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ABSTRACT

The Ensemble Transform (ET) method has been shown to belusgfuoviding guidance for adaptive observation
deployment. It predicts forecast error variance redudiboeach possible deployment using its corresponding toamstion
matrix in an ensemble subspace. In this paper, a new ET-lsasesitivity (ETS) method, which calculates the gradient of
forecast error variance reduction in terms of analysisrerasiance reduction, is proposed to specify regions foisinbs
adaptive observations. ETS is a first order approximatiche@ET; it requires just one calculation of a transformatiaatrix,
increasing computational efficiency (60%—-80% reductiosamputational cost). An explicit mathematical formulatiof
the ETS gradient is derived and described. Both the ET andr&dtBods are applied to the Hurricane Irene (2011) case
and a heavy rainfall case for comparison. The numericaltsesuply that the sensitive areas estimated by the ETS and ET
are similar. However, ETS is much more efficient, partidylarhen the resolution is higher and the number of ensemble
members is larger.

Key words: adaptive observation, high impact weather, ensemblsfvan

Citation: Zhang, Y., Y. F. Xie, H. L. Wang, D. H. Chen, and Z. Toth, 20IBnsemble transform sensitivity method for
adaptive observationgdv. Atmos. <ci., 33(1), 10-20, doi: 10.1007/s00376-015-5031-9.

1. Introduction 1999), the conditional nonlinear optimal perturbation moek

L . .(Mu et al., 2009; Wang et al., 2011), and the adjoint sensi-
For high-impact weather (HIW) events, adaptive mOb'.It{?vity method (Wu et al., 2007b, 2009). In general, an ad-

observation instruments or vehicles can be deployed to im-

rove analysis quality and forecast accuracy. Several fi ?('jm modelis usually required in the above three approache
P ysis q Y Y- n addition, ensemble-based methods, such as the ensemble

campaigns have shown that observations sampled in dyn%rmhsformation (ET) method (Bishop and Toth, 1999), the

ically sensitive areas have positive impacts on numerical : ’
weather prediction (Majumdar et al., 2001: Majumdar et a nsemble transform Kalman filter (ETKF) method (Bishop

2011). For example, 1-2 day forecast skill was increased .tgal" 2001), and ensemble sensitivity (Ancell and Hakim,
assimilating targeted data deployed in the Fronts and Atla 07) are widely used in field campaigns (Chang etal., 2013;

. . . ie etal., 2013).
Storm Track Experiment and the North Pacific Experiments The ensemble-based methods are less demanding com-

(Joly et al., 1997; Joly et al., 1999; Langland et al., 1999a; . . : . )
Langland et al., 1999b). Assimilation of adaptive observg-u'[atlonaIIy and have been extensively employed in praktic

tions significantly reduced typhoon track forecast errmexo applications (Ancell and Hakim, 2007; Ito and Wu, 2013).

the western North Pacific and the Atlantic (Aberson, 200 {/135‘: gqnestgr?]cénsl’ecg;zlc(:jaesft:Z?\sdltzg égr:]euf:t?;?;?eiigjngﬁfj
Wu et al., 2007a; Aberson et al., 2011; Chou et al., 2011). b y P

! : . ) o sive in operational centers where ensemble forecasts are ro
A major challenge is to identify sensitive areas for d

ploying the adaptive observations in the hours or days ah%In ly produced. Among these methods, ET (Bishop and

oth, 1999; hereafter BT1999) provides a practical method
of HIW events. There are several approaches that have bgen . .

. . ; I adaptive observations. It has been used for targetqu dro
developed to estimate sensitive areas, such as the sing

Ulaf L )
vector method (Palmer et al., 1998 Buizza and Montasonde deployments in winter storm reconnaissance (WSR)

rZézunyogh et al., 2000). Later, ETKF was used to identify
the sensitive region in WSR (Szunyogh et al., 2002). The
* Corresponding author: Yuanfu XIE dropsonde data collected over these sensitive areas iegrov

E-mail: yuanfu.xie@noaa.gov the weather forecasts over the continental United Statés an
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Alaska (Szunyogh et al., 2000). However, the impact of drop- This paper is organized as follows. In section 2, we re-

sonde data may be limited in global forecasts (Hamill et aliew the ET method. In section 3, we describe how ETS

2001), and high-resolution observation datasets are stegtje calculates the sensitivity with a single transformatiortnxa

for HIW (Bauer et al., 2011, Berger et al., 2011). calculation. We compare sensitive regions using ET and ETS
It is noted that ET is still expensive for high-resolutiotior a hurricane case and a heavy rainfall case in section 4.

applications or those applications with large numbers ef eBonclusions and discussions are presented in section 5.

semble members. ET has been used at relatively coarse res-

olutions and a few vertical levels, e.g., usually threeigatt )

levels at the National Centers for Environmental Predicti?. Review of the ET method

(NCEP), and a relatively small number of ensemble mem- it \ve review the ET method (BT1999), with some ma-
bers (30-60). As resolutions increase for HIW applicationg;, stations used to simplify the discussion (see Table 1)

the computational cost grows exponentially. This is be€augy;s review in matrix forms helps illustrate the ETS deriva-
ET, as well as the ETKF, has been implemented to exhayst,

all possible observation deployments. For example, it cur-

rently estimates sensitive areas by adding an observatior2d. Forecast error estimation using a transformation ma-
every analysis grid location, horizontally and verticaiynd trix

calculating the ensemble transformation and the reducfion Let E(t) denote a set of ensemble forecasts at a given
forecast variance for each observation. Because of thefus?o?ecast timet. This E(t) is a matrix withM rows andK

a matrix decomposition of ensemble covariance, the COMPUSIumns, wherd/ is the number of gridded values of all the

tational cost also increases as a cubic function of the numRe,o. \ariables anK is the number of ensemble members
of ensemble members. For high-resolution adaptive obserxﬁ)]en the ensemble perturbation matxis also anM x K
tion applications, or those with large numbers of ensem% N

members, the computational cost could be significant. ETKF i,
can also be computationally expensive, the same as the ET
method (Bishop et al., 2001). In order to further improvehereE is the ensemble mean and alsoMarx K matrix, but
these methods for fine scale HIW applications, efficiency @l columns are the same ensemble mean vector.
an important factor to investigate. Here is the adaptive observation strategy in ET: Use a set
A new ET-based sensitivity (ETS) method is proposed of ensemble forecasE(t) to determine which possible de-
this paper to specify sensitive regions for adaptive olesenployments of observational resources at a future anaiysés t
tions. The proposed method calculates the sensitivityd{grats, will minimize the expected prediction error of forecasts fo
ent) of forecast error variance reduction in terms of analyshe verification timey, which are initialized with, inter alia,
error variance reduction. The newly proposed ETS methodle supplemental data takentgt(BT1999).
the first order approximation of the original perturbatioh E  Let X¢(tta) denote the perturbationstaf, Xe(ty) the per-
method and reduces computational cost because only a singteations at thé,, andY (t;;) the ensemble perturbations af-
transformation matrix calculation is required. ter assimilating a set of data from a possible adaptive ebser

Xe(t) =E(t) - E, 1)

Table 1. Important symbols.

Symbols Descriptions
tea Symbol/subscript  Targeting time.
ty Symbol/subscript  Verification time.
K Scalar Number of ensemble members.
M Scalar Number of elements in the state vector.
| Scalar Number of possible deployments of the adaptive vatsen scheme
E(t) Matrix: M x K A set of ensemble forecasts at a given forecast time
E Matrix: M x K The ensemble mean—all columns are the same ensemble méan vec
Xe(t) Matrix: M x K The ensemble perturbations—tKecolumns are the ensemble perturbations about the enserneble m
forecasts.
Cc Matrix: K x K The transformation matrix.
Y (tra) Matrix: M x K The ensemble perturbations after assimilating a set of fata a possible observation deployment.
Y(a) = Xe(a)C
Ac(tra) Matrix: M x M The ensemble-based error covariance at targeting time.
Pe(ty Matrix: M x M The ensemble-based forecast error covariance at verfictine.
Ay(tsa) Matrix: M x M The guessed analysis error covariance after assimilatieg af adaptive observations—théh diago-
nal element oAy is ai(i=1,...,M).
S Matrix: M x M The reduction of forecast error due to ikt adaptive deployment
B Scalar The reduction rate of analysis error variance dusdirélation of the targeting observation at location
I.(=1,...,M)
o Marix: M x M The projection vector over the verification areas.
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vation deployment. ET finds a transformation of the ensemote thatf = (f1,3,...) is a vector of all possible adap-
ble perturbatiorXe(tra) to Y (t;a). Such a transformation cantive observation locations. Notice that we used analysarer
be uniquely determined if the number of ensemble forecastriance only as BT1999 did. The componentgahay or

is very large and unconstrained (Anderson, 1997). Assummay not be equal to 1 corresponding to the given adaptive
such a transformation exists, and denote it as a m@frduch observation datasets. A value of 1 indicates no error veeian

that reduction at this location, while a value &fl indicates an ob-
Y (ta) = Xe(tra)C . (2) servation at this location is assimilated. The correspumdi
ThisC is aK x K matrix. transformation matriXxC(f) can be calculated by (6). One

Mathematically, the ensemble-based error covarianceCaf! USe (4) to estimate the forecast error covaridh(s )

the t, approximates the truth analysis error covariance gpsociated with the adaptive observation scheme.
Aq(tra) In order to calculate the observation sensitivity for an

1 adaptive observation scheme, one has to define an output
Ac(tra) ~ Rxe(tfa)CCTxe(tfa)T : ) scalar measuring the sensitivity. A measurement is usually
defined by an energy norm using forecast variance informa-
tion from (4). For example, a total dry energy norm (Ehren-
dorfer et al., 1999) is expressed as,

1
Pe(ty) = 1 Xe(V)JCCXe(ty)" . 4) % % / /1
D.JO

The ensemble-based forecast error covariande, 8.(ty),
can be approximated by

2
u'2+\/2+%T'2+ RT, <z%f’) dsdD , (8)
r

In reality, the true analysis error covarianceAts,) is
unknown, but an approximation or guess can be estimatgHere (u/,v, T’,pré,) are the forecast error variance of Eq.
by a given data assimilation system (BT1999). Bgtta) (4) corresponding to two wind components, temperature, and
denote the approximation @(r) and Eq. (3) is approxi- surface pressure,, andR are specific heat at constant pres-
mately satisfied. Thus, forcing transformed ensembleeasgire and the gas constant of dry air, respectively (with nu-
error covariance to be equal to the guessed adaptive analygérical values of 1005.7 J k§ K, and 287.04 J kg* K).

error covariance, The integration extends over the full horizontal domBin
1 - - and vertical direction®. TheT, and pre are the reference
Ag(tra) = - Xe(lra)CC Xe(tra) - (5) temperature and pressure. In this study, zonal and merid-

i ) o ional horizontal wind, and temperature are used to estimate
The ET method finds a solution @C" satisfying Eq. (5). the reduction of forecast error variance, since the camtrib

Note that there is really no need to explicitly $a|cu|ate thfon from the pressure term is very small, and thus ignored.
transformation matriC in the ET method buEC', a prod- The reference temperature is 270 K, the same as in Martin
uct of the transformation. For the sake of simplicity, hee vt 51 (1999). In an adaptive observation measurement, it is
assume thakyg is a full rank matrix (BT1999) and Eq. (5) cancommon to use this norm to sum of the diagonal elements of
be rewritten as P(t,) corresponding tai,v andT. Using Egs. (4) and (8),

—1 _k-1p-1 T Ta-1 /v the sum can be calculated as follows.

Ay~ (tra) = K™ "Ag~(tra) Xe(tra)CC ' Xe(tra) ' Ag~(tra) - (5') e A projection matrix(] = diagR),i = 1...M, where
ThenifXe(tra) is afullrank (e.g., a set ofindependentensenp — 1 if the i-th position is either the or v state variables,
ble members), the matrKe(tia) "Ag *Xe(tra) is invertible. By andp = \/Cp/Tr if the i-th position is theT state variable,
multiplying Xe(ta) " andXe(ts) from the left and right of Eq. otherwise the values are zeros.

(5), the solution of the product of the ET transformation ma- e The norm of forecast error variances is the sum of the
trix (BT1999) is, diagonal elements of

CCT = K (Xe(tra) "Ag Xe(tra) - (6) ZOX(6)C(B)CT (B)Xe(t) DT

Equation (6) is an equivalent variation of the Equation (8) i, The measurement of the adaptive data impact is calcu-
BT1999. This matrix derivation of the product simplifies the,..4 a5 follows. LeZ — (Z,....2Zw) = Xe(t,)TO, whereZ;

derivation of BT1999. is thei-th column of matrixZ. The forecast erra is

2.2. Measurement of adaptive observation sensitivity JB] = RZi:1ZiTC[B]CT B)Z: . 9)

Let B be a parameter measuring the percentage reduc- ) o
tions in the analysis error after a set of adaptive obsemati !N 9eneral, the forecast error variance reduction in ET at
are assimilated. For examp|B,= 1 means zero percent re-2 POSsible adaptive deployment at a locaties
duction,8 = 0.5 means 50% reduction etc._ IA@(B)_deno_te S=JB=1-J1-48]. (10)
the best guess of the analysis error covariance with alliposs
ble adaptive observation reduction Byanda;i(i =1,...,M)
denote the-th diagonal element dA,.

The forecast error reduction estimations are obtained by
repeating the above process for all possible adaptive geplo
ments. In BT1999, it was assumed the analysis error variance

Ag(B) =diaga1fi,...,amPm). (7) isreduced by 0.843 = 0.5).
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3. ETSmethod matrix

By perturbing all possible adaptive observation data, the W =K(CCT) ' = Xe(tra) "Ag Xe(tra) - (12)
ET method may yield high order information about the sen- T
sitivity regions but it could be costly for high-resolutiap- and then the product of ET transformation mat@c

plications with large ensemble members. In this section, \kfeLlJ as given in Eq. (6). Using an inverse matrix deriva-
consider a first order approximation of the ET method, Etive formulation, the ET transformation product derivatis,

sensitivit T
g 9€C _ kyp19%¥y- b (13)
3.1. ET based sensitivity 9B 9B
The basic idea of the ETS in this paper is to use the sembere,
sitivity (gradient) of forecast error variance over theifiea- oW L0 Aal
tion region in terms of analysis error variance to determine FT = Xe(tra)" F ——Xe(tia)
data sensitive regions for adaptive observations. It isitee B B
order approximation of Eq. (10), but only a single transfor- = —Xe(ta) Ag Ange (tra) - (14)

mation matrix computation will be needed, thus improving

computation efficiency when compared to ET. The main ob- Thys, ET sensitivity can be obtalned using Egs. (11-14).

jective is to derive a mathematical formulation@f/d in 3

this paper. ZTW X (1) 198 p 1y ta) W12
Following Eq. (8), the gradient af to the analysis error B Z' ! ella) Ay B Ag Xelte) '

variance reduction ratif is . ) (15)
Note thedAg/d[ is usually a constant matrix. For an ex-
23 23 93 ample of a diagonal matrix oy = diag(a1f1,...,amPBwm)
0J= (0[3 B 0BM> (BT1999), 0Ay/dB |g-1 is equal to a diagonal matrix of
diag0,...,0,01,0,...,0). For a given guessed analysis er-
_ ( 1 Z ZT ‘9CC Z y At ‘9CC N ror variancefy, the ET transformation matri@C' is deter-
K&= TK 4=t mined. So the ET sensitivity from Eq. (15) can be obtained
T 0CCT after a single computation of a transformation matrix iagte
K Z 14 o 9B ) (11a) of calculating ensemble transformatio@{8]C"[B]) for all

possible perturbations in ET using Eqg. (10).

The estimated forecast error variance reduction is . .
3.3. Practical procedure and computation cost

4 — ( Z z19¢C OCCT z TaCCT 3 When applying ETS in practice, Eq. (15) is not solved
i=1 'K &i=1 Z ’ directly. Here are the implementation procedures:
T(?CCT Step 1: Compute the perturbation fields atttheXe(tta),
IR ) dp . (11b) andt, - Xe(t, .

Step 2: Initial the projection matrik/ and the guessed

In the BT1999 implementatiordf is set to a constant @nalysis error variancly.
with a value of 0.5. The ET method is approximated by ETS Step 3 Compute the inverse of Eq. (12):
derivatives. In operational application§3 can be set to dif- Xe(tta) Ay Xe(tra)
ferent values at different locations that can really takeaae Step 4: Compute the matrk: Z = Xe(t,) "0
tage of an analysis error covariance, e.g., a large reductio Step 5: Obtain all the signals [Eq. (11a§J/d8,| =
(AB) occurs over a large analysis error variance. 1...M. Decomposition of th& x K symmetric matrixCC)
takesk /6 computing operations (Step 3 cost3/6). In
3.2. Derivatives of the transformation matrix C formula- order to obtain all of the sensitivity, ETS needs to estintiate
tion sensitivity at all the elements in the state vecid),(with an
The main contribution of the ETS method is the derivéEg. (11a) cost of- M? (Step 5 costs- M?). So, the computa-
tion of an analytic gradient formulation 9CCT /3B in Eq. tion count of ETS is abow1? + K3/6. However, ET needs to
(11a) in terms of the error reduction coefficigt decompose thECT matrix at each element in the state vector

For the ET transformation matri€, let us introduce a [Egs. (9) and (10) with a cost ef M2+ K3/6] to obtain all

Table 2. Estimated computation counts of ET and ETS.

M =10° M=10° M = 107
K = 50 K = 100 K =50 K = 100 K =50 K = 100

ETS 1x 108 1.1x10 1x 1010 1x 1010 1x 104 1x 104
ET 2.08x 1010 1.67x 101 2.08x 10M 1.67x 101° 2.08x 10!8 1.67x 1019
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the signals (forecast error reduction). The magnitudé &f Thets, are set to 6 h and 12 h ahead of theAs claimed in
about 16. TheM is 1C° in a very coarse resolution. It couldsection 3, ETS is more efficient when the number of ensemble
rise to 1@ in the high-resolution case. Table 2 shows the esthembersK) and the elements in state vectok)(are math-
mation of the computation counts of ET and ETS. ETS gaiesnatically large. We set up six experiments (Table 3) with
greatly in efficiency as it only needs to decompose@g2

once. WherM andK are large, the difference is significant. ~ SO0N

4. Numerical experiments

In this section, we apply ET and ETS for a hurricane case N
and a rainfall case. The first case, Hurricane Irene (2011),
formed on 21 August, and became a hurricane on 22 August
2011. It then passed Exuma and Cat Islands. It made landfall ;
near Cape Lookout, North Carolina at 1200 UTC on 27 Au- 4N 1—
gust. It continued tracking north northeastward, and moved
over Manhattan, New York on 28 August. The heavy rain-
fall and strong wind caused severe damage (Avila and Stew- P
art, 2012). We also apply ET and ETS for a heavy rainfall 35N \< ]
case. The heavy precipitation in this case is associatdd wit  1pog
a low level vortex that developed over western China during
3-5 August 2013. The hourly accumulate precipitation was >N
>30 mm over the Beijing areas at 1200 UTC 4 August 2013.

105E 110E

4.1. Data and experiment setup N

The European Centre for Medium-range Weather Fore-
casts ensemble forecasts are used in this study, which can b&%"
downloaded from the THORPEX Interactive Grand Global
Ensemble (TIGGE) portal (http://apps.ecmwf.int/dateset 35N
data/tigge/). The initial time of the ensemble forecasés ar
at 0000 UTC 24 August 2011 and 1200 UTC 3 August 2013
for the hurricane and heavy rainfall case, respectivelye Th
length of prediction time is 72-h with a 6-h interval for the
ensemble prediction outputs. The variables selected #or th 25n 4
ET dry energy norm are the temperature and horizontal wind
components at the 850, 500 and 200 hPa pressure levels. The
diagonal values of guessed analysis error covaridgaesed
are the same as ETKF (Majumdar et al., 2002): the guessed
analysis error covariance of wind at the 850, 500 and 200 hPa15N
pressure levels is 2.72, 3.16 and 4.66 ™ separately; the
guessed analysis error vovariance of temperature at the 850
500 and 200 hPa pressure levels is 1.22, @92nd 1.82C 100W 95W 90W 85W BOW 75W 70W 65W  60W

A L— ~— 1]

7

separately.
For the hurricane case, the verification area®{26°N, Fig. 1. The domain and verification areas for the (a) Hurricane

Irene (2011) and (b) Beijing rainfall cases. Contours aeecti-
semble mean geopotential height at 500 hPa (gpm). The inner
rectangle is the verification areas.

86°—70°W) is marked by the inner rectangle showed in Fig.
la). The estimation or potential targeting observatiora are
is the whole domain (18-5C°N, 100-60°W). The ensem-
ble mean indicated that the hurricane was moving towarglgs|e 3. Setup of numerical Experiments.
the east coast of the U.S. at 0000 UTC 27 August, and itis

selected as thig in this case. There are sevigyfor the adap- Number of ensemble
tive observations~0 h, —12 h,—24 h, —36 h, —48 h, —60 Experiment name  Horizontal resolution members

h, and—72 h. The negative houtg indicate the number of K10R2 P 5 20 10

hours ahead of thig, correspondingly. For the heavy rainfall K10R1 rx1° 10

case, the verification area is over the Beijing ared3& N, K30R2 2x2° 30
114-120E), (Fig. 1b). The estimation potential targeting ~ K30R1 Px1° 30

area was covered from 1t to 124E and 34N to 5C°N. K50R2 Zx2 50

Thety is the heavy rainfall time, 1200 UTC 4 August 2013. KSOR1 v 50
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different resolutions and ensemble members to demonstrat2  Summary map

this claim numerically. The number of ensemble members A summary map—the signals of sensitivity identified by
vary from 10 to 30 to 50. Two resolutions are usetdx1l° ET or ETS over the whole calculation domain—shows the
and 2 x 2°. As an example, K30R1 means the number &knsitive area. ET considered each grid point as a hypothet-

ensemble members is 30 and the resolutior? is 1°. ical adaptive site and identified sensitive areas by perturb
ETS
50N 50N
40N A 40N A
30N A 30N A
20N 1 20N A
1ON T T T 1ON T T T =
700w 90w 80w 70w  60W 100W 90W  BOW  70W  60OW
50N 50N
0.9
40N A 40N - 0.8
0.7
30N A 30N A
0.5
20N - 20N A 0.3
10N ; ; ; 10N \ g i W
700w 90w  80OwW 70w  60W 100W 90W  BOW  70W  6OW
50N <1 50N =
5750~ 5750~
5800 5800
= N
= =
40N A 40N A
30N n 4<<580%0 30N 7 5800 (
5850 5850
v / Y f
8 5900 5 5900
20N 1 %5_\% [ 20N ﬁ\\?& .

OW 90W 80W 70W 60W 100W 90W 8OW  7OW  60W

Fig. 2. The signals (color filled areas) identified by (a, ¢, €) ETS @mdl, f) ET at a different, in
K30R2 for the Hurricane Irene case. Theare (a, b) 0000 UTC 25 August; (c, d) 0000 UTC 26 Au-
gust, (e, f) 0000 UTC 27 August. The contours are the 500 hBpagential height of the ensemble
mean forecast at eath The inner rectangle is the verification area. This 0000 UTC 27 August.
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ing the analysis error variance at each observation site. WhereSyax/Snin are the maximum/minimum values over the
signal—the reduction of forecast error covariance assatiawhole domain. Thus, the summary maps show the relative
with this grid point—can be obtained. The summary magensitivity of the ET or ETS methods.
can be plotted after perturbing the variance and calcgatin N ] -
the reduction over all the grid points. 4.3. Sensitive areas identified by ET and ETS

In contrast to these perturbations of ET, the ETS method The color filled areas of Fig. 2 show the normalized sig-
can obtain these values by a single computation of the deriwvals identified by ET and ETS at differet for experiment
tive, using the same amount of computation as would B&8O0R2 in the hurricane case. Itis seen that ETS and ET give
needed for each individual ET perturbation. The derivativeimilar signal patterns and evaluation. As theapproached
are shown, as well as the reduction of analysis error vagianthe t,, the signal (color filled contour areas) approached the
They represent the sensitivity signals over the calculedi@ verification areas. The sensitivity areas are distributedrad
main. the hurricane itself, and evolved into the verification arat

In order to compare the signals from ETS and ET at difhet,. Figure 3 shows the normalized signals identified from
ferentts,, the signals from Egs. (10) and (15, 11b) are noET and ETS from K50R2 and K10R1. The results are very

malized in this study, close to K30R2. The signals are both located at the hurri-
_ cane’s eastern center. It shows that the data sensitiverregi
S= (S~ Snin)/(Smax— Sin) - (16) identified by ETS is very close to ET even when the results
50N ETS 50N ET
5750
=

5800,
40N . / 40N
Séjij?k

5850 <
30N - 7{& @\ 30N -
5500 (

20N A 20N -
10N T T 10N
10 60W 10
SON SON
40N - 40N -
30N - 30N -
20N A 20N -

ON 1 1 1 1ON 1 1 1
100w 90w 80W 70W 60W 100W 90W 8OW  70W  60W

|
03 05 07 08 09

Fig. 3. The signals (color-filled areas) identified by (a, c) ETS dmdd) ET in the Hurricane
Irene case: (a, b) are Experiment K50R1; (c, d) experimer@Rl Thet, is 0000 UTC 26
August 2011. The contours are the 500 hPa geopotential thefigihsemble mean forecasts.
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(a) Computational cost of ETS and ET

= ] B ETS (rainfall)
O - B ET (rainfall)
| @ ETS (irene)
- B ET (irene)
o
o 4
©
: J
o
N
o N — | __J
K=10 K=30 K=50 K=10 K=30 K=50
Resolution =2° Resolution = 1°
Number of ensemble member and resolutions
(b) Computational cost reduction of (ETS-ET)/ET
S_
= W irene
8 _| @ rainfall
o . . I I l
3 -
o
S
o
N
o
K=10 K =30 K=50 K=10 K=30 K=50
Resolution =2° Resolution =1°

Number of ensemble member and resolutions

Fig. 4. (2) Computational cost of different experiments. (b) Reéatomputation time reduction.

40N 0.9
0.8
35N 0.7
105E 100E 105  110E 05

50N - 50N :
0.3

10

35N
100E 105E 110E 100E 105E 110E 115E 120E

Fig. 5. The signals (color filled areas) identified by (a, ¢) ETS andijlET in K30R2 for the Beijing
rainfall case. They is 1200 UTC 4 August 2013. Thg are (a, b) is 0000 UTC 4 August; (c, d)
0600 UTC 4 August. The wind barbs are the horizontal wind cmmept at 850 hPa (units: nT¥).
The contours are the 500 hPa geopotential height of the dateanean forecast at eath The inner
rectangle is the verification area.
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are from a different number of ensemble members and ré&s-It can be seen that the signals are similar between ET and
olutions. Generally, the ETS can obtain the same sensitz&S. The sensitive areas were distributed around the wind
areas as ET without high consumption. divergence (850 hPa) and the trough (500 hPa) at 12 hours
ETS is much faster than ET because ET needs to loapead of thé¢, (Figs. 5a and b). The signals are located in the
over all the possible elements in the state vechd), espe- west of the verification areas at 6 hours ahead of tfiEigs.
cially when the number of ensemble prediction membié)s (5¢ and d). Although the sensitive areas from the ET covered
is large. Figure 4 shows the computational costs and retaslightly larger area compared to ETS, signals with maxi-
tive computation time reduction with ETS and ET using mmum values are located at almost the same position in ET
different number of ensemble prediction membéts (The and ETS. The following section provides more discussion on
cost is less than 60 seconds with a fine resolution and féwe differences between ETS and ET.
ensemble prediction members for ETS and ET. This is ac- _
ceptable for the adaptive observations. However, the cofh? Differences between ET and ETS
putational cost rises to about 1200 seconds with & 1° In BT1999, the signals are calculated by Eq. (10). ETS
resolution in the horizontal direction, with three vertiley- used Eq. (15) to calculate the signals. So ETS is a first or-
els and 50 ensemble prediction members. ETS only coder approximation of the ET. This also means the results
about 200 seconds. Overall, the computation time savedfogm ETS should get closer to those of ET wh&f ap-
ET was 60%—-80% (Fig. 4b). If the computational domain isroaches zero. Here we set up three more numerical experi-
larger (particularly for a global model) with higher restidn ~ ments using differerAB values for ET AB = 0.2,0.4,0.6).
in the horizontal and vertical directions (here the comput#&henAB = 0.2 this means the ET signals are estimated by:
tions were conducted in three vertical levels only), thaeied s = J[8 = 1] — J[B = 0.8] It is noted that ETS signals [Egs.
tion in computational costs would be much more significa(itOa), (14)] do not vary with differedB. Figures 6 and 7
with ETS compared to ET. show the ETS and ET signals for the Hurricane Irene (2011)
The signals from the heavy rainfall case are shown in Fignd Beijing rainfall cases, respectively. The differenlses

(a) delta beta=0.2 (b) delta beta=0.4
50N ~ 50N ~
£ ) £ =

40N -

40N -
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I0.1
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10N T T T 10N T T T
100W 90W 80W 7O0W 60W 100W 90W 80W 70W 60W 0.025
(c) delta beta=0.6 (d) signals from ETS
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Fig. 6. The signals for the Hurricane Irene (2011) case. Contowrthersignals from (a—c) ET and (d)
ETS. The experiment is K30R2. Thgis 0000 UTC 26 August 2011. Color filled areas show the signal
differences between ETS and ET. The analysis error redufioET is (a) 0.2, (b), 0.4 and (c) 0.6.



JANUARY 2016 ZHANG ET AL. 19

(a) delta_beta=0.2 (b) delta_beta=0.4
50N

50N

45N

45N

40N 40N

100E 105  110E 115  120E 100E 105  110E 115  120E 0.05

(c) delta_beta=0.6 (d) signals from ETS ~0.05

I—O.1

45N 45N

40N

40N

35N 35N
100E 105  110E 115  120E 100E 105  110E 115  120E

Fig. 7. As in Fig. 6 but for the rainfall case. Thgis 0000 UTC 4 August 2013.

tween ETS and ET are presented by the color shading coldisal directions, the reduction in computational cost vebul
It is seen that for the smalleA3, the two methods producebe far greater with ETS compared to ET. Numerical experi-
almost the same data sensitive region (Figs. 6 and 7). Ameénts with Hurricane Irene (2011) and a heavy rainfall case
for larger values ofAB, the ETS signal distribution is still in Beijing showed that ETS reduced the computation cost by
close to the ET signal; in particular, the centers of thealgn 60%—80%.
from the two methods are almost the same even with a large The summary maps from the two cases show that the ETS
AB. Overall, for the Hurricane Irene (2011) case, both Emethod produces a similar data sensitive region as the ET
and ETS identify one sensitive region (Fig. 6); for the raimnethod, especially for the region with large signal values.
fall case, one region with global maximum signals and twbhus, the new method gains computational efficiency with-
local regions with local maximum signals (Fig. 7) are iderout losing the positive characteristics of the ET methodk It
tified. The differences between ET and ETS are acceptabieted that, in general, the more realistic the analysisrcova
since the targeting observation focuses on the sensitasarance is, the better the targeting region is that can be fikhti
with a maximum (the center of the signals). Generally thender the assumption of ET. As the main aim of this paper is
signals from ET and ETS are similar. mainly to introduce the ETS method, the best guess of analy-
sis covariance, which can be provided by a data assimilation
system (e.g., ETKF), will be further studied in future work.
5. Conclusion and discussion Our plan is to implement ETS at the NCEP Environmental
) ) ) _ Modeling Center for WSR, and compare it to the existing
Adaptive observations have the potential to improveT adaptive observation method in future works. With its
weather forecasts. Among existing methods of 'dent'f)’"]%proved efficiency, ETS can be applied to severe weather

observation sensitivity regions, ET is attractive becai$ts  eyents with high spatial resolution and a large number of en-
use of analysis error covariance information and its efficye semple members.

compared to other more complex methods. In this study, a

newly proposed ETS approach for adaptive observations is acknowledgements. The authors thank John C. OSBORN at
derived and demonstrated. The ETS method only uses a SIDAA Earth System Research Laboratory for his English eidito
gle computation of a transformation matrix to yield a sewsit support on this manuscript. The authors would like to exothsir
ity summary map, instead of calculating ensemble transf@ppreciation to the two anonymous reviewers for their cortenen
mations for all possible perturbations, as in the ET methdée earlier version of the manuscript, which helped imprtreepre-
Thus, it further increase the computational efficiencyh# t Sentation of this paper. This work was jointly sponsoredrigyKey

computational domain is larger (even global in the horiabnt” rc(;jeDct oflthe Chine‘%eRN?)tional P,r’o%rams’ilor leg‘l‘é%rgins'ﬁﬁ*eh
direction), with higher resolution in the horizontal and-ve 2"d Development ( rogram’, Grant No. 08), a



20 ETS FOR ADAPTIVE OBSERVATIONS VOLUME 33

the Key Project of the Chinese National Science & Technoiy the fronts and Atlantic Storm-Track EXperiment (FASTEX)
lar Program during the Twelfth Five-year Plan Period (Grslot project.Quart. J. Roy. Meteor. Soc., 125, 3131-3163.
2012BAC22B01). Langland, R. H., R. Gelaro, G. D. Rohaly, and M. A. Shapiro,

1999a: Targeted observations in FASTEX: Adjoint-based tar
geting procedures and data impact experiments in IOP17 and
REFERENCES IOP18.Quart. J. Roy. Meteor. Soc., 125, 3241-3270.

Aberson, S. D., 2003: Targeted observations to improveasper Langlan.d, R. H., and Coauthors, 1999b: The .North Racific ex-
tional tropical cyclone track forecast guidanddon. Wea. periment (NORPEX-98): Targeted observations for improved
Rev. 131 1613-1628 North American weather forecas®ull. Amer. Meteor. Soc.,

Aberson, S. D., S. J. Majumdar, C. A. Reynolds, and B. J. EtherlvI ) 80,(113683_\]138(;:4.H Bishoo. B. J. Eth LS W2
ton, 2011: An observing system experiment for tropical cy- ajumdar, S. J., C. H. Bishop, B. J. Etherton, . Szunyogh, &n

clone targeting techniques using the global forecast syste Toth, 2001_: an an ensemble traqsform Kalman filter predict
Mon. Wea. Rev., 139, 895-907. the redugtlon in forecast-error variance produced by tathe
Ancell, B., and G. J. Hakim, 2007: Comparing adjoint- and observations®uart. J. Roy. Meteor. Soc., 127, 2803-2820.

ensemble-sensitivity analysis with applications to oteston Maju::jdar,_s. J, C'I.H' Bis:‘?% B.J. Etr;)(larton, a?d Z l‘(l’o}h,ZZOf(_)I
targetingMon. Wea. Rev, 135, 4117-4134. aptive sampling with the ensemble transform Kalman fil-

Anderson, J. L., 1997: The impact of dynamical constraintthe ter. Part II: Field program implementatiohon. Wea. Rev.,
selection of initial conditions for ensemble predictiohsw ) 130, 1356-1369. .
order perfect model resultslon. Wea. Rev., 125, 2969—-2983. Majumdgr, S. ,J" and Qoauthors, 2011 Tqrgeted obser\?atlon

Avila, L. A., and S. Stewart, 2012: Atlantic hurricanes 202l for improving numerical weather prediction: An overview.

about Irene and Led&\eatherwise, 65, 34—-41. WWRP/T'}'}ORPEE No. 15 . hod for identi
Bauer, P., R. Buizza, C. Cardinali, and J.-N. Thepaut, 204t Mu, M., F. F. Zhou, and H. L. Wang, 2009: A method for identi-

pact of singular vector based satellite data thinning on NWP fying the sen§|t!ve areas in targeted .observatl.ons foridep
Quart. J. Roy. Meteor. Soc., 137, 286-302 cyclone prediction: Conditional nonlinear optimal pebia
Berger, H., R. Langland, C. S. Velden, C. A. Reynolds, and P, tion. Mon. Wea. Rev, 137, 1623_}639' .
Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1%8:

M. Pauley, 2011: Impact of enhanced satellite-derived at- | ; d adaoti b .
mospheric motion vector observations on numerical trdpica g: a;g/eg;osrségetncs, and adaptive observatidntmos.

cyclone track forecasts in the western North Pacific durin

TPARC/TCS-08.. Appl. Meteor. Climatol., 50, 2309—2318. gSZ”“y_ogh’ ., Z. Toth, R. E. Morss, S. J. Majumdar, and C. H.
Bishop, C. H., and Z. Toth, 1999: Ensemble transformatiath an Bishop, 2000: The effect of targeted dropsonde obsention

adaptive observationd. Atmos. ci., 56, 1748—1765. during the 1999 winter storm reconnaissance progfdon.

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adapt Wea. Rev,, 128, 3520-3537.

sampling with the ensemble transform Kalman filter. Part l:Szunyogh, ., Z. Toth, A. V. Zimin, S. J. Majumdar, and A. Pers

Theoretical aspectdlon. Wea. Rev., 129, 420—436. son, 2002: Eropagation of the effect of targeted obsenmsitio
Buizza, R., and A. Montani, 1999: Targeted observationagusi The 2000 winter storm reconnaissance progriton. Wea.
singular vectorsl. Atmos. Sci., 56, 2965-2985. Rev.,130, 1144-1165. I
Chang, E. K. M., M. H. Zheng, and K. Raeder, 2013: Medium-Wang: ,H' L., M. Mu, X. Y Huang, 201%: Appllcatlpn of con-
range ensemble sensitivity analysis of two extreme pacific e d'""”"_"' non-lmear_ optlm_al perturbations to tropical ke .
tratropical cycloneson. Wea. Rev, 141, 211-231. adaptive observation using the weather research foragasti

Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann (WRF) model.‘kl;ellusA, 63, ,939_957' b
F. Harnisch, and T. Nakazawa, 2011: The impact of drop-Wu’ C--C., K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng] an

windsonde observations on typhoon track forecasts in DOT- T. Nakazawa, 2007a: The impact of dropwindso_nde data on
STAR and T-PARCMon. Wea. Rev., 139, 1728-1743. typhoon track forecasts in DOTSTARa. Forecasting, 22,

Ehrendorfer, M., R. M. Errico, and K. D. Raeder, 1999: Siagul Wi 1C:15C7:_1J17S. ch P-H. Li d K-H. Ch 2007b: T
vector perturbation growth in a primitive equation modethwi U Yoo oM SReN, oL N, and 1. Lhou, - ar
moist physicsJ. Atmos. Sci., 56, 1627—1648. geted observations of tropical cyclone movement basedeon th

Hamill T. M. J. S. Whitaker ’antyi C. Snyder, 2001: Distance- adjoint-derived sensitivity steering vectdr.Atmos. ci., 64,
dependent filtering of background error covariance esémat 2611-2626. h h h q .
in an ensemble Kalman filteMon. Wea. Rev., 129, 2776— Wu, C-C., S-G. C en, J.-H. Chen, K.-H. Chou, and P.-H. L!n,
2790. 2009: Interaction of Typhoon Shanshan (2006) with the mid-

lto, K., and C.-C. Wu, 2013: Typhoon-position-oriented st latitude trough from both adjoint-derived sensitivity esteg
ity analysis. Part I: Theory and verificatioh Atmos. Sci., 70, vector and potential vorticity perspectivédon. Wea. Rev,
2525-2546. 137, 852—-862.

Joly, A., and Coauthors, 1997: The fronts and Atlantic sttack Xie, 20;33 f)l? Zh_ang, Q H. Zhagg,;. Pote_rjoy, and Y H%Weng
experiment (FASTEX): Scientific objectives and experimen- - Observing strategy and observation targeting fqr-tro

tal designBull. Amer. Meteor. Soc., 78, 1917—1940 ical cyclones using ensemble-based sensitivity analysis a
Joly, A., and Coauthors, 1999: Overview of the field phase of data assimilationMon. Wea. Rev., 141, 1437-1453.



