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ABSTRACT

The radiation budget at the top of the atmosphere plays iaarible in climate research. Compared to the broadband
flux, the spectrally resolved outgoing longwave radiatiofiux (OLR), with rich atmospheric information in differebands,
has obvious advantages in the evaluation of GCMs. Unlikdnaulst that need auxiliary measurements and informatioe, her
we take atmospheric infrared sounder (AIRS) observatisraneexample to build a self-consistent algorithm by an argul
distribution model (ADM), based solely on radiance obsgove, to estimate clear-sky spectrally resolved fluxes trepical
oceans. As the key step for such an ADM, scene type estinsati@obtained from radiance and brightness temperature in
selected AIRS channels. Then, broadband OLR as well asetym#pectral fluxes are derived by the spectral ADM and
validated using both synthetic spectra and CERES (CloudstenEarth’s Radiant Energy System) observations. In most
situations, the mean OLR differences between the specBdl froducts and the CERES observations are withliW
m~2, which is less than 1% of the typical mean clear-sky OLR or@pital oceans. The whole algorithm described in this
study can be easily extended to other similar hyperspeactdidince measurements.
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1. Introduction Green and Hinton, 1996; Loeb et al., 1999). The ADM is
sually constructed for different scene types and evenifor d

The global outgoing longwave r_adla'qon or flux (OLR) Herent sub-scene types (hereafter, discrete intervalsichw
the top of the atmosphere (TOA) is uniquely important be_re defined by surface and atmospheric physical quantities
cause of its reflection of the net radiation budget of the cfy y P phy q

mate system. For a long time, OLR has been a critical qu Wielicki and Green, 1989; Loeb et al., 2000, 2003, 2005).

tity in climate research, both observationally and in sianul ese physical quantities largely determine the anisatrop

tions (Ramanathan et al., 1989; Wielicki et al., 2002; Allaﬁlltﬁsi?]u“%nuﬁ; tlgegg':uiggn:lr\:\tlsysFZTV:xfmb?eeS:glatsei b_y
et al., 2004). The spectrally resolved radiance (or flux) h 9 P ) b'e. P

a ) .
significant advantages in evaluating climate models dukstoﬁ)ﬁed by the Clouds and the Earth’s Radiant Energy Sys-

2 : . . tem (CERES) for broadband OLR have to combine the cloud
rich information about various atmospheric and surface;ph)fnask product and the cloud and aerosol product of MODIS

ical parameters (Goody et al., 1998). One of the advanta Moderate Resolution Imaging Spectroradiometer) (Loeb et

ZLilIJitS”:g ;\?sgt;ﬁgycgﬁogﬁsaggx ;(r)roer\'/saflruoa;:we d:?fg?:rl]? d;;r: a(?., 2003, 2005). Modern satellite sensors such as the at-
y P 9 mospheric infrared sounder (AIRS) (Aumann et al., 2003a;

na GCM (I—_|uang etal., 2006; Huang et "?‘"' 2007). How.eveé’hahine et al., 2006), the cross-track infrared SoundeigBi
the application of spectrally resolved radiance and fluyois n am et al., 2010), the tropospheric emission spectrometer

as preyalept as that_of brgadband OLR, mainly because of Ber et al., 2001), and the infrared atmospheric sounding i
difficulties involved in taking measurements.

o . . terferometer (Clerbaux et al., 2009), can provide highspec
Satellite instruments can only obtain radiances measurée L o .
o . ) .~~~ resolution infrared spectra with rich information abow #t-
at a certain viewing zenith angle, while fluxes require infor : o
. ! mosphere and surface. Numerous studies on the reliabiflity o
mation from all angles. One working method to convert mea- . .
: o . : ._products of atmospheric and surface parameters retrigwed b
sured radiance to radiative fluxes is using an angular dis | RS radiances have demonstrated an abundance of informa
bution model (ADM) (Smith et al., 1986; Suttles et al., 199 i

on contentin thermal-IR spectra (e.g., Susskind et AD32

Wu et al., 2005; Le Marshall et al., 2006; Zheng et al., 2015).
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Email: songl@mail.iap.ac.cn develop a solely radiance-based algorithm to derive the-spe

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag Berlin Heidelberg 2016



260 A SOLELY RADIANCE-BASED SPECTRAL ADM VOLUME 33

trally resolved flux according to hyperspectral measurémernCERES level 2 footprint data product, and the Single Séelli

such as those from AIRS. Footprint TOA/Surface Fluxes and Clouds Edition 2A (Loeb
Huang et al. (2008, 2010) developed a spectral ADM ard al., 2005). For Aqua-CERES-derived regional mean OLR,

successfully derived the spectral flux from collocated AIR®e estimated bias is 0.2—0.4 W Aand the estimated RMSE

and CERES measurements. Due to the requirement of nésitess than 0.7 W n? (Loeb et al., 2007).

simultaneous observations as well as the collocatioregfyat o

to overcome the differences in resolution or observatioraf- Forward radiative transfer model

area, the combinations between AIRS and CERES increaseWe use MODTRANM-5 version 2 revision 11 (here-

the difficulties in deriving fluxes and largely reduce theiava after, MODTRANDS) as the forward radiative transfer model

able samples. Here, still taking AIRS measurements as an &xconstruct the whole algorithm. MODTRANS is collab-

ample, we investigate the possibility of developing a seeneratively developed by Air Force Research Laboratory and

type classification algorithm that is only based on specti@pectral Sciences Inc. (Berk et al., 2005). Comparisons

radiance and, consequently, construct solely radianseebabetween MODTRANS and a line-by-line radiative transfer

spectral ADMs. The algorithm would not need to combinmodel (Clough and lacono, 1995; Clough et al., 2005) show

any other observations and can largely improve the amogaiod agreement in the thermal IR transmittances and radi-

of available samples and make better use of hyperspectralances (Anderson et al., 2006). In this study, a syntheticAIR

formation. spectrum is derived by convolving the MODTRANS output
As the first step, in this study, we focus on developinat a 0.1 cm? resolution with the spectral response functions

the solely radiance-based algorithm for clear skies oegr-tr of individual AIRS channels (Strow et al., 2003, 2006). The

ical oceans, to show the feasibility of, and the procedure fepectral fluxes at frequencies not covered by AIRS instru-

obtaining the spectrally resolved flux by AIRS only. Seanents are also estimated by MODTRANS simulations.

tion 2 describes the datasets and forward model used in this

study. The key new feature of this algorithm is to develop a )

radiance-based method for estimating the correct sceestyg- Algorithm

and constructing spectral ADMs. The details are described i The anisotropic factoR is the key parameter in an ADM

section 3. Then, validations of the entire algorithm aresho v, ohiain flux from radiance measured at any zenith angle. It
in section 4. Section 5 concludes with a summary and furﬂ]grdefined as

discussion.
my (6
R,(0) = %) )
v
2. Datasetsand model wherel, (08) andF, are the upwelling radiance and spectra

flux at the TOA, respectively. Different from the broadband
2.1. AIRS and CERES measurements anisotropic factor used in conventional ADMs, tRénere is
AIRS, onboard NASAs (National Aeronautics and Spaagot only a function of zenith anglé but also a function of
Administration) Earth Observing System Aqua satellitaris frequencyy.
infrared grating array spectrometer with 2378 channels (Au  Similar to those used in the CERES LW ADM (Loeb et
mann et al., 2003a). It measures radiances across three banhgd 2005), clear-sky scenes are further categorized to dif
(3.74-4.61, 6.20-8.22 and 8.8-15uh) with a resolving ferent discrete intervals according to the precipitabléewa
power @ /AA) of 1200(A is the wavelength). AIRS scans(PW), lapse rateAT) and surface skin temperaturg), For
from —49° to 49 with a horizontal resolution of 13.5 kmclear sky over the tropical oceans, 14 discrete intervas ar
at the nadir on the surface. AIRS records about 2.9 milli@mough for all possible clear-sky scenes observed over the
spectra per day with good calibration performance and glolean (Huang et al., 2008). Therefore, only 14 discrete in-
coverage (Chahine et al., 2006). In this study, the AIRS calervals are included to construct the spectral ADMs in this
brated radiances (level 1B) in the channels recommendeddtydy. Table 1 lists the details of the 14 discrete intervals
the AIRS team for level-2 retrieval purposes are appliets It  As mentioned in the introduction, the centerpiece of this
well-known that AIRS radiances from the 2169-3673¢m algorithm is to develop a radiance-based method to estimate
band contribute little to the longwave flux. So, the spectreie correct ranges of PWT andTs. Then, the appropriate
fluxes are derived only for 10-2000 cth As in Huang and discrete interval can be identified. To do so, we feed pro-
Yung (2005), we also screen the data with a strict quality cofiles from the ERA-Interim [European Centre for Medium-
trol procedure to exclude possible bad spectra. Range Weather Forecasts (ECMWF) Interim Reanalysis]
To validate the predicted broadband OLR, collocatesix-hourly output to MODTRANS to generate sufficient syn-
CERES measurements are needed. Two identical CEREStiretic AIRS spectra for exploring feasible ways to classify
struments (FM3 and FM4) were also aboard Aqua. The ithe correct ranges of PWT andTs from synthetic radiances
strument field of view of CERES is an approximate 20 kralone. Combined with the corresponding spectrally depen-
nadir-view footprint on the surface. We only apply the crosslent ADMs and the algorithm developed by Huang et al.
track CERES observations, since AIRS always operates(2008) for frequencies not covered by the AIRS instrument,
such a mode. The CERES datasets used here are the Agpactral flux over the entire longwave spectrum can then be



FEBRUARY 2016 SONG AND WANG 261

Table 1. The 14 discrete intervals of precipitable water (PW), lapsgapor absorption. Since only an estimation of PW is needed
rate (AT) and surface skin temperatur@s) used in the solely in this case, instead of exact retrieval, a double-difféaén
radiance-based estimation method for clear skies overicabp technique is used here to categorize the PW. The double-

oceans. differential technique is based on the different absorptie-
Discrete interval PW (cm) AT (K) Ts (K) pendencies on frequency to discriminate different abgsrbe
and has been widely used in UV and visible remote sensing
1 0-1 <15 270-290  (Komhyr et al., 1989; Frouin and Middleton, 1990). Here,
2 0-1 <15 290-310  thijs technique is applied to remove the continuum contribu-
3 0-1 15-30 270-290 tjon so as to improve the accuracy of the estimation of PW
4 0-1 15-30 290-310 from radiance.
S 1-2 <15 270-290 Two pairs of AIRS channels with similar frequency in-
6 1-2 <15 290-310  taryals in each pair are chosen as channel 1 to 4, as listed in
7 1-2 15-30 210-290 1316 2. The wavenumbers in the selected channels are 779.5
g ij 12:28 ?1)8:2;8 and 780.8 cml in one pair, and 827.7 and 829.3 Ci"nin_
10 95 <15 270-290 the other palr,_respectlvely. Each pair includes a relbtive
11 o5 <15 290-310 s’grong apsorpt_lon line and a relatively weal_< one. The double
12 o5 15-30 290-310 differential radiancel Rad, can then be derived as
13 >5 <15 290-310 ARad= (Rad, — Rad) — (Rad — Rad) , 2
14 >5 15-30 290-310

where Rag is the radiance of thath channel. In each pair,

the spectral interval is 1.3 and 1.6 chrespectively. Given

estimated. A flowchart summarizing the whole procedure tife linear shape of the water vapor continuum in the spec-

the algorithm in this section is shown in Fig. 1. tral range, which is very narrow and close, the contribution
. of slow-varying continuum absorption toRad is largely re-

3.1. Precipitable water moved. The radiance differences caused by water vapor ab-
The PW is also called the total column water vapor. It isorption should be closely related to absorption diffeesnc
defined as the vertical integration of atmospheric water vaetween the relatively strong and weak water vapor absorp-
por mass. The relationship between the radiance due to tioé lines. Then, the PW can be classified exactly by radiance

water vapor line absorption and the PW is not simply lineakithout any a priori information. Furthermore, a transpeare
The continuum absorption of water vapor is the main reasohannel at 963.8 crit, listed as channel 5 in Table 2, is also
while the atmosphere and surface emissions make the predlected to show the impact &f. This method is very sim-
lem more complicated. However, the water vapor continutifar to the classical application for the retrieval of ozdne

in the window region varies slowly with frequency comparegemoving the scattering effect.

to the fast variation of absorption lines. Meanwhile, water To set up a look-up table, more than 560 000 ECMWF
vapor in the lower troposphere is the dominant part in watsix-hourly profiles over the ocean betweeriS@nd 50N in

Scene type and
discrete intervals
classification

ECMWF 6-hourly
<T, q> profiles

AIRS
measurements

Synthetic AIRS sporl'm
Synthetic spectral > AIRS channels
fluxes R.(6)
Spectral Fluxes at

Spectral fluxes at
no coverage @ gIRS ibanast

channels @

Full set of spectral fluxes
from 10 to 2000 cm'!

Fig. 1. Flowchart illustration of the solely radiance-based altbon for deriving
spectral fluxes from 10 to 2000 crhby AIRS observations only.



262 A SOLELY RADIANCE-BASED SPECTRAL ADM VOLUME 33

Table 2. Information on the AIRS channels selected for estimating.2. Lapse rate and surface skin temperature

the discrete intervals. WF means weighting function. The AT used here is defined as the vertical temperature

Wavenumber Peak of WE  Remarks change of the first 300 hPa above the surface. Listed as chan-
(cmY) nel 6 in Table 2, a C@absorption channel at 748.6 chwith

the peak of weighting function around 753.6 hPa is selected

Channel1l  779.4550 60 hPa aboveStrong water vapor , represent the temperature of 300 hPa above the surface.

surface absorption Together with channel 5, which represents the surface tem-
Channel 2 780.8400 Surface :g:::( t\{\é anter Vapo{)e?ature, theAT is related with thepdifference between the
Channel 3 827.7470 60 hPa aboveStrong V\?a:ter vapor brightness temperatures of two selected channels (hergaft
surface absorption ATg). . . . .
Channel4  829.2988  Surface Weak water vapor N the 14 discrete intervals used in this study, there are
absorption only two AT sub-intervals that are:15 and 15-30 K. Given
Channel 5 963.8364 Surface Window region  the near-linear relationship betweA andATg, a simple
Channel 6 748.5600 753.6 hPa gabsorption threshold method is sufficient for classification. Simiarl

about 91 000 ECMWEF six-hourly profiles over the ocean be-
tween 30S and 30N in January 2006 are fed into MOD-

2005 January are fed into MODTRANS to generate synthetﬁ‘QAl\l5 to generate synthetic AIRS spectra. So, the bright-

AIRS gpectra. Then-, the look-up table can be ConStrUCtﬁgss temperatures of channel 6 at 748.6 tand channel 5
according to the radiances of the four water vapor absotf-gea g ¢yl (as listed in Table 2) can be obtained and the
tion channels 14, t_he brightness te_mperature of channe ETB values are classified to different sub-intervals according
and the correspon_dmg PW value. Figure 2 shows the logi-y, o correspondingT value from the input ECMWF pro-

up tak_JIe“ at nao’l’lr-wew. _The smaller PW _values of less _th fbs. Then, for each pair of adjacent sub-intervals, thg@ero

2 cm in *cooler” colors IS _th.e most cpmpllcated part, mainly, g q ofATg that can categorize the correspondikig

d?e to the weaker dsehnsmv!ty of radl;amcel toa §maIl:I) amzlﬁmo the correct sub-interval is derived A%z-thres The same

of water vapor and the existence of an inversion boundaiiiqation dataset as PW is applied to show the accuracy of

layer. In order to validate the look-up table, about 45 OO[RiS method. Eaci\Ts between channel 6 at 748.6 cin
ECMWEF profiles over the ocean betweerfSGnd 30N in and channel 5 at 963.8 crhin the validation dataset are

January, April, July f';md October 2002 are randomly selectgglmpared With the\Ts-res If ATg is less thamMTs-res
to gen_erate synthetic AIRS spectra t,)y MOD_TRANS' The'fhe spectra are classified to sub-intervals wifh < 15 K.
the brightness temperature and radiances in selected c ierwise, the spectra should be classified to sub-intrval

nels are applied to the look-up table to estimate the PW ah 15 K < AT < 30 K. The accuracy of this simple thresh-

consequently its sub-intervals. Compared with true PW S%a method for the lapse rate is about 91% at nadir-view, as
intervals determined by the input ECMWF profiles, the acCcup own in Table 3

racy of this method is about 82% at nadir-view, as shown In For T, the brightness temperature of the window region

Table 3. listed as channel 5 in Table 2 (hereafigg) is directly used
(em) to represenfs. As listed in Table 1, there are thr@g sub-

310 intervals: 270-290, 290-310 and 310-330 K. Similar to the

6 lapse rate, the simple threshold method is also applied for

the estimation oflg sub-intervals due to the linear relation-
5 ship betweernTs and Tgs. The only difference foffs is that
there are two thresholds for three sub-intervals. Using the
4 same training and validation dataset as the lapse rate, the
two thresholds ofigs are selected to categorize proper sub-
3 intervals ofTs and the accuracy of the estimationTgfis over
99% at nadir-view, as shown in Table 3.

w
<]
=

3.3. Classification at multiple viewing zenith angles

The methods described above are all based on the dataset
at nadir-view and have to be extended to multiple view-
ing zenith angles. Technically, similar training processe
are needed at every observational angle because AIRS scans
from —49 to 49 with an interval of 1.1 (Aumann et al.,
2003a). However, according to the definition of transmit-
uary 2005 over the ocean betweerf Stand 50N, simulated tance, the radiance at the TOA has correlations wjtbok6.

by MODTRANS at nadir-view. The color scale shows the total To §ir_np|ify the problem, t.he. Iinea}r fitting al_ong/ tosf is
PW. sufficient for our case. Similar with the training process at

Brightness temperature of Channel 5 (K)

14 05 0 05 1 15 2 25
ARad (x 107 Wsrt em? (em™)?)

Fig. 2. The look-up table derived from ECMWF data in Jan-
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Table 3. The estimation accuracy (%) of sub-intervals of precipéakater (PW), lapse raté\[’), and surface skin temperaturg) at
different viewing zenith angles.

Viewing zenith angle

0° 5° 100 15° 20 25 30 35 40 45°
PW 81.97 81.99 82.06 82.12 82.17 82.16 82.05 81.81 81.49 380.9
AT 90.91 90.92 90.91 90.90 90.92 90.89 90.81 90.63 90.31 89.62
Ts 99.74 99.74 99.74 99.74 99.74 99.74 99.74 99.74 99.72 99.72

nadir-view, ECMWF six-hourly profiles over the ocean beat multiple angles. The results are listed in Table 3. Com-
tween 30S and 30N in January 2006 are fed into MOD-pared to the results at nadir-view, the accuracy of the astim
TRANS to generate synthetic AIRS spectra at,130° and tion varies little along zenith angle.
45°. Together with the dataset at,dour groups of the radi-
ances and brightness temperatures in the selected chimnelé  Spectrally dependent ADMs and spectral fluxes
Table 2 are derived. AIRS has no coverage at frequencies lower than 649.6
ForTs, there is no obvious zenith angle dependence duedm * or between 1613.9 and 2000 ch There are also
the transparent feature of the window channel. So, the saswene gaps between 649.6 and 1613.9 tnSince we want
thresholds offgs as in section 3.2 are chosen at differént to derive spectral fluxes based only on AIRS radiances ob-
For the lapse rate, if we assume that the thresholds are chaggvations over the whole IR region, the spectral flux in each
ing monotonically along AcosB, the thresholds at all anglesAIRS channel and AIRS gaps should both be handled.
can be derived by linear fitting. We obtain the thresholds by For each of the AIRS channels, more than 80 000 ran-
training the dataset &T and correspondingTg at 15, 30° domly selected ECMWF profiles over the ocean between
and 45, respectively. Together with the thresholds atthe 30°S and 30N in January, April, July and October 2002 are
coefficients for each threshold at different angles areyegd selected and the anisotropic factors for zenith angles fom
linear fitting of four points along AcosB. Then, the thresh- to 45 of each AIRS channels is obtained by feeding these
olds at all zenith angles fronf@o 45 are derived. profiles into MODTRANS. The anisotropic factors and asso-
For the look-up table of PW, the relationship is not exactigiated profiles are categorized into discrete intervals\bf P
the same in each PW interval. In fact, ofiiRad is chang- AT andTs, as listed in Table 1. In the same discrete interval,
ing with 8, while the brightness temperature of the windowhe mean anisotropic factor is defined by the mean value from
channel has no obvious zenith angle dependence due taltsamples. Then, the spectral fluxes in AIRS channels can
transparent feature. So, if tiidRad at different zenith angle be derived according to the spectrally dependent ADMs.
can be converted to an equivalent range®attfe look-up ta- To estimate spectral fluxes in the frequency gaps of AIRS
ble at @ can then be easily applied to estimate the PW anditsstruments, the same scheme as in Huang et al. (2008, 2010)
determine the corresponding sub-intervals. Accordindpéo tis authorized to apply here; see Huang et al. (2008, section
training dataset of PW amtRad at 0, 15°, 3¢° and 45, PW 3.2) for more detail. Based on principal component analy-
data are first grouped asl cm, 1-5 cm per 0.2 cm, ang5  sis, the unknown information in the channels not covered by
cm. Then, the correspondifdRad values are classified intoAIRS can be estimated by the nearest channels with similar
different groups. For each pair of adjacent groups, a threspectral resolutions. By training ECMWEF profiles, spectral
old of ARad that can categorize the corresponding PW intiloixes over “filled-in channels” are estimated with a multi-
a proper group is derived at four zenith angles, respegtivalegression scheme, which essentially finds the least-eguar
Hence, there are 22 thresholds for each zenith angle. Thiditi®f the projections of spectral fluxes in AIRS channels onto
similar to the simple threshold method described in sectitime predefined principal components. This kind of solution
3.2. Again, linear fitting between thresholds anit@sf of has been used in other estimations of missing information
four points’ data (four zenith angles) for each pair of adjde.g., Mann et al., 1998).
cent groups are carried out to obtain the coefficients. Then,
the dataset of thresholds for all zenith angles is derived. | o
other words, the linear fitting process for the lapse rate, & Validation
scribed above, is rgpeated 22 times to set_up a whole. thresh—AS listed in Table 1, the PW sub-intervals described in
old database for different PW values at different zenith agztion 3.1 are slightly different to those used in CERES

gles. According to this threshold database, a gil®ad at Apwis. First, in section 4.1, the effect of the adjustment is

6 can be properly mapped to the equivalent group at naqig,y ated. Validation of the whole algorithm includes theo

view. Then, the PW sub-intervals can be derived accordifg;co| yalidation and observational comparison. In secti

to th? "?Ok'“p table shown In Fig. 2'_ i 4.2, synthetic AIRS spectra are combined with the radiance-
Slml!arly, ECMWF .proflles at differend over tropical paseq classification of discrete intervals to derive the-spe

oceansin January, April, July and October 2002 are randorgly; f,ves.  Comparing between such spectral fluxes and

selected to validate the accuracy of this classificatiorhogét 4 o directly computed from MODTRANS can help eval-
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uate the whole algorithm theoretically because the diffemo more than 1.3 W m?. The maximum differences from
ences are only from this algorithm, while MODTRANS5 isndividual discrete intervals are withia3 W m~2. The OLR
used as a surrogate of radiative transfer in the real worttifferences for other viewing zenith angles are similahatt
Comparison between the broadband OLR derived from teeown in Fig. 3.
AIRS observations by this algorithm and those of collocated The differences between the predicted and directly com-
CERES measurements is described in section 4.3. This cquuted spectral fluxes are also examined and the results at
parison includes more realistic uncertainties, such asetiro nadir-view are shown in Fig. 4 as an example. For each dis-
spectroscopy, forward modeling and collocation strated@e crete interval, the mean differences of spectral fluxes-aver
show the reliability of the whole algorithm for real observaaged for every 10 cm from 10 to 2000 cm? are calculated
tions. at nadir-view. For the discrete intervals with sufficieninsa
) ) o ples, about 95% of all samples have a mean difference within

4.1. Evaluation of the adjustment of precipitable water_ g g3 W(rr? x 10 cnr 1)~ and more than 98% of them have

sub-intervals a mean difference withis-0.05 W(n? x 10 cnm)~1. Pro-

To improve the accuracy of the PW look-up table methogdprtionally, more than 99% of all samples have a mean rela-
the PW sub-intervals are adjusted<d, 1-2, 2-5 and>5, tive difference less thait5%, while about 96% of all samples
while those in the CERES ADMs arel, 1-3, 3-5 and>5. have a mean relative difference less thHz8f6. Although the
Statistical analysis of the ECMWEF profiles in January 200fistribution of samples is not well-proportioned in allcliste
over the ocean between@and 30N shows that the distri- intervals due to the adjustments for PW sub-intervals, the
bution patterns of sample number in all 14 discrete intervalomparisons still show good agreement for most situations.
are similar before and after adjustment, although the sesnprhis indicates that, at least for theoretical comparistimes,
in discrete intervals 11 and 12 increase while those in discr algorithm is capable of obtaining spectral fluxes at 10tm
intervals 1-10 decrease. intervals with sufficient confidence.

To evaluate the effect on the predicted fluxes caused b)é
this adjustment, we randomly choose the ECMWF profiles th
January 2005 and January 2006 in conjunction with MOD- To evaluate the performance of the algorithm for real
TRANS to derive synthetic AIRS spectra. Then, predicteabservations, broadband OLRs derived by this algorithm
OLR and spectra from 10 to 2000 ccan be generated byfrom AIRS spectra (OLRrs) are compared with collocated
the spectral ADMs to compare with the directly computeGERES OLR measurements (Ogfke9. Clear-sky obser-
OLR and spectra fluxes. In this validation, the discrete inations in 2004 over tropical oceans {33-30N) are used
tervals are classified according to the true values of PW, and the collocated strategy is very similar with that used in
andAT from ECMWF profiles instead of the radiance-basdduang et al. (2008). An AIRS observation and a CERES
methods described in sections 3.1 and 3.2. So, the emogasurement are considered as collocated only when (1) the
caused by the estimated method is excluded and the differ-
ences between the predicted and directly computed results 9=0"
each discrete interval are only due to the adjustment of PV 3 ;
sub-intervals. The validation results show that the mekn re
ative differences are withir-0.5% and the standard devia-
tions are no more than 1%. The statistical results show the«~ |
the bias caused by PW subinterval adjustment is acceptab £
in most discrete intervals.

. Comparison with collocated CERES observations

2k

2

4.2. Theoretical validation

ECMWF profiles over the ocean betweerfS@nd 36N
in April and October 2006 are randomly selected and fed intc
MODTRANS. The appropriate discrete intervals are classi- -3t
fied by the radiance-based method instead of the true valu
Then, synthetic AIRS spectra and longwave spectral fluxe 471 2 3 4 5 6 7 8 9 10 11 12 13 14
are derived, as described in section 3.4. Taking nadir-aigw ADM true discrete interval
an example, the differences between the spectral fluxes and
the broadband OLR predicted from the synthetic AIRS specfig- 3- The mean differences between the broadband OLR pre-
tra and the one directly computed from MODTRANS are ex- dicted from the synthetic AIRS spectra at nadlr.-V|eW apd di-
amined. Figure 3 shows the differences of broadband OLR artectIy computed OLR from MODTRANS for 14 discrete inter-

. . .. . . vals classified by the solely radiance-based method. The inp
14 discrete intervals at nadir-view. Discrete intervalg and data are randomly chosen from ECMWF profiles over tropical

9 are not included due to the fact that there are not enougf.eans in April and October 2006. The dots show the mean

samples to give statisftical results. For other discreterint gitferences, the error bars show the meaatandard deviation,
vals, the mean OLR differences are between 0 a8®2 W and the circles show the maximum and minimum relative dif-

m~2 (a fraction of about 0.7%), with standard deviations of ferences for each discrete interval.

OLR difference (W
N [
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0=0 Wm? (10 em?)Y) Given that the CERES ADMs use a pair of slightly dif-
14 IO-I ferent anisotropic factors for daytime scenes and niglettim

scenes, we further examine the comparison results in two
groups: one in the ascending node and the other in the de-
£10.05 scending node. Figures 6a and b show the monthly mean
OLR differences in 2004 of ascending and descending nodes,
I respectively. There is only a small fluctuation of OLR dif-
10 ferences among different months due to the limitation of the
training dataset for PW[s andAT estimation, especially for
the ascending node. The mean OLR differences are within
_ ﬂ -0.05 +0.36 W m 2, while the standard deviations are no more
than 1.18 W m? for both nodes. The mean OLR differences
[BHRE for different discrete intervals are also examined and #ie r
i 3 0.1 sults are shown in Fig. 7. The pattern is similar for both reode
0 200 400 600 800 100012001400160018002000 and there is obvious variation among different discreterint
Wavenumber (cm ) vals. As mentioned above, the samples are not equally dis-
, ) , tributed in different discrete intervals during both thesining
Fig. 4. The mean dlfference_s between the pred|ct_ed TOASpec-y g validation process. For this OLR comparison in 2004,
tr_al fluxes based on synthetic AIRS spectra at nadir-viewtlaad the discrete intervals of 3, 4 and 7 have few samples, while
directly computed TOA spectral fluxes from MODTRANS for . . ’ ;
each ADM discrete interval. The spectral flux is computed for the last four discrete mtgrvals, :!'1_14' have more than 98% o
every 10 cmt interval from 10 to 2000 cmt. The units of the  @ll samples. For most discrete intervals except 1, 3 ance7, th
mean differences are W@n* 10 Cn‘rl)*l_ The ordinate repre- mean OLR differences are withia2 W miz, which is less
sents the 14 discrete intervals that are classified by teéput ~ than 196 of typical mean clear-sky OLR over tropical oceans.
PW value. The input data are randomly chosen from ECMWF In brief, the results of both the theoretical validation and
profiles over tropical oceans in April and October 2006. the AIRS—CERES comparisons show consistent performance
in most situations, except some discrete intervals with lim
ited samples. This indicates confidence of the algorithm in

==
[
-

ADM true discrete interval

= N W S U1 OO N
T T T T 1

45 obtaining broadband OLR and spectral fluxes at 10tor
ar 1 even larger spectral intervals.
Mean = 0.1880
3.5
L STD =1.1268 . .
J 3 5. Summary and discussion
22 : ,
g’ > In order to obtain spectral fluxes in the thermal-IR band,
22 AIRS spectra are employed as an example to explore the pos-
1.5¢ sibility of developing an algorithm for clear skies overgro
i ical oceans, based only on radiance measurements. The ra-
diances and brightness temperatures in selected AIRS chan-
0.5 nels are applied to estimate PW, and AT and determine
9% 15 10 = 0 5 o 15 20 the proper discrete intervals needed for the spectral ADMs.

OLR, . -OLR . (W m?) Then, the spectral fluxes and broadband OLRs can be con-
verted from AIRS radiances by a spectrally dependent ADM.
The solely radiance-based algorithm is validated agaymst s
thetic spectral fluxes as well as collocated CERES OLR ob-
servations, and show good consistency in most situations.
This algorithm can be easily extended to other similar hy-

time interval between two observations is within 6 s and (?)er?_pectril r?k?lanclelmea(;uremebnts. d algorith letel
the distance between the center of an AIRS footprint and that 0 make the Solely radiance-based algoritnm completely

of a CERES footprint on the surface is less than 3 km Uﬁ\pplicable in practical observations, the classificatidn o

der these collocated criteria, about 1.061 million colteda clear-sky and cloudy scenes based only on radiance is an

clear-sky observations over tropical oceans in 2004 are gg_sen'qal preco_ndltlon. Hovx_/ever, itis still a challengiagk
achieve precisely. The tri-spectrum method (Ackerman et

lected. The clear-sky or cloudy scenes are determined frdPh : :

relative CERES products. Figure 5 shows a histogram of e 1990), V.Vh_'Ch USes brightness temperatures m.c 8,11 and
differences between Oldis and OLRegresfor all samples 1 um to d|st|ngu|_sh clear-sky, water_ cloud and ice cloud
in 2004. The histogram approximates the Gaussian distritg-° longer effective due to the gap in AIRS radiances be-

tion and the mean differences are 0.19 Wwith a standard :\évefr? 8.1 Trllg gm ' dG|venttr11;1;[3r1no§1t transpatlr%nt'; cgannels n
deviation of 1.23 W m2. e thermal-IR band are a cmsuggested by Aumann

Fig. 5. Histogram of differences between AIRS-derived OLR
and CERES OLR for all collocated AIRS and CERES clear-sky
footprints over tropical oceans in 2004.
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2004 daytime used to compute Threshald,, which is defined as
2 @) Thresholdzz1 = Tg1231— Tor , ()
1 According to the collocated CERES scenes, there are 4646
— 0 ] clear-sky samples and 51 828 cloudy samples in this month.
‘e ar i For example, Thresholjgs; is set as 3.6 K, then samples with
2 Threshold,3; over 3.6 K are clear-sky scenes and others are
2-2 cloudy scenes. The accuracy of this method is 70.66% for
o 2004 nighttime CERES clear scenes and 89.16% for CERES cloudy scenes.
° 2 b) o ‘ For the CERES cloudy scenes misclassified as clear, 75% of
‘0 1t | misclassified samples are lower than 850 hPa, while 90% of
oS I I I I I I I I I them have a fraction less than 20%. A stricter Threshgid
o 0 H l J 1 l l l 1 canimprove the accuracy of clear-sky estimation, but i als
. largely excludes actual clear-sky samples, which cannot be
e determined exactly. It is still under investigation as tavho
Jan FebMarAprMayJun Jul AugSep OctNovDec to eliminate this kind of low and broken cloud based on radi-
Month ances only.

For the solely radiance-based algorithm itself, uncertain
Fig. 6. (a) The monthly mean differences between the clear-skyties in the derived spectral fluxes could originate fromoasi
OLR in 2004 over the tropical oceans estimated from AIRS sgurces. Due to the complexity of water vapor continuum ab-
spectra measured during daytime and that from the c_oIIdcate sorption, the accuracy of the double-differential apphozan
CERES measurements. The dots show the mean differencegyj| he improved. Chen and Huang (2014) developed a sim-
and the error bars ate standard deviation. (b) As in (a) but for ilar differential absorption method to improve the estiiat

nighttime. of the clear-sky column water vapor, although differentpai
of water absorption channels were applied and the contribu-
2004 daytime tion of the lapse rate was also considered. The adjustments
6 of PW sub-intervals and the finite training dataset cause the
2@ l non-uniform distribution among different discrete intels/
2 for scene-type classification as well as spectral ADM con-
o 1 struction. Meanwhile, errors in spectral fluxes over thérent
; -2f 1 thermal-IR spectral range exist in the multivariate regis
=, -4 1 schemes and also in forward radiative transfer modeling, es
E -6 pecially in the far IR band, which is not covered by the AIRS
e 2004 nighttime instrument. Furthermore, as a first step for deriving TOA
6 o) — spectral fluxes for all skies based solely on radiance, more
§ a® 1 effort is needed to develop a similar algorithm for cloudy
g 2 1 scenes.
0
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