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ABSTRACT

The Ensemble Transform (ET) method has been shown to be useful in providing guidance for adaptive observation
deployment. It predicts forecast error variance reductionfor each possible deployment using its corresponding transformation
matrix in an ensemble subspace. In this paper, a new ET-basedsensitivity (ETS) method, which calculates the gradient of
forecast error variance reduction in terms of analysis error variance reduction, is proposed to specify regions for possible
adaptive observations. ETS is a first order approximation ofthe ET; it requires just one calculation of a transformationmatrix,
increasing computational efficiency (60%–80% reduction incomputational cost). An explicit mathematical formulation of
the ETS gradient is derived and described. Both the ET and ETSmethods are applied to the Hurricane Irene (2011) case
and a heavy rainfall case for comparison. The numerical results imply that the sensitive areas estimated by the ETS and ET
are similar. However, ETS is much more efficient, particularly when the resolution is higher and the number of ensemble
members is larger.
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1. Introduction

For high-impact weather (HIW) events, adaptive mobile
observation instruments or vehicles can be deployed to im-
prove analysis quality and forecast accuracy. Several field
campaigns have shown that observations sampled in dynam-
ically sensitive areas have positive impacts on numerical
weather prediction (Majumdar et al., 2001; Majumdar et al.,
2011). For example, 1–2 day forecast skill was increased by
assimilating targeted data deployed in the Fronts and Atlantic
Storm Track Experiment and the North Pacific Experiments
(Joly et al., 1997; Joly et al., 1999; Langland et al., 1999a;
Langland et al., 1999b). Assimilation of adaptive observa-
tions significantly reduced typhoon track forecast errors over
the western North Pacific and the Atlantic (Aberson, 2003;
Wu et al., 2007a; Aberson et al., 2011; Chou et al., 2011).

A major challenge is to identify sensitive areas for de-
ploying the adaptive observations in the hours or days ahead
of HIW events. There are several approaches that have been
developed to estimate sensitive areas, such as the singular
vector method (Palmer et al., 1998; Buizza and Montani,
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1999), the conditional nonlinear optimal perturbation method
(Mu et al., 2009; Wang et al., 2011), and the adjoint sensi-
tivity method (Wu et al., 2007b, 2009). In general, an ad-
joint model is usually required in the above three approaches.
In addition, ensemble-based methods, such as the ensemble
transformation (ET) method (Bishop and Toth, 1999), the
ensemble transform Kalman filter (ETKF) method (Bishop
et al., 2001), and ensemble sensitivity (Ancell and Hakim,
2007) are widely used in field campaigns (Chang et al., 2013;
Xie et al., 2013).

The ensemble-based methods are less demanding com-
putationally and have been extensively employed in practical
applications (Ancell and Hakim, 2007; Ito and Wu, 2013).
These methods consider sensitivity in the subspace spanned
by the ensemble forecasts and are computationally inexpen-
sive in operational centers where ensemble forecasts are rou-
tinely produced. Among these methods, ET (Bishop and
Toth, 1999; hereafter BT1999) provides a practical method
for adaptive observations. It has been used for targeted drop-
sonde deployments in winter storm reconnaissance (WSR)
(Szunyogh et al., 2000). Later, ETKF was used to identify
the sensitive region in WSR (Szunyogh et al., 2002). The
dropsonde data collected over these sensitive areas improved
the weather forecasts over the continental United States and

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag Berlin Heidelberg 2016



JANUARY 2016 ZHANG ET AL. 11

Alaska (Szunyogh et al., 2000). However, the impact of drop-
sonde data may be limited in global forecasts (Hamill et al.,
2001), and high-resolution observation datasets are suggested
for HIW (Bauer et al., 2011, Berger et al., 2011).

It is noted that ET is still expensive for high-resolution
applications or those applications with large numbers of en-
semble members. ET has been used at relatively coarse res-
olutions and a few vertical levels, e.g., usually three vertical
levels at the National Centers for Environmental Prediction
(NCEP), and a relatively small number of ensemble mem-
bers (30–60). As resolutions increase for HIW applications,
the computational cost grows exponentially. This is because
ET, as well as the ETKF, has been implemented to exhaust
all possible observation deployments. For example, it cur-
rently estimates sensitive areas by adding an observation at
every analysis grid location, horizontally and vertically, and
calculating the ensemble transformation and the reductionof
forecast variance for each observation. Because of the use of
a matrix decomposition of ensemble covariance, the compu-
tational cost also increases as a cubic function of the number
of ensemble members. For high-resolution adaptive observa-
tion applications, or those with large numbers of ensemble
members, the computational cost could be significant. ETKF
can also be computationally expensive, the same as the ET
method (Bishop et al., 2001). In order to further improve
these methods for fine scale HIW applications, efficiency is
an important factor to investigate.

A new ET-based sensitivity (ETS) method is proposed in
this paper to specify sensitive regions for adaptive observa-
tions. The proposed method calculates the sensitivity (gradi-
ent) of forecast error variance reduction in terms of analysis
error variance reduction. The newly proposed ETS method is
the first order approximation of the original perturbation ET
method and reduces computational cost because only a single
transformation matrix calculation is required.

This paper is organized as follows. In section 2, we re-
view the ET method. In section 3, we describe how ETS
calculates the sensitivity with a single transformation matrix
calculation. We compare sensitive regions using ET and ETS
for a hurricane case and a heavy rainfall case in section 4.
Conclusions and discussions are presented in section 5.

2. Review of the ET method

First, we review the ET method (BT1999), with some ma-
trix notations used to simplify the discussion (see Table 1).
This review in matrix forms helps illustrate the ETS deriva-
tion.

2.1. Forecast error estimation using a transformation ma-
trix

Let EEE(t) denote a set of ensemble forecasts at a given
forecast timet. This EEE(t) is a matrix withM rows andK
columns, whereM is the number of gridded values of all the
state variables andK is the number of ensemble members.
Then, the ensemble perturbation matrixXXXe is also anM ×K
matrix,

XXXe(t) = EEE(t)−EEE , (1)

whereEEE is the ensemble mean and also anM×K matrix, but
all columns are the same ensemble mean vector.

Here is the adaptive observation strategy in ET: Use a set
of ensemble forecastsEEE(t) to determine which possible de-
ployments of observational resources at a future analysis time
tfa will minimize the expected prediction error of forecasts for
the verification timetv, which are initialized with, inter alia,
the supplemental data taken attfa (BT1999).

Let XXXe(tfa) denote the perturbations attfa, XXXe(tv) the per-
turbations at thetv, andYYY (tfa) the ensemble perturbations af-
ter assimilating a set of data from a possible adaptive obser-

Table 1. Important symbols.

Symbols Descriptions

tfa Symbol/subscript Targeting time.
tv Symbol/subscript Verification time.
K Scalar Number of ensemble members.
M Scalar Number of elements in the state vector.
III Scalar Number of possible deployments of the adaptive observation scheme

EEE(t) Matrix: M×K A set of ensemble forecasts at a given forecast timet.
EEE Matrix: M×K The ensemble mean—all columns are the same ensemble mean vector.

XXXe(t) Matrix: M×K The ensemble perturbations—theK columns are the ensemble perturbations about the ensemble mean
forecasts.

CCC Matrix: K ×K The transformation matrix.
YYY (tfa) Matrix: M×K The ensemble perturbations after assimilating a set of datafrom a possible observation deployment.

Y (a) = Xe(a)C
AAAe(tfa) Matrix: M×M The ensemble-based error covariance at targeting time.
PPPe(tv) Matrix: M×M The ensemble-based forecast error covariance at verification time.
AAAg(tfa) Matrix: M×M The guessed analysis error covariance after assimilating aset of adaptive observations—thei-th diago-

nal element ofAAAg is αi(i = 1, . . . ,M).
SSSi Matrix: M×M The reduction of forecast error due to thei-th adaptive deployment
βββ Scalar The reduction rate of analysis error variance due to assimilation of the targeting observation at location

l. (l = 1, . . . ,M)
℘ Marix: M×M The projection vector over the verification areas.



12 ETS FOR ADAPTIVE OBSERVATIONS VOLUME 33

vation deployment. ET finds a transformation of the ensem-
ble perturbationXXXe(tfa) to YYY (tfa). Such a transformation can
be uniquely determined if the number of ensemble forecasts
is very large and unconstrained (Anderson, 1997). Assume
such a transformation exists, and denote it as a matrixCCC, such
that

YYY (tfa) = XXXe(tfa)CCC . (2)

ThisCCC is aK ×K matrix.
Mathematically, the ensemble-based error covariance at

the ta approximates the truth analysis error covariance of
AAAe(tfa),

AAAe(tfa) ≈
1
K

XXXe(tfa)CCCCCCTXXXe(tfa)
T . (3)

The ensemble-based forecast error covariance attv, PPPe(tv),
can be approximated by

PPPe(tv) =
1
K

XXXe(v)CCCCCCTXXXe(tv)
T . (4)

In reality, the true analysis error covariance ofAAAe(tfa) is
unknown, but an approximation or guess can be estimated
by a given data assimilation system (BT1999). LetAAAg(tfa)
denote the approximation ofAAAe(tfa) and Eq. (3) is approxi-
mately satisfied. Thus, forcing transformed ensemble-based
error covariance to be equal to the guessed adaptive analysis
error covariance,

AAAg(tfa) =
1
K

XXXe(tfa)CCCCCCTXXXe(tfa)
T. (5)

The ET method finds a solution ofCCCCCCT satisfying Eq. (5).
Note that there is really no need to explicitly calculate the
transformation matrixCCC in the ET method butCCCCCCT, a prod-
uct of the transformation. For the sake of simplicity, here we
assume thatAAAg is a full rank matrix (BT1999) and Eq. (5) can
be rewritten as

AAA−1
g (tfa) = K−1AAA−1

g (tfa)XXXe(tfa)CCCCCCTXXXe(tfa)
TAAA−1

g (tfa) . (5′)

Then ifXXXe(tfa) is a full rank (e.g., a set of independent ensem-
ble members), the matrixXXXe(tfa)TAAA−1

g XXXe(tfa) is invertible. By
multiplyingXXXe(tfa)T andXXXe(tfa) from the left and right of Eq.
(5′), the solution of the product of the ET transformation ma-
trix (BT1999) is,

CCCCCCT = K(XXXe(tfa)
TAAA−1

g XXXe(tfa))
−1 . (6)

Equation (6) is an equivalent variation of the Equation (8) in
BT1999. This matrix derivation of the product simplifies the
derivation of BT1999.

2.2. Measurement of adaptive observation sensitivity

Let βββ be a parameter measuring the percentage reduc-
tions in the analysis error after a set of adaptive observations
are assimilated. For example,βββ = 1 means zero percent re-
duction,βββ = 0.5 means 50% reduction etc. LetAAAg(βββ) denote
the best guess of the analysis error covariance with all possi-
ble adaptive observation reduction byβββ , andαi(i = 1, . . . ,M)
denote thei-th diagonal element ofAAAg.

AAAg(βββ ) = diag(α1β1, . . . ,αMβM). (7)

Note thatβββ = (β1,β2, . . .) is a vector of all possible adap-
tive observation locations. Notice that we used analysis error
variance only as BT1999 did. The components ofβββ may or
may not be equal to 1 corresponding to the given adaptive
observation datasets. A value of 1 indicates no error variance
reduction at this location, while a value of<1 indicates an ob-
servation at this location is assimilated. The corresponding
transformation matrixCCC(βββ) can be calculated by (6). One
can use (4) to estimate the forecast error covariancePPPe(tv)
associated with the adaptive observation scheme.

In order to calculate the observation sensitivity for an
adaptive observation scheme, one has to define an output
scalar measuring the sensitivity. A measurement is usually
defined by an energy norm using forecast variance informa-
tion from (4). For example, a total dry energy norm (Ehren-
dorfer et al., 1999) is expressed as,

1
2

1
D

∫

D

∫ 1

0

[

u′2 + v′2+
cp

Tr
T ′2 + RTr

(

pres

prer

′
)2

]

dδdD , (8)

where(u′,v′,T ′,pre′s) are the forecast error variance of Eq.
(4) corresponding to two wind components, temperature, and
surface pressure.cp, andR are specific heat at constant pres-
sure and the gas constant of dry air, respectively (with nu-
merical values of 1005.7 J kg−1 K, and 287.04 J kg−1 K).
The integration extends over the full horizontal domainD
and vertical directionsδ . TheTr and prer are the reference
temperature and pressure. In this study, zonal and merid-
ional horizontal wind, and temperature are used to estimate
the reduction of forecast error variance, since the contribu-
tion from the pressure term is very small, and thus ignored.
The reference temperature is 270 K, the same as in Martin
et al. (1999). In an adaptive observation measurement, it is
common to use this norm to sum of the diagonal elements of
PPPe(tv) corresponding tou,v andT . Using Eqs. (4) and (8),
the sum can be calculated as follows.

• A projection matrix℘ = diag(Pi), i = 1. . .M, where
Pi = 1 if the i-th position is either theu or v state variables,
andPi =

√

cp/Tr if the i-th position is theT state variable,
otherwise the values are zeros.

• The norm of forecast error variances is the sum of the
diagonal elements of

1
K

℘XXXe(tv)CCC(βββ )CCCT(βββ)XXXe(tv)
T℘ .

• The measurement of the adaptive data impact is calcu-
lated as follows. LetZZZ = (ZZZ, . . . ,ZZZM) = XXXe(tv)T℘, whereZZZi

is thei-th column of matrixZZZ. The forecast errorJ is

J[βββ ] =
1
K ∑M

i=1ZZZT
i CCC[βββ ]CCCT[βββ ]ZZZi . (9)

In general, the forecast error variance reduction in ET at
a possible adaptive deployment at a locationl is

Sl = J[βl = 1]− J[1−∆βl] . (10)

The forecast error reduction estimations are obtained by
repeating the above process for all possible adaptive deploy-
ments. In BT1999, it was assumed the analysis error variance
is reduced by 0.5 (∆βl = 0.5).
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3. ETS method

By perturbing all possible adaptive observation data, the
ET method may yield high order information about the sen-
sitivity regions but it could be costly for high-resolutionap-
plications with large ensemble members. In this section, we
consider a first order approximation of the ET method, ET
sensitivity.

3.1. ET based sensitivity

The basic idea of the ETS in this paper is to use the sen-
sitivity (gradient) of forecast error variance over the verifica-
tion region in terms of analysis error variance to determine
data sensitive regions for adaptive observations. It is thefirst
order approximation of Eq. (10), but only a single transfor-
mation matrix computation will be needed, thus improving
computation efficiency when compared to ET. The main ob-
jective is to derive a mathematical formulation of∂J/∂βl in
this paper.

Following Eq. (8), the gradient ofJ to the analysis error
variance reduction ratioβββ is

∇J =

(

∂J
∂β1

, . . . ,
∂J
∂βl

, . . . ,
∂J

∂βM

)T

=

(

1
K ∑M

i=1ZZZT
i

∂CCCCCCT

∂β1
ZZZi, . . . ,

1
K ∑M

i=1ZZZT
i

∂CCCCCCT

∂βl
ZZZi, . . . ,

1
K ∑M

i=1ZZZT
i

∂CCCCCCT

∂βM
ZZZi

)T

. (11a)

The estimated forecast error variance reduction is

dJ =

(

1
K ∑M

i=1ZZZT
i

∂CCCCCCT

∂β1
ZZZi, . . . ,

1
K ∑M

i=1ZZZT
i

∂CCCCCCT

∂βl
ZZZi, . . . ,

1
K ∑M

i=1ZZZT
i

∂CCCCCCT

∂βM
ZZZi

)T

dβββ . (11b)

In the BT1999 implementation,dβββ is set to a constant
with a value of 0.5. The ET method is approximated by ETS
derivatives. In operational applications,∆βββ can be set to dif-
ferent values at different locations that can really take advan-
tage of an analysis error covariance, e.g., a large reduction
(∆βββ ) occurs over a large analysis error variance.

3.2. Derivatives of the transformation matrix C formula-
tion

The main contribution of the ETS method is the deriva-
tion of an analytic gradient formulation of∂CCCCCCT/∂βββ in Eq.
(11a) in terms of the error reduction coefficientβl .

For the ET transformation matrixCCC, let us introduce a

matrix

ΨΨΨ = K(CCCCCCT)−1 = XXXe(tfa)
TAAA−1

g XXXe(tfa) . (12)

and then the product of ET transformation matrixCCCCCCT =
KΨΨΨ−1 as given in Eq. (6). Using an inverse matrix deriva-
tive formulation, the ET transformation product derivative is,

∂CCCCCCT

∂βl
= −KΨΨΨ−1 ∂ΨΨΨ

∂βl
ΨΨΨ−1 , (13)

where,

∂ΨΨΨ
∂βl

= XXXe(tfa)
T ∂AAA−1

g

∂βl
XXXe(tfa)

= −XXXe(tfa)
TAAA−1

g
∂AAAg

∂βl
AAA−1

g XXXe(tfa) . (14)

Thus, ET sensitivity can be obtained using Eqs. (11–14).

∂J
∂βl

= ∑M
i=1ZZZT

i ΨΨΨ−1XXXe(tfa)
TAAA−1

g
∂AAAg

∂βl
AAA−1

g XXXe(tfa)ΨΨΨ−1ZZZi.

(15)
Note the∂AAAg/∂βl is usually a constant matrix. For an ex-
ample of a diagonal matrix ofAAAg = diag(α1β1, . . . ,αMβM)
(BT1999), ∂AAAg/∂βl|β=1 is equal to a diagonal matrix of
diag(0, . . . ,0,αl,0, . . . ,0). For a given guessed analysis er-
ror varianceAAAg, the ET transformation matrixCCCCCCT is deter-
mined. So the ET sensitivity from Eq. (15) can be obtained
after a single computation of a transformation matrix instead
of calculating ensemble transformations (CCC[βββ ]CCCT[βββ ]) for all
possible perturbations in ET using Eq. (10).

3.3. Practical procedure and computation cost

When applying ETS in practice, Eq. (15) is not solved
directly. Here are the implementation procedures:

Step 1: Compute the perturbation fields at thetfa : XXXe(tfa),
andtv : XXXe(tv).

Step 2: Initial the projection matrix℘ and the guessed
analysis error varianceAAAg.

Step 3: Compute the inverse of Eq. (12):
XXXe(tfa)TAAA−1

g XXXe(tfa)
Step 4: Compute the matrixZZZ : ZZZ = XXXe(tv)T℘
Step 5: Obtain all the signals [Eq. (11a)]:∂J/∂βl, l =

1. . .M. Decomposition of theK×K symmetric matrix (CCCCCCT)
takesK3/6 computing operations (Step 3 costs∼ K3/6). In
order to obtain all of the sensitivity, ETS needs to estimatethe
sensitivity at all the elements in the state vector (M), with an
Eq. (11a) cost of∼M2 (Step 5 costs∼M2). So, the computa-
tion count of ETS is aboutM2+K3/6. However, ET needs to
decompose theCCCCCCT matrix at each element in the state vector
[Eqs. (9) and (10) with a cost of∼ M2 + K3/6] to obtain all

Table 2. Estimated computation counts of ET and ETS.

M = 103 M = 105 M = 107

K = 50 K = 100 K = 50 K = 100 K = 50 K = 100

ETS 1×106 1.1×106 1×1010 1×1010 1×1014 1×1014

ET 2.08×1010 1.67×1011 2.08×1014 1.67×1015 2.08×1018 1.67×1019
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the signals (forecast error reduction). The magnitude ofK is
about 102. TheM is 103 in a very coarse resolution. It could
rise to 108 in the high-resolution case. Table 2 shows the esti-
mation of the computation counts of ET and ETS. ETS gains
greatly in efficiency as it only needs to decompose theCCCCCCT

once. WhenM andK are large, the difference is significant.

4. Numerical experiments

In this section, we apply ET and ETS for a hurricane case
and a rainfall case. The first case, Hurricane Irene (2011),
formed on 21 August, and became a hurricane on 22 August
2011. It then passed Exuma and Cat Islands. It made landfall
near Cape Lookout, North Carolina at 1200 UTC on 27 Au-
gust. It continued tracking north northeastward, and moved
over Manhattan, New York on 28 August. The heavy rain-
fall and strong wind caused severe damage (Avila and Stew-
art, 2012). We also apply ET and ETS for a heavy rainfall
case. The heavy precipitation in this case is associated with
a low level vortex that developed over western China during
3-5 August 2013. The hourly accumulate precipitation was
>30 mm over the Beijing areas at 1200 UTC 4 August 2013.

4.1. Data and experiment setup

The European Centre for Medium-range Weather Fore-
casts ensemble forecasts are used in this study, which can be
downloaded from the THORPEX Interactive Grand Global
Ensemble (TIGGE) portal (http://apps.ecmwf.int/datasets/
data/tigge/). The initial time of the ensemble forecasts are
at 0000 UTC 24 August 2011 and 1200 UTC 3 August 2013
for the hurricane and heavy rainfall case, respectively. The
length of prediction time is 72-h with a 6-h interval for the
ensemble prediction outputs. The variables selected for the
ET dry energy norm are the temperature and horizontal wind
components at the 850, 500 and 200 hPa pressure levels. The
diagonal values of guessed analysis error covarianceAAAg used
are the same as ETKF (Majumdar et al., 2002): the guessed
analysis error covariance of wind at the 850, 500 and 200 hPa
pressure levels is 2.72, 3.16 and 4.66 m s−1 separately; the
guessed analysis error vovariance of temperature at the 850,
500 and 200 hPa pressure levels is 1.22, 0.92◦C and 1.82◦C
separately.

For the hurricane case, the verification area (26◦–40◦N,
86◦–70◦W) is marked by the inner rectangle showed in Fig.
1a). The estimation or potential targeting observation area
is the whole domain (10◦–50◦N, 100◦–60◦W). The ensem-
ble mean indicated that the hurricane was moving towards
the east coast of the U.S. at 0000 UTC 27 August, and it is
selected as thetv in this case. There are seventfa for the adap-
tive observations,−0 h,−12 h,−24 h,−36 h,−48 h,−60
h, and−72 h. The negative hourstfa indicate the number of
hours ahead of thetv, correspondingly. For the heavy rainfall
case, the verification area is over the Beijing area (38◦–42◦N,
114◦–120◦E), (Fig. 1b). The estimation potential targeting
area was covered from 100◦E to 124◦E and 34◦N to 50◦N.
The tv is the heavy rainfall time, 1200 UTC 4 August 2013.

Thetfa are set to 6 h and 12 h ahead of thetv. As claimed in
section 3, ETS is more efficient when the number of ensemble
members (K) and the elements in state vectors (MMM) are math-
ematically large. We set up six experiments (Table 3) with

Fig. 1. The domain and verification areas for the (a) Hurricane
Irene (2011) and (b) Beijing rainfall cases. Contours are the en-
semble mean geopotential height at 500 hPa (gpm). The inner
rectangle is the verification areas.

Table 3. Setup of numerical Experiments.

Number of ensemble
Experiment name Horizontal resolution members

K10R2 2◦×2◦ 10
K10R1 1◦×1◦ 10
K30R2 2◦×2◦ 30
K30R1 1◦×1◦ 30
K50R2 2◦×2◦ 50
K50R1 1◦×1◦ 50
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different resolutions and ensemble members to demonstrate
this claim numerically. The number of ensemble members
vary from 10 to 30 to 50. Two resolutions are used, 1◦×1◦

and 2◦ × 2◦. As an example, K30R1 means the number of
ensemble members is 30 and the resolution is 1◦×1◦.

4.2. Summary map
A summary map—the signals of sensitivity identified by

ET or ETS over the whole calculation domain—shows the
sensitive area. ET considered each grid point as a hypothet-
ical adaptive site and identified sensitive areas by perturb-

Fig. 2. The signals (color filled areas) identified by (a, c, e) ETS and(b, d, f) ET at a differentta in
K30R2 for the Hurricane Irene case. Theta are (a, b) 0000 UTC 25 August; (c, d) 0000 UTC 26 Au-
gust, (e, f) 0000 UTC 27 August. The contours are the 500 hPa geopotential height of the ensemble
mean forecast at eachta. The inner rectangle is the verification area. Thetv is 0000 UTC 27 August.



16 ETS FOR ADAPTIVE OBSERVATIONS VOLUME 33

ing the analysis error variance at each observation site. The
signal—the reduction of forecast error covariance associated
with this grid point—can be obtained. The summary map
can be plotted after perturbing the variance and calculating
the reduction over all the grid points.

In contrast to these perturbations of ET, the ETS method
can obtain these values by a single computation of the deriva-
tive, using the same amount of computation as would be
needed for each individual ET perturbation. The derivatives
are shown, as well as the reduction of analysis error variance.
They represent the sensitivity signals over the calculation do-
main.

In order to compare the signals from ETS and ET at dif-
ferenttfa, the signals from Eqs. (10) and (15, 11b) are nor-
malized in this study,

SSS = (SSS−Smin)/(Smax−Smin) , (16)

whereSmax/Smin are the maximum/minimum values over the
whole domain. Thus, the summary maps show the relative
sensitivity of the ET or ETS methods.

4.3. Sensitive areas identified by ET and ETS

The color filled areas of Fig. 2 show the normalized sig-
nals identified by ET and ETS at differenttfa for experiment
K30R2 in the hurricane case. It is seen that ETS and ET give
similar signal patterns and evaluation. As thetfa approached
the tv, the signal (color filled contour areas) approached the
verification areas. The sensitivity areas are distributed around
the hurricane itself, and evolved into the verification areas at
thetv. Figure 3 shows the normalized signals identified from
ET and ETS from K50R2 and K10R1. The results are very
close to K30R2. The signals are both located at the hurri-
cane’s eastern center. It shows that the data sensitive region
identified by ETS is very close to ET even when the results

Fig. 3. The signals (color-filled areas) identified by (a, c) ETS and (b, d) ET in the Hurricane
Irene case: (a, b) are Experiment K50R1; (c, d) experiment K10R2. Theta is 0000 UTC 26
August 2011. The contours are the 500 hPa geopotential height of ensemble mean forecasts.
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(a) Computational cost of ETS and ET
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Fig. 4. (a) Computational cost of different experiments. (b) Relative computation time reduction.

Fig. 5. The signals (color filled areas) identified by (a, c) ETS and (b, d) ET in K30R2 for the Beijing
rainfall case. Thetv is 1200 UTC 4 August 2013. Theta are (a, b) is 0000 UTC 4 August; (c, d)
0600 UTC 4 August. The wind barbs are the horizontal wind component at 850 hPa (units: m s−1).
The contours are the 500 hPa geopotential height of the ensemble mean forecast at eachta. The inner
rectangle is the verification area.
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are from a different number of ensemble members and res-
olutions. Generally, the ETS can obtain the same sensitive
areas as ET without high consumption.

ETS is much faster than ET because ET needs to loop
over all the possible elements in the state vector (M), espe-
cially when the number of ensemble prediction members (K)
is large. Figure 4 shows the computational costs and rela-
tive computation time reduction with ETS and ET using a
different number of ensemble prediction members (K). The
cost is less than 60 seconds with a fine resolution and few
ensemble prediction members for ETS and ET. This is ac-
ceptable for the adaptive observations. However, the com-
putational cost rises to about 1200 seconds with a 1◦ × 1◦

resolution in the horizontal direction, with three vertical lev-
els and 50 ensemble prediction members. ETS only costs
about 200 seconds. Overall, the computation time saved by
ET was 60%–80% (Fig. 4b). If the computational domain is
larger (particularly for a global model) with higher resolution
in the horizontal and vertical directions (here the computa-
tions were conducted in three vertical levels only), the reduc-
tion in computational costs would be much more significant
with ETS compared to ET.

The signals from the heavy rainfall case are shown in Fig.

5. It can be seen that the signals are similar between ET and
ETS. The sensitive areas were distributed around the wind
divergence (850 hPa) and the trough (500 hPa) at 12 hours
ahead of thetv (Figs. 5a and b). The signals are located in the
west of the verification areas at 6 hours ahead of thetv (Figs.
5c and d). Although the sensitive areas from the ET covered
a slightly larger area compared to ETS, signals with maxi-
mum values are located at almost the same position in ET
and ETS. The following section provides more discussion on
the differences between ETS and ET.

4.4. Differences between ET and ETS

In BT1999, the signals are calculated by Eq. (10). ETS
used Eq. (15) to calculate the signals. So ETS is a first or-
der approximation of the ET. This also means the results
from ETS should get closer to those of ET when∆βββ ap-
proaches zero. Here we set up three more numerical experi-
ments using different∆βββ values for ET (∆βββ = 0.2,0.4,0.6).
When∆βββ = 0.2 this means the ET signals are estimated by:
sl = J[βl = 1]− J[βl = 0.8] It is noted that ETS signals [Eqs.
(10a), (14)] do not vary with different∆βββ . Figures 6 and 7
show the ETS and ET signals for the Hurricane Irene (2011)
and Beijing rainfall cases, respectively. The differencesbe-

Fig. 6. The signals for the Hurricane Irene (2011) case. Contours are the signals from (a–c) ET and (d)
ETS. The experiment is K30R2. Theta is 0000 UTC 26 August 2011. Color filled areas show the signal
differences between ETS and ET. The analysis error reduction for ET is (a) 0.2, (b), 0.4 and (c) 0.6.
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Fig. 7. As in Fig. 6 but for the rainfall case. Theta is 0000 UTC 4 August 2013.

tween ETS and ET are presented by the color shading colors.
It is seen that for the smallest∆βββ , the two methods produce
almost the same data sensitive region (Figs. 6 and 7). And
for larger values of∆βββ , the ETS signal distribution is still
close to the ET signal; in particular, the centers of the signals
from the two methods are almost the same even with a large
∆βββ . Overall, for the Hurricane Irene (2011) case, both ET
and ETS identify one sensitive region (Fig. 6); for the rain-
fall case, one region with global maximum signals and two
local regions with local maximum signals (Fig. 7) are iden-
tified. The differences between ET and ETS are acceptable,
since the targeting observation focuses on the sensitive areas
with a maximum (the center of the signals). Generally the
signals from ET and ETS are similar.

5. Conclusion and discussion

Adaptive observations have the potential to improve
weather forecasts. Among existing methods of identifying
observation sensitivity regions, ET is attractive becauseof its
use of analysis error covariance information and its efficiency
compared to other more complex methods. In this study, a
newly proposed ETS approach for adaptive observations is
derived and demonstrated. The ETS method only uses a sin-
gle computation of a transformation matrix to yield a sensitiv-
ity summary map, instead of calculating ensemble transfor-
mations for all possible perturbations, as in the ET method.
Thus, it further increase the computational efficiency. If the
computational domain is larger (even global in the horizontal
direction), with higher resolution in the horizontal and ver-

tical directions, the reduction in computational cost would
be far greater with ETS compared to ET. Numerical experi-
ments with Hurricane Irene (2011) and a heavy rainfall case
in Beijing showed that ETS reduced the computation cost by
60%–80%.

The summary maps from the two cases show that the ETS
method produces a similar data sensitive region as the ET
method, especially for the region with large signal values.
Thus, the new method gains computational efficiency with-
out losing the positive characteristics of the ET method. Itis
noted that, in general, the more realistic the analysis covari-
ance is, the better the targeting region is that can be identified
under the assumption of ET. As the main aim of this paper is
mainly to introduce the ETS method, the best guess of analy-
sis covariance, which can be provided by a data assimilation
system (e.g., ETKF), will be further studied in future work.
Our plan is to implement ETS at the NCEP Environmental
Modeling Center for WSR, and compare it to the existing
ET adaptive observation method in future works. With its
improved efficiency, ETS can be applied to severe weather
events with high spatial resolution and a large number of en-
semble members.
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