and specific humidity were calculated based on the dif-
ment aligned more closely with the best track than those frderence of the model forecasts initialized from 0000 UTC
NOAMA, 3DVAR _AMA and HYBRID_AMAS. 1800 to 0000 UTC 2300 and a set of conventional obser-
Next, the analysis differences among the DA methodstions (Fig. 10); for example, radiosondes and the atmo-
are examined to identify how these differences affect tilspheric motion vector winds from geostationary satellites
subsequent forecasts. Figure 9 shows the analysis incten{@eoAMYV). The largest RMSE of horizontal wind and tem-
(shaded) and the background (contours) for the 500 hperature in each experiment was observed near the upper tro-
geopotential height at 0000 UTC 18 October. The analysis ipesphere, while the largest RMSE of specific humidity was
crement from 3DVARAMA and HYBRID_AMAF were dif- around the lower troposphere. HYBRIBMAS had slightly
ferent for both Megi (2010) (the fields around the typhoomsmaller RMSEs than 3DVARAMA for almost all the vari-
and its environment (the large-scale fields). In HYBRIDables at most levels, except for moisture near the surface.
AMAF, the analysis increment for Megi (2010) was largei YBRID _AMAF substantially outperformed 3DVARMA
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in terms of the horizontal winds and temperature in the lowarent for specific humidity can be attributed to the multivari
and mid-troposphere and for moisture at all levels, thougite correlations between moisture variables and other vari
we tuned the static BEC to optimize 3DVARMA's per- ables from the ensemble forecasts, which did not exist in the
formance. HYBRIDAMAF had smaller RMSEs than HY- static BEC in 3DVARAMA.

BRID_AMAS for most variables at most times. The improve-
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5. Summary and conclusions minimization process. In the future, we intend to focus on

In this study, several experiments involving the assimtle_mpl(_)ying multiple outer loops in 3DVAR frameworks and

lation of AMSU-'A radiance data for Super Typhoon I\/Iegrietunlng the sca}e Iength_ for. the 3DVAR recursive filter to

(2010) were performed to investigate the effect of the hassess the relative contributions of the static and engembl

bri . BECs. To understand the relative advantages and disadvan-
rid DA approach on TC track forecasts. Instead of usin

an EnKF to update the ensemble, as in earlier studies, %ges of different techniques in typhoon forecasts, diedt

) thorough comparisons with other DA techniques such as the
this study each ensemble member was updated by runn F, ADVAR, and En-4DVAR are also planned.

the hybrid analysis system multiple times with perturbed o
servations. Model predictions of Megi (2010)’s track were . L
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