
ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 33, OCTOBER 2016, 1185–1198

Parameterization of Sheared Entrainment in a Well-developed CBL. Part II:
A Simple Model for Predicting the Growth Rate of the CBL

Peng LIU1, Jianning SUN∗1,2, and Lidu SHEN1

1School of Atmospheric Sciences & Institute for Climate and Global Change, Nanjing University, Nanjing 210023, China
2Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China

(Received 10 October 2015; revised 7 February 2016; accepted 23 May 2016)

ABSTRACT

Following the parameterization of sheared entrainment obtained in the companion paper, Liu et al. (2016), the present
study aims to further investigate the characteristics of entrainment, and develop a simple model for predicting the growth
rate of a well-developed and sheared CBL. The relative stratification, defined as the ratio of the stratification in the free
atmosphere to that in the entrainment zone, is found to be a function of entrainment flux ratio (Ae). This leads to a simple
expression of the entrainment rate, in which Ae needs to be parameterized. According to the results in Liu et al. (2016), Ae
can be simply expressed as the ratio of the convective velocity scale in the sheared CBL to that in the shear-free CBL. The
parameterization of the convective velocity scale in the sheared CBL is obtained by analytically solving the bulk model with
several assumptions and approximations. Results indicate that the entrainment process is influenced by the dynamic effect,
the interaction between mean shear and environmental stratification, and one other term that includes the Coriolis effect.
These three parameterizations constitute a simple model for predicting the growth rate of a well-developed and sheared CBL.
This model is validated by outputs of LESs, and the results show that it performs satisfactorily. Compared with bulk models,
this model does not need to solve a set of equations for the CBL. It is more convenient to apply in numerical models.
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1. Introduction
The depth of the CBL is an important parameter in air

pollution and NWP models. In these models, the CBL height
is often diagnosed from the critical bulk Richardson number
or TKE profile (Skamarock et al., 2008). These diagnosed
CBL heights exhibit large intra-scheme variances (Shin and
Hong, 2011; Xie et al., 2012; Breuer et al., 2014). Thus, a
proper method to estimate the CBL height is important for
numerical models. The growth rate of a CBL is actually the
entrainment rate when there is no background vertical veloc-
ity. In the 1960s, Ball (1960) and Lilly (1968) proposed a
bulk model framework to describe the evolution of the CBL.
Since then, the bulk model approach has been widely used to
predict the CBL entrainment rate. For a sheared CBL, the re-
sults of LESs in Kim et al. (2003) showed that the turbulence
in the entrainment zone enhances due to the break of Kelvin–
Helmholtz billows at the upper edge of the entrainment zone.
As a result, the entrainment process accelerates and the IL
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deepens. In order to adequately capture the entrainment pro-
cess in a sheared CBL, at least the first-order model (FOM) is
needed (Kim et al., 2006; Conzemius and Fedorovich, 2007),
and the set of equations for the CBL should be solved. Unfor-
tunately, the bulk model is complex and difficult to apply in
numerical models since it includes too many unknown vari-
ables. Therefore, it is imperative to develop a simple model
for predicting the growth rate of a sheared CBL.

The entrainment rate is associated with the entrainment
flux ratio Ae, which is defined as the ratio of heat flux at the
CBL top to that at the surface. Kim et al. (2006) proposed
a parameterization of Ae for the sheared CBL in the FOM
framework. They only considered the sheared CBL under
the condition of height-constant geostrophic velocity (GC).
However, the LES results in Conzemius and Fedorovich
(2006) indicated that the entrainment process has different
characteristics under the condition of sheared geostrophic ve-
locity with a zero value at the surface (GS). Following the
derivation in Kim et al. (2006), Liu et al. (2016) developed
a parameterization of Ae for a well-developed and sheared
CBL. This scheme takes into account the buoyancy effect
and the shear effect in the surface layer, the mixed layer and
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the IL. The shear effect in the IL is represented by local mo-
mentum fluxes and velocity jumps at the CBL top, which is
similar to that in Pino and De Arellano (2008). It still in-
cludes many variables and thereby cannot be applied directly.
However, if the relations between the entrainment variables
(e.g., the entrainment momentum fluxes, the potential tem-
perature jump, and the velocity jumps) can be described by
external parameters (such as the background stratification,
the geostrophic wind gradient, and the surface friction ve-
locity), the parameterizations of Ae and the entrainment rate
can be simplified and become applicable. For this reason,
the present study aims to develop a simple model appropriate
for predicting the growth rate of the sheared CBL by using
external parameters.

The parameterization of the entrainment rate suggested
by Sun and Xu (2009) and the Ae scheme proposed in Liu et
al. (2016) are simplified with some assumptions in this study.
The LES outputs obtained in Liu et al. (2016) are used for
analysis and evaluation. The paper is organized as follows:
Section 2 discusses the theoretical considerations in the FOM
framework, and a simplified parameterization for the entrain-
ment rate is proposed. In section 3, the characteristics of the
sheared entrainment are analyzed based on the LES results,
and the proposed simple parameterization is verified using
the LES outputs. Conclusions and discussion are given in the
final section.

2. Simplification of the parameterization of
entrainment rate

2.1. The CBL structure and definitions of variables
In this study, Θ, U and V represent horizontally averaged

potential temperature and velocity components, while θ, u
and v represent the fluctuation parts of potential temperature
and the velocity components. wθ, uw and vw represent hori-
zontally averaged vertical fluxes of potential temperature and
velocity components. γθ and γu represent the vertical gradi-
ents of the initial potential temperature and the geostrophic
velocity in the x-direction. γθ and γu are external parameters,
which are assumed to remain unchanged during CBL devel-
opment. Figure 1 depicts the idealized profiles of Θ, U and
V , and their fluxes, in a well-developed sheared CBL. The
CBL height h1 is defined as the level at which wθ reaches
its minimum. h0 is the first zero-crossing height of the wθ
profile. h2 is defined as the level toward which wθ becomes
larger than 10% of its minimum. The layer between h1 and h2
is the inversion layer (IL), in which the idealized Θ increases
with height. The IL thickness is ∆h21 = h2 − h1. The layer
between h0 and h2 is the entrainment zone, in which wθ is
negative. The entrainment zone thickness is ∆h20 = h2 − h0.
Θ1, U1 and V1 are values of Θ, U and V at h1. Θ2, U2 and
V2 are values of Θ, U and V at h2. The potential tempera-
ture jump is ∆Θ = Θ2 −Θ1, and the two components of the
velocity jump are ∆U = U2 −U1 and ∆V = V2 −V1. The Ae
is defined as Ae = −wθ1/wθs = h1/h0 − 1. uw1 and vw1 are
the momentum fluxes at h1, which are obtained by integrating

Fig. 1. Idealized profiles of horizontally averaged potential tem-
perature Θ, velocity components U and V , and their vertical
fluxes wθ, uw and vw in the GS cases. Dash-dot lines represent
h0, h1 and h2, and dotted lines represent zero.

the momentum equations from the surface to h2. For further
details, please refer to Liu et al. (2016).

2.2. Parameterization of the entrainment rate
In the FOM framework and under the GC condition, the

parameterization of the entrainment rate (we) and Ae pro-
posed by Kim et al. (2006) and evaluated by Pino et al. (2006)
(hereafter KP06) can be expressed as

we,KP =
∂h1

∂t
=

∆h21 + (2h1 +∆h21)Ae,KP

h1(2∆Θ−γθ∆h21)
wθs (1)

and

Ae,KP =
−wθ1

wθs
= A1,KP

1

1 +
∆h21

h1

+ A2,KP
1

1 +
∆h21

h1

u3∗
w3∗

+

A3,KP
− 1

2 uw1∆U − 1
2 vw1∆V(

1 +
∆h21

h1

)
w3∗

, (2)

where wθs is the surface heat flux; w∗ is the convective veloc-
ity scale in the shear-free CBL, defined as w3∗ = (g/Θ0)wθsh1;
u∗ is the surface friction velocity; and A1,KP = 0.20, A2,KP =

0.26, and A3,KP = 1.44. In order to conveniently compare with
the parameterization scheme proposed in Liu et al. (2016),
here we do not express Eq. (2) in the same form as in KP06,
in which −uw1∆U/2− vw1∆V/2 is replaced by a derived re-
lationship [(i.e., Kim et al., 2006, Eq. (5)].

Following the work of vanZanten et al. (1999), Sun and
Wang (2008) derived a parameterization of the entrainment
rate for a shear-free CBL, in which we is normalized by w∗
and is proportional to the inverse of the convective Richard-
son number. They argued that their scheme is still valid for
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the sheared entrainment process because the scheme is de-
rived from the profiles of potential temperature and its flux,
which have the same shape in both sheared and shear-free
CBLs. This argument is supported by the LES outputs for
a sheared CBL (Sun and Xu, 2009). The alternative form
of Sun and Wang (2008) given in Sun and Xu (2009) is ex-
pressed as

we,SW =
∆h21 + (h1 +∆h21)Ae,SW

h1∆Θ
wθs , (3)

and

Ae,SW =
−wθ1

wθs
=

∆h10

h0
, (4)

where ∆h10 = h1 − h0 is the thickness of the lower part of
the entrainment zone. As pointed out in Sun and Xu (2009),
KP06 and Sun and Wang (2008) are equivalent in describ-
ing sheared entrainment, although the expressions are differ-
ent. KP06 explicitly includes the effects of shear-produced
turbulence, whereas Sun and Wang (2008) uses a geometric
relation to implicitly represent the wind shear effects.

In both KP06 and Sun and Wang (2008), the effect of
wind shear on the entrainment rate is represented by the Ae.
It should be noted that Eq. (2) is derived for GC CBLs. A
parameterization of Ae in a well-developed and sheared CBL
is derived in Liu et al. (2016). The expression reads:

Ae = A1
1

1 +
∆h21

h1

+ A2
C−1/2

D

1 +
∆h21

h1

u3∗
w3∗

+

TermI TermII

A3

(
− 1

2 uw1∆U − 1
2 vw1∆V

)
(
1 +

∆h21
h1

)
w3∗

+

TermIII

A4
(V1−Vs)

(
− 1

2 vws− 1
2 vw1 + 1

12 fγuh2
1

)
(
1 +

∆h21
h1

)
w3∗

, (5)

TermIV

where Vs is the velocity in the y-direction at 0.1h1 (the top
of the surface layer), and CD = u2∗/(U2

s + V2
s ) is the surface

drag coefficient. Note that the geostrophic velocity in the
y-direction is zero in this study. The coefficients have been
determined in Liu et al. (2016), i.e., A1 = 0.21, A2 = 0.01,
A3 = 0.86, and A4 = 0.70.

The surface drag coefficient in Eq. (5) is not a constant.
It is worth noting that an additional term that represents the
effect of wind shear in the mixed layer is included in Eq. (5).
In the GC case, Eq. (5) reduces to Eq. (2). On the other hand,
Eq. (5) is the explicit form of Eq. (4) for a sheared CBL. The
combination of Eq. (3) and Eq. (5) can be used to predict the
evolution of the sheared CBL depth. However, with so many
variables in the two equations, they are inconvenient for ap-
plication. In this study, we attempt to develop a simplified
scheme based on characteristics of sheared entrainment ob-
tained from the LES outputs.

2.3. Simplification of the parameterization scheme
The relation between ∆Θ/∆h20 and γθ is often used as a

parameter to characterize the thermal structure in the entrain-
ment zone (Deardorff, 1979; Fedorovich, 1995; Gentine et
al., 2015). It is called the relative stratification parameter and
is defined as

G =
γθ

∆Θ/∆h20
. (6)

The LES results in Fedorovich et al. (2004) indicate that
the dimensionless parameter G is a constant of around 1.2 for
shear-free entrainment. Whether it is a constant for sheared
entrainment has not been discussed in previous studies. A re-
lationship between G and Ae is derived from the equation of
temperature by order analysis using our LES results (details
of the derivation given in Appendix A). It is expressed as

G =
1 + K1Ae

1 + Ae
, (7a)

where the parameter K1 is defined as K1 = 2−∆h21/2∆h20.
In order to further simplify the problem, we assume ∆h21 ≈
∆h20/2 (details about G and the validation of the approxi-
mation are discussed in the next section). Thus, K1 can be
treated as a constant of 7/4, and Eq. (7a) can be written as

G =
1 + 7

4 Ae

1 + Ae
. (7b)

Equation (7b) indicates that G is a function of Ae rather than
a constant. Substituting Eqs. (6) and (7b) into Eq. (3) and
applying the relation ∆h20 = ∆h21 +∆h10, we get

we =

(
1 +

7
4

Ae

)
wθs

γθh1
. (8)

In Liu et al. (2016), a new convective velocity scale (wm),
which includes the contributions of shear-produced TKE in
the whole CBL, is proposed. The results in Liu et al. (2016)
indicate that wm is suitable for characterizing the vertical tur-
bulent motion at the mixed layer top. It is expressed as

w3
m = w3

∗ +
A2

A1
C−1/2

D u3
∗ +

A3

A1

(
−1

2
uw1∆U − 1

2
vw1∆V

)
+

A4

A1
(V1−Vs)

(
−1

2
vws− 1

2
vw1 +

1
12

fγuh2
1

)
. (9)

Then, Eq. (5) can be rewritten as

Ae =
A1

1 +∆h21/h1

w3
m

w3∗
. (10)

The variation of ∆h21/h1 is relatively large during the devel-
opment of a CBL. However, the variation of 1 + ∆h21/h1 is
so small (Table 1) that it can be approximately treated as a
constant. The LES outputs show that the average value of
1 + ∆h21/h1 is 1.19. Since the value of A1 is set to 0.21 (Liu
et al., 2016), Eq. (10) is further simplified to be

Ae = 0.18
w3

m

w3∗
. (11)
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Table 1. Average values of LES data from 4800 s to 28 800 s in the simulated cases.

Case Ae K1 G 1 +
∆h21

h1

X∗2
w3

m
(%)

∣∣∣∣∣
∆Vvw1

∆Uuw1

∣∣∣∣∣ (%)

∣∣∣∣∣∣
X∗∗4
w3

m

∣∣∣∣∣∣ (%)

NS00S3 0.19±0.02 1.76±0.04 1.12±0.10 1.15±0.05 0.00 - 0.00
NS00S6 0.20±0.02 1.78±0.04 1.13±0.08 1.14±0.04 0.00 - 0.00
GC10S3 0.18±0.03 1.74±0.04 1.10±0.10 1.17±0.06 2.05 139.89 0.00
GC10S6 0.19±0.02 1.75±0.04 1.11±0.11 1.17±0.06 2.46 103.39 0.00
GC10R3 0.19±0.03 1.75±0.04 1.10±0.09 1.17±0.06 2.58 100.65 0.00
GC10R6 0.22±0.04 1.77±0.03 1.12±0.10 1.16±0.05 2.86 70.77 0.00
GC15S3 0.22±0.04 1.75±0.04 1.13±0.17 1.18±0.06 4.47 103.34 0.00
GC15S6 0.26±0.06 1.78±0.03 1.14±0.09 1.17±0.06 4.88 87.96 0.00
GC15R3 0.28±0.06 1.78±0.04 1.14±0.10 1.18±0.06 4.85 84.34 0.00
GC15R6 0.34±0.07 1.79±0.03 1.17±0.12 1.18±0.05 4.96 59.75 0.00
GC20S3 0.30±0.07 1.78±0.04 1.17±0.14 1.19±0.06 6.80 105.59 0.00
GC20S6 0.35±0.08 1.79±0.04 1.18±0.11 1.18±0.05 6.98 75.10 0.00
GC20R3 0.38±0.09 1.79±0.04 1.23±0.16 1.20±0.07 6.92 69.39 0.00
GC20R6 0.47±0.10 1.81±0.04 1.27±0.20 1.20±0.06 6.70 45.64 0.00
GS10S3 0.25±0.03 1.76±0.04 1.15±0.09 1.19±0.06 0.10 0.93 1.51
GS10S6 0.23±0.02 1.76±0.03 1.14±0.07 1.18±0.05 0.07 0.97 0.97
GS10R3 0.25±0.04 1.76±0.04 1.15±0.10 1.19±0.06 0.16 1.02 2.17
GS10R6 0.23±0.02 1.76±0.03 1.14±0.07 1.17±0.05 0.12 0.72 1.64
GS15S3 0.32±0.04 1.77±0.04 1.19±0.08 1.20±0.04 0.18 0.94 2.57
GS15S6 0.26±0.03 1.76±0.04 1.15±0.08 1.20±0.05 0.15 1.12 2.21
GS15R3 0.33±0.04 1.77±0.04 1.20±0.08 1.21±0.05 0.29 1.12 4.36
GS15R6 0.27±0.03 1.76±0.04 1.15±0.09 1.20±0.05 0.23 0.96 3.49
GS20S3 0.47±0.08 1.79±0.03 1.25±0.07 1.23±0.05 0.26 0.92 3.44
GS20S6 0.32±0.04 1.77±0.03 1.19±0.08 1.20±0.04 0.23 1.11 3.48
GS20R3 0.50±0.08 1.79±0.03 1.27±0.07 1.24±0.05 0.38 1.24 5.58
GS20R6 0.33±0.04 1.77±0.04 1.20±0.09 1.21±0.05 0.34 0.87 5.40
C5S10S3 0.33±0.04 1.77±0.04 1.20±0.09 1.21±0.05 0.34 0.87 5.72
C5S15S3 0.27±0.05 1.76±0.05 1.17±0.15 1.21±0.07 0.84 1.07 2.94
C5S15S6 0.37±0.05 1.78±0.03 1.20±0.06 1.22±0.04 0.89 0.64 5.30
C5S15R3 0.29±0.04 1.76±0.04 1.17±0.09 1.21±0.06 1.08 1.20 2.26
MEAN 0.30 1.77 1.17 1.19 2.25 0.99∗∗∗ 3.41∗∗∗

Note: ∗X2 is the second term on the right-hand side of Eq. (9), ∗∗X4 is the fourth term on the right-hand side of Eq. (9), ∗∗∗ Average of the data in all GS and
CS cases.

It is worth noting that Eq. (11) is not the scheme in the zeroth-
order jump model (ZOM), although the expression has the
same form as that in the ZOM. As shown in Eq. (9), the pa-
rameterization is still complex and includes many unknown
variables. Thus, how to simplify Eq. (9) is the problem we
need to solve.

Liu et al. (2016) shows that the effects of wind shear in the
surface layer and mixed layer [the second and fourth terms
on the right-hand side of Eq. (5)] on the entrainment flux are
quite small. Since the terms on the right-hand side of Eq. (9)
are proportional to the terms on the right-hand side of Eq. (5),
it can be concluded that the second and fourth terms on the
right-hand side of Eq. (9) are small when compared with the
first and third terms. The ratio of the sum of the second term
and the fourth term to w3

m is smaller than 5% in most simu-
lated cases (Table 1). For the purpose of simplicity, the two
small terms are neglected in the simplified parameterization.
Therefore, the simplification of Eq. (9) begins with the third

term, hereafter expressed as X3 = −uw1∆U/2− vw1∆V/2. In
order to derive ∆U, ∆V , uw1 and vw1, the velocity equation
is vertically integrated from the surface to the level just above
the entrainment zone top. Rearrangement of the integrations
yields (see details of derivation in Appendix B)

h1
∂U1

∂t
= uws−uw1+

1
2

f h1[(Vs + V1)− (Vg,s+Vg,1)] ,

(12)(
1 +

∆h21

2h1

)
uw1 =

∆h21

2h1
uws−

(
∆U − 1

2
γu∆h21

)
∂h1

∂t
+

1
4

f ∆h21[(Vs−V1)− (Vg,s−Vg,1)] , (13)

∂∆U
∂t

= γu
∂h1

∂t
− ∂U1

∂t
. (14)

By using the differential transition, such as ∂/∂t = ∂/∂h1 ·
∂h1/∂t = (S/h1)∂/∂h1, where S = wθs[1+ (7/4)Ae]/γθ comes
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from Eq. (8), Eq. (14) becomes

S
h1

∂∆U
∂h1

= γu
∂h1

∂t
− ∂U1

∂t
. (15)

Substituting Eqs. (12) and (13) into Eq. (15), we rearrange
the equation to be:

∂∆U
∂h1

= − 1
2h1 +∆h21

(2∆U −2γu∆h21−2γuh1)−
2h1

2h1 +∆h21

uws

S
− 1

S
h1

2h1 +∆h21
f ∆h21(V1−Vg,1)−

1
S

h1

2h1 +∆h21
f h1(Vs−Vg,s + V1−Vg,1) . (16)

The solution of Eq. (16) can be obtained, in which the co-
efficients are substituted in for the purpose of simplicity (see
details in Appendix C). It reads:

∆U = 0.57γuh1−0.48
h1

S
uws−

f h2
1(0.19V1−0.19Vg,1 + 0.16Vs−0.16Vg,s)

S
. (17)

To solve Eq. (17), we assume that ∆U depends only on h1
and 1 + ∆h21/h1 = 1.19. Substituting Eq. (17) into Eq. (13)
gives a simple expression of uw1. It is written as

uw1 = 0.57uws−0.47γuS +

f h1(0.14V1−0.14Vg,1 + 0.20Vs−0.20Vg,s) , (18)

where Vg,s and Vg,1 are the geostrophic velocity at the surface
and CBL top, respectively.

The expressions of ∆V and vw1 are derived in the same
way as ∆U and uw1. For the CBL under the GC condition, V
is constant while vw varies linearly with height in the mixed
layer. Their profiles present the same characteristics as that
of U and uw. Thus, the expressions of ∆V and vw1 have the
same form as ∆U and uw1. According to Eq. (17) and Eq.
(18), they can be written as (the terms associated with the
vertical gradient of the geostrophic velocity in the y-direction
γv diminish because γv = 0)

∆V=−0.48
h1

S
vws+

f h2
1(0.19U1−0.19Ug,1+0.16Us−0.16Ug,s)

S
(19)

and

vw1 = 0.57vws− f h1(0.14U1−0.14Ug,1 +0.20Us−0.20Ug,s).
(20)

Therefore, in the GC case, the third term in Eq. (9) can be
written as (the terms associated with γu diminish because
γu = 0 in the GC case)

X3,GC = −1
2

(uw1∆U + vw1∆V) = 0.14
h1

S
u4
∗ + F f ,GC , (21a)

where F f ,GC represents the sum of the terms, including the
Coriolis parameter (expression not shown). In order to esti-
mate X3,GC, Eq. (9) with the exact coefficients is written here
(the second and fourth terms have been omitted):

w3
m = w3

∗ + 4.10X3 . (9′)

The LES results show that w3
m = w3∗ + 5u3∗, the formula pro-

posed by Moeng and Sullivan (1994), is a good approxima-
tion for describing wm under the GC condition. Compar-
ing Eq. (9′) with Eq. (21a), it is found that 0.14(h1/S )u4∗ +

F f ,GC ≈ u3∗, which can lead to w3
m ≈ w3∗ + 5u3∗.

However, for a CBL under the GS condition, V is not
constant in the mixed layer, while the shape of the vw pro-
file is different from that in the GC case. The expressions of
∆V and vw1 should be different to those in the GC case. The
LES results show that, in the GS case, vw1∆V is far smaller
than uw1∆U, and thus can be neglected (Table 1). That is,
uw1∆U + vw1∆V ≈ uw1∆U. The LES results also show that,
in the GS case, vws ≈ 0 and uws ≈ −u2∗. Thereby, X3,GS can
be obtained from Eq. (17) and Eq. (18). It is written as

X3,GS = −1
2

uw1∆U

= 0.28u2
∗γuh1 + 0.14γ2

uS h1 + 0.14
h1

S
u4
∗ + F f ,GS , (21b)

where F f ,GS represents the sum of the terms, including
the Coriolis parameter (expression not shown). When the
geostrophic velocity gradient becomes zero (i.e., γu = 0),
X3,GS should reduce to X3,GC. Based on this consideration,
we assume that the approximation 0.14(h1/S )u4∗ + F f ,GS ≈ u3∗
is also appropriate for the GS case. Thus, the expression of
X3 for both the GC and GS cases is

X3 = ηu3
∗ + 0.28γuu2

∗h1 + 0.14γ2
uS h1 , (22)

where η is an empirical constant introduced by the above
approximations. Replacing S in Eq. (22) by the relation
S = wθs[1 + (7/4)Ae]/γθ, and further replacing Ae by using
Eq. (11), then substituting Eq. (22) into Eq. (9′), we get the
following equation:

(
1−0.37a3

Θ0γ
2
u

gγθ

)
w3

m =

(
1 + a3

Θ0γ
2
u

gγθ

)
w3
∗ + a1u3

∗ + a2u2
∗γuh1 ,

(23)
where a1 = 4.10η, a2 = 1.15 and a3 = 0.57. Since some ap-
proximations and assumptions are introduced in the deriva-
tion, these coefficients should be adjusted. Multiple linear
regression of the LES outputs in the GC and GS cases gives
a1 = 6.02, a2 = 0.24 and a3 = 0.86.

Pino and De Arellano (2008) used local momentum
fluxes and velocity jumps to represent the shear production
rate of TKE. Equations (17) and (18) indicate that these local
quantities are related to surface fluxes, entrainment rate, CBL
height and geostrophic velocity gradient. Equation (22) also
indicates that the net shear production rate of TKE in the IL
comprises the dynamic effect (second term), the interaction
between mean shear and environmental stratification (third
term), and one other term that includes the Coriolis effects
(first term).

Equations (8), (11) and (23) constitute a simple model
to predict the height of a sheared CBL. Compared with the
KP06 and Sun and Wang (2008) methods, this model does
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not need those variables at the CBL top, such as ∆Θ, ∆h21,
and so on. Owing to the coarse resolution of NWP and air
pollution models, these variables cannot be resolved explic-
itly (Hong et al., 2006). Thereby, they must be obtained from
a bulk model. However, the input parameters in our simpli-
fied model can be easily derived in NWP and air pollution
models. wθs and u∗ can be estimated by a land surface model.
γθ can be derived as the mean gradient of potential tempera-
ture within a certain thickness (for example, 1000 m) above
h2. γu can be treated as the mean gradient of velocity above
h2 and determined by the same method for the calculation of
γθ. In the real atmosphere, the treatment of γu may introduce
some errors. However, the CBL’s growth is mainly controlled
by surface heating, which explains 70%–90% of this process
(Canut et al., 2010; Sühring et al., 2014). This implies that
the contribution of entrainment to CBL growth is about 10%–
30%. It is expected that the errors induced by γu cannot sig-
nificantly influence the prediction accuracy. Therefore, this
model is more convenient to apply in numerical models.

3. Evaluation and discussion
3.1. LESs

The outputs of the 30 LES runs, described in Liu et al.
(2016), are used to verify the parameterizations under the
conditions of varying geostrophic wind or wind shear, ex-
ternal stratification, and surface roughness length. The main
features of these simulations are described in detail in Liu et
al. (2016). There are two simulations for the shear-free CBL
(NS00S3 and NS00S6), while all other simulations are for
the sheared CBL and divided into three groups. One group
is for CBLs under the GC condition, with vertically uniform
geostrophic velocities of 10 m s−1, 15 m s−1 and 20 m s−1, re-
spectively. The second group is for CBLs under the GS con-
dition, with geostrophic wind gradients of 10 m s−1 (2 km)−1,
15 m s−1 (2 km)−1 and 20 m s−1 (2 km)−1, respectively, and
zero surface geostrophic velocity. In each group under the
GC and GS conditions, the simulations are conducted with
external temperature gradients of 3 K km−1 and 6 K km−1,
and surface roughness length values of 0.01 m and 0.1 m, re-
spectively. The name of a simulation case is given according
to the simulation conditions. For example, GC20R6 means
that the simulation is conducted under conditions of Ug = 20
m s−1, a rough surface with z0 = 0.1 m, and ∂Θ/∂z = 6 K
km−1. In section 2, the derivation of Eq. (23) is based on
assumptions and approximations that are obtained from re-
sults of the GC and GS cases, and the coefficients are fitted
from simulations of these 24 cases. In order to confirm their
validity, a third group of simulations are conducted under the
CS condition (C5S10S3, C5S15S3, C5S15S6 and C5S15R3).
The CS condition can be regarded as a combination of the GC
and GS conditions, in which the geostrophic wind shear ex-
ists while the surface geostrophic velocity is not zero. In the
four CS cases, the surface geostrophic velocity is 5 m s−1

(denoted as C5), while its vertical gradient is 10 m s−1 (de-
noted as S10) or 15 m s−1 (denoted as S15) per 2 km, and

the meanings of the last two letters in the case names are the
same as for the GC and GS cases. The integration covers 28
800 s, and the results from 4800 s to 28 800 s are output at
an interval of 100 s for further calculations and analyses. The
methods to determine the variables used in calculations and
analyses are introduced in Liu et al. (2016).

3.2. Characteristics of the relative stratification parameter
According to the definition expressed in Eq. (6), the LES

outputs are used to calculate the relative stratification param-
eter G, and the results are shown in Fig. 2 (blue dots). In the
GC cases, G has a slightly decreasing trend during CBL de-
velopment. However, the decrease is negligibly small (only
about 0.1 in a long period of 24 000 s). In the GS cases, G
almost does not vary with time. As shown in Table 1, the
average value of G varies slightly in different cases. It in-
creases with increasing geostrophic velocity in the GC cases
and increasing geostrophic velocity gradient in the GS cases.
However, the difference in G among the simulated cases is
very small. The mean value of G in all of the simulated cases
is 1.17 (Table 1), which is very close to the result for shear-
free CBLs in Fedorovich et al. (2004, therein G ≈ 1.2).

The parameterization of the relative stratification param-
eter, i.e., Eq. (7a), is derived in the FOM framework. As
shown in Appendix A, an approximation is applied to sim-
plify Eq. (A6). The LES outputs are used to calculate every
term on the left-hand side of Eq. (A6), and results indicate
that the second and third terms are one order smaller than the
other two terms. The LES outputs provide a solid basis for
Eq. (7a). However, Eq. (7a) still includes variables at the
CBL top (∆h21 and ∆h20). A further simplified parameteriza-
tion of G, Eq. (7b), is obtained by using the assumption of
∆h21 ≈ ∆h20/2, which may not be true, but the LES outputs
show that K1 is almost a constant and approximately equals
7/4 (Table 1). In order to evaluate the performance of Eq.
(7b), the LES outputs are used to calculate G according to
Eq. (7b). The results are also plotted in Fig. 2 (red dots) to
compare to those calculated according to Eq. (6) [Fig. S1 in
electronic supplementary material (ESM) for CS cases]. The
spread of LES outputs (especially for GC20 cases when the
integration time is longer than 20 000 s) is mainly attributed
to the determination method of the upper edge of the entrain-
ment zone, h2, where the instantaneous potential temperature
flux profile is not equal to zero but fluctuates around zero.
Significant fluctuations of ∆h21 can lead to large fluctuations
of ∆Θ. However, the fluctuation of ∆h20 = ∆h21 +∆h10 is rel-
atively small. A small value of ∆Θ always corresponds to a
large value of G calculated from Eq. (6). Figure 2 shows that
the results from Eq. (6) and Eq. (7b) agree very well in all of
the simulation cases, indicating that Eq. (7b) can accurately
describe the behavior of G.

3.3. Evaluation of the CBL height prediction model
The parameterization of entrainment rate, Eq. (8), is de-

rived from Eq. (3) and Eq. (7b). Sun and Xu (2009) demon-
strated that Eq. (3) works in sheared CBLs. Equation (7b)
is validated in the previous section. Thus, we expect that
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Fig. 2. Comparison of G (the relative stratification parameter) calculated from the definition and from the parameteri-
zation scheme in the GC and GS cases. The blue dots represent the results from Eq. (6) and the red dots represent the
results from Eq. (7b).
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Eq. (8) can predict the CBL height correctly. In order to
prove this point, Eq. (8) is solved numerically using the Eu-
ler predictor–corrector method over the period from 5700 s
to 28 800 s under the CS condition. The time step is 100 s,
the same as the time interval of LES outputs. The parameter-
ization schemes of Ae and the convective velocity scale, Eqs.
(11) and (23), are used to close Eq. (8). The LES outputs
for the period from 4800 s to 6600 s are averaged to provide
the initial condition at 5700 s. Results are illustrated in Figs.
3–5.

Figure 3 shows that Eq. (23) slightly underestimates
and overestimates wm at the beginning and end, respec-
tively. This difference is mainly due to the approximation of
0.14(h1/S )u4∗ + F f ≈ u3∗, and a larger u∗ gives a larger error.
However, the biases of estimated wm are very small, making it
reasonable to conclude that the simplified form of the convec-
tive velocity scale Eq. (23) agrees well with its original form,
Eq. (9). Figure 4 shows that the Ae estimated by Eq. (11) is
in good agreement with that derived from the LESs. As pre-
sented in previous studies (e.g. Conzemius and Fedorovich,
2006; Pino et al., 2006), the LES Ae spreads widely because it
is determined from instantaneous LES profiles (calculations
show that the spread of LES Ae is reduced significantly when
the LES heat flux profiles are averaged over 500 s). It is satis-
factory that the values of the parameterized Ae are contained
within the fluctuations of the LES outputs. Figure 5 indicates
that Eq. (8) can correctly predict the CBL height.

Fedorovich et al. (2004) suggested that, in a shear-free
CBL, the CBL height is proportional to the square root of
time, i.e., h1 ∝

√
t. The direct numerical simulations of the

CBL driven by a constant momentum flux in Jonker et al.
(2013) yielded the same result, i.e., h1 ∝

√
t. Our LES results

show that this relation also exists in the GC, GS and CS cases
(Fig. 5 only displays the results in the CS case; see Fig. S2
in ESM for the GC and GS cases).

3.4. Discussion
The entrainment rate is often parameterized as we/w∗ =

ARi−1∗ , where Ri∗ = (g/Θ0)h1∆Θ/w2∗ is the bulk convective
Richardson number. In the ZOM, the coefficient A is just the
Ae. In the FOM, this expression still applies, but the con-
vective Richardson number is different to that in the ZOM
because of the different definition of ∆Θ. Determination
of the coefficient A has been explored (e.g., Lewellen and
Lewellen, 1998; Sullivan et al., 1998; vanZanten et al., 1999;
Sun and Wang, 2008). Sun and Wang (2008) gave a relation
of A = (1 + Ae)∆h20/h1, indicating that A is associated with
not only the Ae but also the entrainment zone thickness and
CBL depth. The parameterization scheme for the entrain-
ment rate in Sun and Wang (2008) can be written as Eq. (3).
KP06 provided an equivalent scheme, expressed as Eq. (1).
Both Eq. (1) and Eq. (3) are valid for a sheared CBL, and
both imply that the effect of wind shear can be represented
by the Ae. On the other hand, the two schemes both include

Fig. 3. Convective velocity scales calculated from the CBL height prediction model [red line, Eq. (23)] and from LES
outputs [blue dots, Eq. (9)] in CS cases.
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Fig. 4. Ae values calculated from the CBL height prediction model [red line, Eq. (11)] and from LES outputs [blue dots,
Eq. (4)] in CS cases.

the variable ∆Θ, which is usually unknown. This problem is
solved by introducing G. A simple relationship between G
and Ae, expressed as Eq. (7b), is derived in this study; and
the parameterization of the entrainment rate turns out to be
Eq. (8).

For a sheared CBL, the influence of wind shear is in-
cluded in the Ae. Equation (11) further indicates that the
effects of wind shear can be represented by the convective
turbulent velocity scale in a sheared CBL, which is always

larger than that in a shear-free CBL. Equation (23) gives a pa-
rameterization of the convective velocity scale, in which the
CBL bulk variables, such as ∆U, ∆V , ∆Θ and ∆h21, which
cannot be resolved explicitly in most numerical models, are
not needed. This is the fundamental difference to the param-
eterization of KP06.

Actually, Eq. (2) is not the final form of the parameteri-
zation of Ae in KP06. The final form is expressed as

Ae,KP =

A1,KP
h1
h2

+ A2,KP
u3∗

(w′∗)3 + A3,KP
∆h21

2h1+2h2

[
u2∗∆Ve
(w′∗)3 +

Θm(∆Ve)2

gh2(∆Θ−0.5γθ∆h21)

]

[
1−A3,KP

Θm(∆Ve)2

2gh2(∆Θ−0.5γθ∆h21)

] , (24)

where Θm is the mean potential temperature in the mixed
layer, (w′∗)3 = gwθsh2/Θm, and ∆Ve is the velocity jump
across the IL. Liu et al. (2016) shows that the value of 1.44
for A3,KP overestimates the contribution of shear-produced
TKE in the IL to entrainment. Our LES outputs are used
to optimize the parameters in Eq. (24). In Kim et al.
(2006), ∆Ve = 0.5(|∆U | + |∆V |), and the linear regression
yields A1,KP = 0.22, A2,KP = −0.54 and A3,KP = 2.39. In Pino
et al. (2006), ∆Ve =

√
(∆U)2 + (∆V)2, and the linear regres-

sion yields A1,KP = 0.22, A2,KP = 0.23 and A3,KP = 0.74. Be-
cause A2,KP = 2C−1/2

D (1−α2), A3,KP = 2(1−α3), where α2 and
α3 represent the proportions of the dissipation rate to the pro-

duction rate, and CD is the surface drag coefficient; A2,KP and
A3,KP must be positive and A3,KP must be less than 2. The
negative value of A2,KP and the larger than 2 value of A3,KP
imply that the treatment of ∆Ve in Kim et al. (2006) is not
reasonable. In the following calculation, only the ∆Ve in Pino
et al. (2006) is adopted. In order to identify the differences
among Sun and Wang (2008), LS (LS is the scheme in this
study) and the optimized KP06 schemes, the LES outputs are
used to calculate we in the simulated cases, and the relative
errors are compared in Fig. 6. The relative error is defined as

Err =
1
n

∑∣∣∣∣∣∣
we,p

we,LES
−1

∣∣∣∣∣∣ , (25)
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Fig. 5. Values of CBL height predicted by the model (red line) and obtained from LES outputs (blue dots) in CS cases.
Green squares show the nonlinear fit of the result of LES CBL height based on the relation that the CBL height is
proportional to the square root of time.

where we,p is the predicted entrainment rate, we,LES =

∂〈h1〉/∂t, and 〈h1〉 is the least squares nonlinear fit of LES h1
based upon the relation 〈h1〉 ∝

√
t (Fig. 5). In order to under-

stand whether the error of KP06 comes from the parameteri-
zation scheme of the entrainment rate [namely, Eq. (1)] or the
parameterization scheme of the Ae [i.e., Eq. (24)], the errors
of the entrainment rate predicted by Eq. (1) and the simpli-
fied Ae parameterization scheme [i.e., Eq. (11)] (denoted as
KPLS) are also calculated and shown in Fig. 6. Among all
the three schemes, the LS scheme performs best, implying
that the approximations applied in the derivation of Eq. (23)
are reasonable and the derived parameterization can success-
fully capture the characteristics of the entrainment rate in a
sheared CBL. Note that the LS scheme performs better than
the Sun and Wang (2008) scheme, although the former is de-
veloped on the basis of the latter by using some approxima-
tions. The reason is because the spread of instantaneous LES
variables (∆Θ, ∆h21, and so on) used in the Sun and Wang
(2008) scheme is larger than that of the instantaneous LES
variable (namely, h1) used in the LS scheme. KPLS performs
better than the KP06 scheme with optimized parameters but
slightly worse than the Sun and Wang (2008) scheme. This
suggests that Eq. (1) performs slightly worse than Eq. (3)
and the Ae estimated by Eq. (24) has large errors in some
cases, even though the parameters have been optimized. The
errors of Eq. (24) are partially due to the wide spread of in-

stantaneous LES variables used in Eq. (24). Based on the
above discussion, it is concluded that the assumptions used
in the derivations are reasonable and the simplified param-
eterizations proposed in this study can correctly predict the
Ae and entrainment rate. Meanwhile, the simplified parame-
terizations proposed in this study do not include entrainment
variables, which may introduce large calculation uncertain-
ties.

4. Concluding remarks

This study aims to simplify the parameterization of the
entrainment rate so that it can be conveniently applied to pre-
dict the growth rate of a well-developed and sheared CBL.
To achieve this goal, G (the relative stratification parameter)
is introduced into the parameterization scheme, and the Ae
and convective velocity scale in a sheared CBL are simpli-
fied according to the characteristics of sheared entrainment,
which are derived from the LES outputs. The major findings
can be summarized as follows:

(1) G, which is defined in Eq. (6), can be used to char-
acterize the thermal structure in the entrainment zone. Fe-
dorovich et al. (2004) suggested that it is a constant of around
1.2. Theoretical analysis indicates it is a function of the Ae
as expressed in Eq. (7b), rather than a constant. This result is



OCTOBER 2016 LIU ET AL. 1195

Fig. 6. Relative errors of the entrainment rate predicted by different schemes against the LES outputs in the
simulated cases.

supported by the LES outputs.
(2) When the relationship between G and the Ae is intro-

duced, the parameterization scheme of the entrainment rate
proposed by Sun and Wang (2008) can be rewritten as a sim-
ple function of Ae, surface heat flux, and the potential tem-
perature gradient in the free atmosphere and the CBL height,
as expressed in Eq. (8).

(3) Shear-produced TKE at the CBL top enhances en-
trainment. Pino and De Arellano (2008) used the local mo-
mentum fluxes and velocity jumps to parameterize the shear
production rate of TKE. Our results show that these local
quantities are related to surface momentum fluxes, the en-
trainment rate, the geostrophic velocity gradient, the stratifi-
cation in the free atmosphere, and the CBL height. The net
shear production rate of TKE in the IL is expressed by Eq.
(22), which comprises the dynamic effect, the interaction be-
tween mean shear and environmental stratification, and one
other term that includes the Coriolis effect, and can be ap-
proximately characterized by u3∗. Based on Eq. (22), the con-
vective velocity scale proposed in Liu et al. (2016) can be
further expressed by Eq. (23).

(4) In the framework of FOM, the IL thickness affects the
Ae. The LES outputs show that this effect can be described
by a constant, and thus the parameterization of Ae proposed
in Liu et al. (2016) is simplified by Eq. (11).

(5) The parameterizations of the entrainment rate, Ae and
convective velocity scale constitute a prediction model for

CBL height. The LES outputs show that it is an appropri-
ate model for a well-developed and sheared CBL. Compared
with bulk models, the parameters needed by this model can
be easily derived in an NWP or air pollution model. There-
fore, this model is more convenient for application. However,
the performance in NWP and air pollution simulations needs
further validation.

As pointed out in Liu et al. (2016), the parameteriza-
tions obtained in this study may only be suitable for well-
developed CBLs under idealized conditions. The storage
term in the TKE budget is ignored in the derivations. How-
ever, this term is not negligibly small in the early stage of
CBL development. Under this condition, the performance
of the simple model needs to be verified. In this study, the
potential temperature gradient in the free atmosphere and the
geostrophic velocity gradient are assumed to be constant. For
a CBL that is growing through a pre-existing inversion or a
residual layer, application of Eq. (7a) becomes problematic,
especially when there is a residual layer, because the relative
stratification parameter may not exist. How to parameterize
the entrainment rate under these conditions needs further in-
vestigation. In the real atmosphere, the geostrophic wind may
not vary linearly with height. Thereby, the applicability of the
simplified parameterizations under this condition needs more
evaluation. As discussed in section 2.3, the simple model
developed in this study is convenient to apply in numerical
models. We will incorporate this scheme into numerical mod-
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els and evaluate its performance under real conditions in fu-
ture work.
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APPENDIX A

Derivation of Eq. (7a)

As presented in vanZanten et al. (1999) and Kim et al.
(2006), by vertically integrating the temperature equation for
a sheared CBL from surface to h1, from h1 to h2, and from h2
to h2 + ε (ε is infinitesimal), and applying the idealized pro-
files of potential temperature and heat flux in the FOM (see
Fig. 1 or Fig. 2 in Liu et al. (2016)), rearrangement of the
integrations gives

∂Θ1

∂t
=

1 + Ae

h1
wθs , (A1)

(
∆Θ− 1

2
γθ∆h21

)
∂h1

∂t
=

[
∆h21

2h1
+

(
1 +

∆h21

2h1

)
Ae

]
wθs , (A2)

∂∆Θ

∂t
= γθ

∂h1

∂t
− ∂Θ1

∂t
. (A3)

By using Eq. (6), ∆Θ can be expressed as γθ∆h20/G. Thus,
∂∆Θ/∂t can be written as

∂∆Θ

∂t
= γθ

∂

∂t

(
∆h20

G

)
= γθ

∂

∂t

(
∆h10 +∆h21

G

)

= γθ
∂

∂t

(
∆h10

G

)
+γθ

∂

∂t

(
∆h21

G

)
. (A4)

By using the geometric relation ∆h10 = Aeh0 = Ae(h1 − h10),
∆h10 can be written as Aeh1/(1 + Ae), and Eq. (A4) turns out
to be

∂∆Θ

∂t
= γθ

∂

∂t

(
1
G

Ae

1 + Ae
h1

)
+γθ

∂

∂t

(
∆h21

G

)
. (A5)

Substituting Eq. (A5) into Eq. (A3) gives
(

1
G

Ae

1+Ae
−1

)
∂h1

∂t
+h1

∂

∂t

(
1
G

Ae

1+Ae

)
+
∂

∂t

(
∆h21

G

)
+

1
γθ

∂Θ1

∂t
=0 .

(A6)

In order to simplify Eq. (A6), each term on the left-hand side
is calculated with the LES data. The calculations show that

the second and third term are one order smaller than the other
two terms and can be neglected. Thus, Eq. (A6) can be ap-
proximately written as

(
1− 1

G
Ae

1 + Ae

)
∂h1

∂t
≈ 1
γθ

∂Θ1

∂t
. (A7)

From Eqs. (A1), (A2) and (A7), G can be solved as

G =
1 + K1Ae

1 + Ae
, (A8)

where K1 = 2−∆h21/2∆h20.

APPENDIX B
Derivation of Eqs. (12)–(14)

The equation of U for a CBL is

∂U
∂t

= f (V −Vg)− ∂uw
∂z

. (B1)

Integration of Eq. (B1) from the surface to above the top of
the entrainment zone can be separately written as

∫ h1

0

∂U
∂t

dz =

∫ h1

0
f (V −Vg)dz−

∫ h1

0

∂uw
∂z

dz , (B2)

∫ h2

h1

∂U
∂t

dz =

∫ h2

h1

f (V −Vg)dz−
∫ h2

h1

∂uw
∂z

dz , (B3)

∫ h2+ε

h2

∂U
∂t

dz =

∫ h2+ε

h2

f (V −Vg)dz−
∫ h2+ε

h2

∂uw
∂z

dz , (B4)

where ε is infinitesimal. By using Leibniz’s rule, the left-
hand side of Eq. (B2) becomes

∫ h1

0

∂U
∂t

dz =
∂

∂t

∫ h1

0
Udz−U1

∂h1

∂t
= h1

∂U1

∂t
, (B5)

where U does not vary with height from 0 to h1 and equals
U1. The right-hand side of Eq. (B2) becomes

∫ h1

0
f (V −Vg)dz−

∫ h1

0

∂uw
∂z

dz

=
1
2

f h1[(Vs + V1)− (Vg,s + Vg,1)]− (uw1−uws) , (B6)

where Vs and V1 are the velocity at the surface and CBL top,
respectively; and Vg,s and Vg,1 are the geostrophic velocity
at the surface and CBL top, respectively. Thus, Eq. (B2) be-
comes

h1
∂U1

∂t
= uws−uw1 +

1
2

f h1[(Vs + V1)− (Vg,s + Vg,1)] . (B7)

The above equation is just Eq. (12). By using Leibniz’s rule,
the left-hand side of Eq. (B3) becomes

∫ h2

h1

∂U
∂t

dz =
∂

∂t

∫ h2

h1

Udz−U2
∂h2

∂t
+ U1

∂h1

∂t

=
∂

∂t

[(
U1 +

1
2

∆U
)
∆h21

]
−

(U1 +∆U)
∂(h1 +∆h21)

∂t
+ U1

∂h1

∂t

= ∆h21
∂U1

∂t
−∆U

∂h1

∂t
+

1
2

∆h21
∂∆U
∂t

. (B8)
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To derive Eq. (B8), the assumption of ∂∆h21/∂t = 0 is used,
and consequently ∂h2/∂t equals ∂h1/∂t. The right-hand side
of Eq. (B3) can be written as

∫ h2

h1

f (V −Vg)dz +

∫ h2

h1

∂uw
∂z

dz

=
1
2

f ∆h21[(V1 + V2)− (Vg,1 + Vg,2)]−uw1

=
1
2

f ∆h21(V1−Vg,1)−uw1 , (B9)

where V2, Vg,2 and uw2 equal zero. Thus, Eq. (B3) becomes

∆U21
∂h1

∂t
= ∆h21

∂U1

∂t
+

1
2

∆h21
∂∆U21

∂t

−1
2

f ∆h21(V1−Vg,1)−uw1 . (B10)

Integrating the left-hand side of Eq. (B4) and using Leibniz’s
rule gives

∫ h2+ε

h2

∂U
∂t

dz =
∂

∂t

∫ h2+ε

h2

Udz− (U2 +γuε)
∂(h2 +ε)

∂t
+ U2

∂h2

∂t

=
∂

∂t

[(
U1 +∆U +

1
2
γuε

)
ε

]
−

U2
∂ε

∂t
−γuε

∂ε

∂t
−γuε

∂h1

∂t

= ε

(
∂U1

∂t
+
∂∆U
∂t

)
−γuε

∂h1

∂t
. (B11)

To derive Eq. (B11), the relations U2 = U1 +∆U and ∂h2/∂t =

∂h1/∂t are used. It is obvious that the right-hand side of Eq.
(B4) equals zero since V equals Vg and uw equals zero at the
height above the entrainment zone. Thus, the right-hand side
of Eq. (B11) equals zero, and Eq. (B4) becomes

∂∆U
∂t

= γu
∂h1

∂t
− ∂U1

∂t
. (B12)

The above equation is just Eq. (14). By substituting Eq. (B7)
and Eq. (B10) into Eq. (B12) and rearranging the equation,
Eq. (13) can be obtained.

APPENDIX C

Derivation of Eq. (17)

The derivation begins with Eq. (16), which is rewritten as

d∆U
dh1

= − 2
1 + (1 +∆h21/h1)

∆U
h1

+
2(1 +∆h21/h1)

1 + (1 +∆h21/h1)
γu−

2
1 + (1 +∆h21/h1)

uws

S
−

1 +∆h21/h1

1 + (1 +∆h21/h1)
1
S

f h1(V1−Vg,1)−
1

1 + (1 +∆h21/h1)
1
S

f h1(Vs−Vg,s) . (C1)

By setting α = 1 + ∆h21/h1 and β = 1/(1 +α), Eq. (C1) be-
comes

d∆U
dh1

= −2β
∆U
h1

+ 2αβγu−2β
uws

S
− 1

S
αβ f h1(V1−Vg,1)−

1
S
β f h1(Vs−Vg,s) . (C2)

By setting a = 2β, b = −αβ f (V1−Vg,1)/S − β f (Vs−Vg,s)/S ,
and c = 2αβγu−2βuws/S , Eq. (C2) can be written as

d∆U
dh1

= −a
∆U
h1
−bh1 + c . (C3)

Assuming that ∆U depends only on h1, the solution of Eq.
(C3) can be obtained. It reads

ha
1∆U = − b

a + 2
ha+2

1 +
c

a + 1
ha+1

1 + Const . (C4)

When h1 equals zero, whether ∆U equals zero or not, Eq.
(C4) needs Const = 0. Thus, Eq. (C4) becomes

∆U = − b
a + 2

h2
1 +

c
a + 1

h1 . (C5)

Substituting a, b and c back into Eq. (C5), and, as discussed
in section 2.3, using α = 1 + ∆h21/h1 ≈ 1.19 to calculate the
coefficients, Eq. (C5) turns out to be

∆U = 0.57γuh1−0.48
h1

S
uws−

f h2
1(0.19V1−0.19Vg,1 + 0.16Vs−0.16Vg,s)

S
. (C6)

This equation is just Eq. (17).
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