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ABSTRACT

The radiation budget at the top of the atmosphere plays a critical role in climate research. Compared to the broadband
flux, the spectrally resolved outgoing longwave radiation or flux (OLR), with rich atmospheric information in differentbands,
has obvious advantages in the evaluation of GCMs. Unlike methods that need auxiliary measurements and information, here
we take atmospheric infrared sounder (AIRS) observations as an example to build a self-consistent algorithm by an angular
distribution model (ADM), based solely on radiance observations, to estimate clear-sky spectrally resolved fluxes over tropical
oceans. As the key step for such an ADM, scene type estimations are obtained from radiance and brightness temperature in
selected AIRS channels. Then, broadband OLR as well as synthetic spectral fluxes are derived by the spectral ADM and
validated using both synthetic spectra and CERES (Clouds and the Earth’s Radiant Energy System) observations. In most
situations, the mean OLR differences between the spectral ADM products and the CERES observations are within±2 W
m−2, which is less than 1% of the typical mean clear-sky OLR over tropical oceans. The whole algorithm described in this
study can be easily extended to other similar hyperspectralradiance measurements.
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1. Introduction

The global outgoing longwave radiation or flux (OLR) at
the top of the atmosphere (TOA) is uniquely important be-
cause of its reflection of the net radiation budget of the cli-
mate system. For a long time, OLR has been a critical quan-
tity in climate research, both observationally and in simula-
tions (Ramanathan et al., 1989; Wielicki et al., 2002; Allan
et al., 2004). The spectrally resolved radiance (or flux) has
significant advantages in evaluating climate models due to its
rich information about various atmospheric and surface phys-
ical parameters (Goody et al., 1998). One of the advantages
of using spectrally resolved flux to evaluate models is the
ability to avoid the compensating errors from different bands
in a GCM (Huang et al., 2006; Huang et al., 2007). However,
the application of spectrally resolved radiance and flux is not
as prevalent as that of broadband OLR, mainly because of the
difficulties involved in taking measurements.

Satellite instruments can only obtain radiances measured
at a certain viewing zenith angle, while fluxes require infor-
mation from all angles. One working method to convert mea-
sured radiance to radiative fluxes is using an angular distri-
bution model (ADM) (Smith et al., 1986; Suttles et al., 1992;
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Green and Hinton, 1996; Loeb et al., 1999). The ADM is
usually constructed for different scene types and even for dif-
ferent sub-scene types (hereafter, discrete intervals), which
are defined by surface and atmospheric physical quantities
(Wielicki and Green, 1989; Loeb et al., 2000, 2003, 2005).
These physical quantities largely determine the anisotropic
distribution at the TOA and always have to be estimated by
utilizing multiple measurements. For example, ADMs ap-
plied by the Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) for broadband OLR have to combine the cloud
mask product and the cloud and aerosol product of MODIS
(Moderate Resolution Imaging Spectroradiometer) (Loeb et
al., 2003, 2005). Modern satellite sensors such as the at-
mospheric infrared sounder (AIRS) (Aumann et al., 2003a;
Chahine et al., 2006), the cross-track infrared Sounder (Bing-
ham et al., 2010), the tropospheric emission spectrometer
(Beer et al., 2001), and the infrared atmospheric sounding in-
terferometer (Clerbaux et al., 2009), can provide high spectral
resolution infrared spectra with rich information about the at-
mosphere and surface. Numerous studies on the reliability of
products of atmospheric and surface parameters retrieved by
AIRS radiances have demonstrated an abundance of informa-
tion content in thermal-IR spectra (e.g., Susskind et al., 2003;
Wu et al., 2005; Le Marshall et al., 2006; Zheng et al., 2015).
Hence, we are motivated to explore whether it is possible to
develop a solely radiance-based algorithm to derive the spec-
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trally resolved flux according to hyperspectral measurements,
such as those from AIRS.

Huang et al. (2008, 2010) developed a spectral ADM and
successfully derived the spectral flux from collocated AIRS
and CERES measurements. Due to the requirement of near-
simultaneous observations as well as the collocation strategy
to overcome the differences in resolution or observational
area, the combinations between AIRS and CERES increase
the difficulties in deriving fluxes and largely reduce the avail-
able samples. Here, still taking AIRS measurements as an ex-
ample, we investigate the possibility of developing a scene-
type classification algorithm that is only based on spectral
radiance and, consequently, construct solely radiance-based
spectral ADMs. The algorithm would not need to combine
any other observations and can largely improve the amount
of available samples and make better use of hyperspectral in-
formation.

As the first step, in this study, we focus on developing
the solely radiance-based algorithm for clear skies over trop-
ical oceans, to show the feasibility of, and the procedure for,
obtaining the spectrally resolved flux by AIRS only. Sec-
tion 2 describes the datasets and forward model used in this
study. The key new feature of this algorithm is to develop a
radiance-based method for estimating the correct scene types
and constructing spectral ADMs. The details are described in
section 3. Then, validations of the entire algorithm are shown
in section 4. Section 5 concludes with a summary and further
discussion.

2. Data sets and model

2.1. AIRS and CERES measurements

AIRS, onboard NASA’s (National Aeronautics and Space
Administration) Earth Observing System Aqua satellite, isan
infrared grating array spectrometer with 2378 channels (Au-
mann et al., 2003a). It measures radiances across three bands
(3.74–4.61, 6.20–8.22 and 8.8–15.4µm) with a resolving
power (λ/∆λ ) of 1200(�is the wavelength). AIRS scans
from −49◦ to 49◦ with a horizontal resolution of 13.5 km
at the nadir on the surface. AIRS records about 2.9 million
spectra per day with good calibration performance and global
coverage (Chahine et al., 2006). In this study, the AIRS cali-
brated radiances (level 1B) in the channels recommended by
the AIRS team for level-2 retrieval purposes are applied. Itis
well-known that AIRS radiances from the 2169–3673 cm−1

band contribute little to the longwave flux. So, the spectral
fluxes are derived only for 10–2000 cm−1. As in Huang and
Yung (2005), we also screen the data with a strict quality con-
trol procedure to exclude possible bad spectra.

To validate the predicted broadband OLR, collocated
CERES measurements are needed. Two identical CERES in-
struments (FM3 and FM4) were also aboard Aqua. The in-
strument field of view of CERES is an approximate 20 km
nadir-view footprint on the surface. We only apply the cross-
track CERES observations, since AIRS always operates in
such a mode. The CERES datasets used here are the Aqua-

CERES level 2 footprint data product, and the Single Satellite
Footprint TOA/Surface Fluxes and Clouds Edition 2A (Loeb
et al., 2005). For Aqua-CERES-derived regional mean OLR,
the estimated bias is 0.2–0.4 W m−2 and the estimated RMSE
is less than 0.7 W m−2 (Loeb et al., 2007).

2.2. Forward radiative transfer model

We use MODTRANTM-5 version 2 revision 11 (here-
after, MODTRAN5) as the forward radiative transfer model
to construct the whole algorithm. MODTRAN5 is collab-
oratively developed by Air Force Research Laboratory and
Spectral Sciences Inc. (Berk et al., 2005). Comparisons
between MODTRAN5 and a line-by-line radiative transfer
model (Clough and Iacono, 1995; Clough et al., 2005) show
good agreement in the thermal IR transmittances and radi-
ances (Anderson et al., 2006). In this study, a synthetic AIRS
spectrum is derived by convolving the MODTRAN5 output
at a 0.1 cm−1 resolution with the spectral response functions
of individual AIRS channels (Strow et al., 2003, 2006). The
spectral fluxes at frequencies not covered by AIRS instru-
ments are also estimated by MODTRAN5 simulations.

3. Algorithm

The anisotropic factorR is the key parameter in an ADM
to obtain flux from radiance measured at any zenith angle. It
is defined as

Rν(θ ) =
πIν(θ )

Fν
, (1)

whereIν(θ ) andFν are the upwelling radiance and spectra
flux at the TOA, respectively. Different from the broadband
anisotropic factor used in conventional ADMs, theR here is
not only a function of zenith angleθ but also a function of
frequency,ν.

Similar to those used in the CERES LW ADM (Loeb et
al., 2005), clear-sky scenes are further categorized to dif-
ferent discrete intervals according to the precipitable water
(PW), lapse rate (∆T ) and surface skin temperature (Ts). For
clear sky over the tropical oceans, 14 discrete intervals are
enough for all possible clear-sky scenes observed over the
ocean (Huang et al., 2008). Therefore, only 14 discrete in-
tervals are included to construct the spectral ADMs in this
study. Table 1 lists the details of the 14 discrete intervals.

As mentioned in the introduction, the centerpiece of this
algorithm is to develop a radiance-based method to estimate
the correct ranges of PW,∆T andTs. Then, the appropriate
discrete interval can be identified. To do so, we feed pro-
files from the ERA-Interim [European Centre for Medium-
Range Weather Forecasts (ECMWF) Interim Reanalysis]
six-hourly output to MODTRAN5 to generate sufficient syn-
thetic AIRS spectra for exploring feasible ways to classify
the correct ranges of PW,∆T andTs from synthetic radiances
alone. Combined with the corresponding spectrally depen-
dent ADMs and the algorithm developed by Huang et al.
(2008) for frequencies not covered by the AIRS instrument,
spectral flux over the entire longwave spectrum can then be
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Table 1. The 14 discrete intervals of precipitable water (PW), lapse
rate (∆T ) and surface skin temperature (Ts) used in the solely
radiance-based estimation method for clear skies over tropical
oceans.

Discrete interval PW (cm) ∆T (K) Ts (K)

1 0–1 < 15 270–290
2 0–1 < 15 290–310
3 0–1 15–30 270–290
4 0–1 15–30 290–310
5 1–2 < 15 270–290
6 1–2 < 15 290–310
7 1–2 15–30 270–290
8 1–2 15–30 290–310
9 1–2 15–30 310–330
10 2–5 < 15 270–290
11 2–5 < 15 290–310
12 2–5 15–30 290–310
13 > 5 < 15 290–310
14 > 5 15–30 290–310

estimated. A flowchart summarizing the whole procedure of
the algorithm in this section is shown in Fig. 1.

3.1. Precipitable water

The PW is also called the total column water vapor. It is
defined as the vertical integration of atmospheric water va-
por mass. The relationship between the radiance due to the
water vapor line absorption and the PW is not simply linear.
The continuum absorption of water vapor is the main reason
while the atmosphere and surface emissions make the prob-
lem more complicated. However, the water vapor continuum
in the window region varies slowly with frequency compared
to the fast variation of absorption lines. Meanwhile, water
vapor in the lower troposphere is the dominant part in water

vapor absorption. Since only an estimation of PW is needed
in this case, instead of exact retrieval, a double-differential
technique is used here to categorize the PW. The double-
differential technique is based on the different absorption de-
pendencies on frequency to discriminate different absorbers
and has been widely used in UV and visible remote sensing
(Komhyr et al., 1989; Frouin and Middleton, 1990). Here,
this technique is applied to remove the continuum contribu-
tion so as to improve the accuracy of the estimation of PW
from radiance.

Two pairs of AIRS channels with similar frequency in-
tervals in each pair are chosen as channel 1 to 4, as listed in
Table 2. The wavenumbers in the selected channels are 779.5
and 780.8 cm−1 in one pair, and 827.7 and 829.3 cm−1 in
the other pair, respectively. Each pair includes a relatively
strong absorption line and a relatively weak one. The double
differential radiance,∆ Rad, can then be derived as

∆Rad= (Rad4−Rad3)− (Rad2−Rad1) , (2)

where Radn is the radiance of thenth channel. In each pair,
the spectral interval is 1.3 and 1.6 cm−1, respectively. Given
the linear shape of the water vapor continuum in the spec-
tral range, which is very narrow and close, the contribution
of slow-varying continuum absorption to∆ Rad is largely re-
moved. The radiance differences caused by water vapor ab-
sorption should be closely related to absorption differences
between the relatively strong and weak water vapor absorp-
tion lines. Then, the PW can be classified exactly by radiance,
without any a priori information. Furthermore, a transparent
channel at 963.8 cm−1, listed as channel 5 in Table 2, is also
selected to show the impact ofTs. This method is very sim-
ilar to the classical application for the retrieval of ozoneby
removing the scattering effect.

To set up a look-up table, more than 560 000 ECMWF
six-hourly profiles over the ocean between 50◦S and 50◦N in

Fig. 1. Flowchart illustration of the solely radiance-based algorithm for deriving
spectral fluxes from 10 to 2000 cm−1 by AIRS observations only.
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Table 2. Information on the AIRS channels selected for estimating
the discrete intervals. WF means weighting function.

Wavenumber Peak of WF Remarks
(cm−1)

Channel 1 779.4550 60 hPa above
surface

Strong water vapor
absorption

Channel 2 780.8400 Surface Weak water vapor
absorption

Channel 3 827.7470 60 hPa above
surface

Strong water vapor
absorption

Channel 4 829.2988 Surface Weak water vapor
absorption

Channel 5 963.8364 Surface Window region
Channel 6 748.5600 753.6 hPa CO2 absorption

2005 January are fed into MODTRAN5 to generate synthetic
AIRS spectra. Then, the look-up table can be constructed
according to the radiances of the four water vapor absorp-
tion channels 1–4, the brightness temperature of channel 5,
and the corresponding PW value. Figure 2 shows the look-
up table at nadir-view. The smaller PW values of less than
2 cm in “cooler” colors is the most complicated part, mainly
due to the weaker sensitivity of radiance to a small amount
of water vapor and the existence of an inversion boundary
layer. In order to validate the look-up table, about 45 000
ECMWF profiles over the ocean between 30◦S and 30◦N in
January, April, July and October 2002 are randomly selected
to generate synthetic AIRS spectra by MODTRAN5. Then,
the brightness temperature and radiances in selected chan-
nels are applied to the look-up table to estimate the PW and
consequently its sub-intervals. Compared with true PW sub-
intervals determined by the input ECMWF profiles, the accu-
racy of this method is about 82% at nadir-view, as shown in
Table 3.
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Fig. 2. The look-up table derived from ECMWF data in Jan-
uary 2005 over the ocean between 50◦S and 50◦N, simulated
by MODTRAN5 at nadir-view. The color scale shows the total
PW.

3.2. Lapse rate and surface skin temperature

The ∆T used here is defined as the vertical temperature
change of the first 300 hPa above the surface. Listed as chan-
nel 6 in Table 2, a CO2 absorption channel at 748.6 cm−1 with
the peak of weighting function around 753.6 hPa is selected
to represent the temperature of 300 hPa above the surface.
Together with channel 5, which represents the surface tem-
perature, the∆T is related with the difference between the
brightness temperatures of two selected channels (hereafter,
∆TB).

In the 14 discrete intervals used in this study, there are
only two ∆T sub-intervals that are<15 and 15–30 K. Given
the near-linear relationship between∆T and ∆TB, a simple
threshold method is sufficient for classification. Similarly,
about 91 000 ECMWF six-hourly profiles over the ocean be-
tween 30◦S and 30◦N in January 2006 are fed into MOD-
TRAN5 to generate synthetic AIRS spectra. So, the bright-
ness temperatures of channel 6 at 748.6 cm−1 and channel 5
at 963.8 cm−1 (as listed in Table 2) can be obtained and the
∆TB values are classified to different sub-intervals according
to the corresponding∆T value from the input ECMWF pro-
files. Then, for each pair of adjacent sub-intervals, the proper
threshold of∆TB that can categorize the corresponding∆T
into the correct sub-interval is derived as∆TB-thres. The same
validation dataset as PW is applied to show the accuracy of
this method. Each∆TB between channel 6 at 748.6 cm−1

and channel 5 at 963.8 cm−1 in the validation dataset are
compared with the∆TB-thres. If ∆TB is less than∆TB-thres,
the spectra are classified to sub-intervals with∆T < 15 K.
Otherwise, the spectra should be classified to sub-intervals
with 15 K < ∆T < 30 K. The accuracy of this simple thresh-
old method for the lapse rate is about 91% at nadir-view, as
shown in Table 3.

For Ts, the brightness temperature of the window region
listed as channel 5 in Table 2 (hereafterTB5) is directly used
to representTs. As listed in Table 1, there are threeTs sub-
intervals: 270–290, 290–310 and 310–330 K. Similar to the
lapse rate, the simple threshold method is also applied for
the estimation ofTs sub-intervals due to the linear relation-
ship betweenTs andTB5. The only difference forTs is that
there are two thresholds for three sub-intervals. Using the
same training and validation dataset as the lapse rate, the
two thresholds ofTB5 are selected to categorize proper sub-
intervals ofTs and the accuracy of the estimation ofTs is over
99% at nadir-view, as shown in Table 3.

3.3. Classification at multiple viewing zenith angles

The methods described above are all based on the dataset
at nadir-view and have to be extended to multiple view-
ing zenith angles. Technically, similar training processes
are needed at every observational angle because AIRS scans
from −49◦ to 49◦ with an interval of 1.1◦ (Aumann et al.,
2003a). However, according to the definition of transmit-
tance, the radiance at the TOA has correlations with 1/cosθ .
To simplify the problem, the linear fitting along 1/cosθ is
sufficient for our case. Similar with the training process at
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Table 3. The estimation accuracy (%) of sub-intervals of precipitable water (PW), lapse rate (∆T ), and surface skin temperature (Ts) at
different viewing zenith angles.

Viewing zenith angle

0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

PW 81.97 81.99 82.06 82.12 82.17 82.16 82.05 81.81 81.49 80.93
∆T 90.91 90.92 90.91 90.90 90.92 90.89 90.81 90.63 90.31 89.62
Ts 99.74 99.74 99.74 99.74 99.74 99.74 99.74 99.74 99.72 99.72

nadir-view, ECMWF six-hourly profiles over the ocean be-
tween 30◦S and 30◦N in January 2006 are fed into MOD-
TRAN5 to generate synthetic AIRS spectra at 15◦, 30◦ and
45◦. Together with the dataset at 0◦, four groups of the radi-
ances and brightness temperatures in the selected channelsin
Table 2 are derived.

ForTs, there is no obvious zenith angle dependence due to
the transparent feature of the window channel. So, the same
thresholds ofTB5 as in section 3.2 are chosen at differentθ .
For the lapse rate, if we assume that the thresholds are chang-
ing monotonically along 1/cosθ , the thresholds at all angles
can be derived by linear fitting. We obtain the thresholds by
training the dataset of∆T and corresponding∆TB at 15◦, 30◦

and 45◦, respectively. Together with the thresholds at 0◦, the
coefficients for each threshold at different angles are ready by
linear fitting of four points along 1/cosθ . Then, the thresh-
olds at all zenith angles from 0◦ to 45◦ are derived.

For the look-up table of PW, the relationship is not exactly
the same in each PW interval. In fact, only∆Rad is chang-
ing with θ , while the brightness temperature of the window
channel has no obvious zenith angle dependence due to its
transparent feature. So, if the∆Rad at different zenith angle
can be converted to an equivalent range at 0◦, the look-up ta-
ble at 0◦ can then be easily applied to estimate the PW and to
determine the corresponding sub-intervals. According to the
training dataset of PW and∆Rad at 0◦, 15◦, 30◦ and 45◦, PW
data are first grouped as<1 cm, 1–5 cm per 0.2 cm, and>5
cm. Then, the corresponding∆Rad values are classified into
different groups. For each pair of adjacent groups, a thresh-
old of ∆Rad that can categorize the corresponding PW into
a proper group is derived at four zenith angles, respectively.
Hence, there are 22 thresholds for each zenith angle. This is
similar to the simple threshold method described in section
3.2. Again, linear fitting between thresholds and 1/cosθ of
four points’ data (four zenith angles) for each pair of adja-
cent groups are carried out to obtain the coefficients. Then,
the dataset of thresholds for all zenith angles is derived. In
other words, the linear fitting process for the lapse rate, de-
scribed above, is repeated 22 times to set up a whole thresh-
old database for different PW values at different zenith an-
gles. According to this threshold database, a given∆Rad at
θ can be properly mapped to the equivalent group at nadir-
view. Then, the PW sub-intervals can be derived according
to the look-up table shown in Fig. 2.

Similarly, ECMWF profiles at differentθ over tropical
oceans in January, April, July and October 2002 are randomly
selected to validate the accuracy of this classification method

at multiple angles. The results are listed in Table 3. Com-
pared to the results at nadir-view, the accuracy of the estima-
tion varies little along zenith angle.

3.4. Spectrally dependent ADMs and spectral fluxes

AIRS has no coverage at frequencies lower than 649.6
cm−1 or between 1613.9 and 2000 cm−1. There are also
some gaps between 649.6 and 1613.9 cm−1. Since we want
to derive spectral fluxes based only on AIRS radiances ob-
servations over the whole IR region, the spectral flux in each
AIRS channel and AIRS gaps should both be handled.

For each of the AIRS channels, more than 80 000 ran-
domly selected ECMWF profiles over the ocean between
30◦S and 30◦N in January, April, July and October 2002 are
selected and the anisotropic factors for zenith angles from0◦

to 45◦ of each AIRS channels is obtained by feeding these
profiles into MODTRAN5. The anisotropic factors and asso-
ciated profiles are categorized into discrete intervals of PW,
∆T andTs, as listed in Table 1. In the same discrete interval,
the mean anisotropic factor is defined by the mean value from
all samples. Then, the spectral fluxes in AIRS channels can
be derived according to the spectrally dependent ADMs.

To estimate spectral fluxes in the frequency gaps of AIRS
instruments, the same scheme as in Huang et al. (2008, 2010)
is authorized to apply here; see Huang et al. (2008, section
3.2) for more detail. Based on principal component analy-
sis, the unknown information in the channels not covered by
AIRS can be estimated by the nearest channels with similar
spectral resolutions. By training ECMWF profiles, spectral
fluxes over “filled-in channels” are estimated with a multi-
regression scheme, which essentially finds the least-squares
fit of the projections of spectral fluxes in AIRS channels onto
the predefined principal components. This kind of solution
has been used in other estimations of missing information
(e.g., Mann et al., 1998).

4. Validation

As listed in Table 1, the PW sub-intervals described in
section 3.1 are slightly different to those used in CERES
ADMs. First, in section 4.1, the effect of the adjustment is
evaluated. Validation of the whole algorithm includes theo-
retical validation and observational comparison. In section
4.2, synthetic AIRS spectra are combined with the radiance-
based classification of discrete intervals to derive the spec-
tral fluxes. Comparing between such spectral fluxes and
those directly computed from MODTRAN5 can help eval-
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uate the whole algorithm theoretically because the differ-
ences are only from this algorithm, while MODTRAN5 is
used as a surrogate of radiative transfer in the real world.
Comparison between the broadband OLR derived from the
AIRS observations by this algorithm and those of collocated
CERES measurements is described in section 4.3. This com-
parison includes more realistic uncertainties, such as those in
spectroscopy, forward modeling and collocation strategies, to
show the reliability of the whole algorithm for real observa-
tions.

4.1. Evaluation of the adjustment of precipitable water
sub-intervals

To improve the accuracy of the PW look-up table method,
the PW sub-intervals are adjusted to<1, 1–2, 2–5 and>5,
while those in the CERES ADMs are<1, 1–3, 3–5 and>5.
Statistical analysis of the ECMWF profiles in January 2006
over the ocean between 30◦S and 30◦N shows that the distri-
bution patterns of sample number in all 14 discrete intervals
are similar before and after adjustment, although the samples
in discrete intervals 11 and 12 increase while those in discrete
intervals 1–10 decrease.

To evaluate the effect on the predicted fluxes caused by
this adjustment, we randomly choose the ECMWF profiles in
January 2005 and January 2006 in conjunction with MOD-
TRAN5 to derive synthetic AIRS spectra. Then, predicted
OLR and spectra from 10 to 2000 cm−1 can be generated by
the spectral ADMs to compare with the directly computed
OLR and spectra fluxes. In this validation, the discrete in-
tervals are classified according to the true values of PW,Ts

and∆T from ECMWF profiles instead of the radiance-based
methods described in sections 3.1 and 3.2. So, the error
caused by the estimated method is excluded and the differ-
ences between the predicted and directly computed results in
each discrete interval are only due to the adjustment of PW
sub-intervals. The validation results show that the mean rel-
ative differences are within±0.5% and the standard devia-
tions are no more than 1%. The statistical results show that
the bias caused by PW subinterval adjustment is acceptable
in most discrete intervals.

4.2. Theoretical validation

ECMWF profiles over the ocean between 30◦S and 30◦N
in April and October 2006 are randomly selected and fed into
MODTRAN5. The appropriate discrete intervals are classi-
fied by the radiance-based method instead of the true value.
Then, synthetic AIRS spectra and longwave spectral fluxes
are derived, as described in section 3.4. Taking nadir-viewas
an example, the differences between the spectral fluxes and
the broadband OLR predicted from the synthetic AIRS spec-
tra and the one directly computed from MODTRAN5 are ex-
amined. Figure 3 shows the differences of broadband OLR at
14 discrete intervals at nadir-view. Discrete intervals 3,7 and
9 are not included due to the fact that there are not enough
samples to give statistical results. For other discrete inter-
vals, the mean OLR differences are between 0 and−2.2 W
m−2 (a fraction of about 0.7%), with standard deviations of

no more than 1.3 W m−2. The maximum differences from
individual discrete intervals are within±3 W m−2. The OLR
differences for other viewing zenith angles are similar to that
shown in Fig. 3.

The differences between the predicted and directly com-
puted spectral fluxes are also examined and the results at
nadir-view are shown in Fig. 4 as an example. For each dis-
crete interval, the mean differences of spectral fluxes aver-
aged for every 10 cm−1 from 10 to 2000 cm−1 are calculated
at nadir-view. For the discrete intervals with sufficient sam-
ples, about 95% of all samples have a mean difference within
±0.03 W(m2

×10 cm−1)−1 and more than 98% of them have
a mean difference within±0.05 W(m2

× 10 cm−1)−1. Pro-
portionally, more than 99% of all samples have a mean rela-
tive difference less than±5%, while about 96% of all samples
have a mean relative difference less than±3%. Although the
distribution of samples is not well-proportioned in all discrete
intervals due to the adjustments for PW sub-intervals, the
comparisons still show good agreement for most situations.
This indicates that, at least for theoretical comparisons,the
algorithm is capable of obtaining spectral fluxes at 10 cm−1

intervals with sufficient confidence.

4.3. Comparison with collocated CERES observations

To evaluate the performance of the algorithm for real
observations, broadband OLRs derived by this algorithm
from AIRS spectra (OLRAIRS) are compared with collocated
CERES OLR measurements (OLRCERES). Clear-sky obser-
vations in 2004 over tropical oceans (30◦S–30◦N) are used
and the collocated strategy is very similar with that used in
Huang et al. (2008). An AIRS observation and a CERES
measurement are considered as collocated only when (1) the
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Fig. 3. The mean differences between the broadband OLR pre-
dicted from the synthetic AIRS spectra at nadir-view and di-
rectly computed OLR from MODTRAN5 for 14 discrete inter-
vals classified by the solely radiance-based method. The input
data are randomly chosen from ECMWF profiles over tropical
oceans in April and October 2006. The dots show the mean
differences, the error bars show the mean± standard deviation,
and the circles show the maximum and minimum relative dif-
ferences for each discrete interval.



FEBRUARY 2016 SONG AND WANG 265

0 200 400 600 800 10001200140016001800 2000
1

2

3

4

5

6

7

8

9

10

11

12

13

14  

Wavenumber (cm
-1

)

θ = 0
°

 

A
D

M
 t

ru
e

 d
is

cr
e

te
 i

n
te

rv
a

l

(W m
-2

 (10 cm
-1

)
-1

)

-0.1

-0.05

0

0.05

0.1

Fig. 4. The mean differences between the predicted TOA spec-
tral fluxes based on synthetic AIRS spectra at nadir-view andthe
directly computed TOA spectral fluxes from MODTRAN5 for
each ADM discrete interval. The spectral flux is computed for
every 10 cm−1 interval from 10 to 2000 cm−1. The units of the
mean differences are W(m2×10 cm−1)−1. The ordinate repre-
sents the 14 discrete intervals that are classified by the true input
PW value. The input data are randomly chosen from ECMWF
profiles over tropical oceans in April and October 2006.

-20 -15 -10 -5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

OLR
AIRS

 - OLR
CERES

 (W m
-2

)

F
re

q
u

e
n

cy

Mean = 0.1880

STD = 1.1268
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time interval between two observations is within 6 s and (2)
the distance between the center of an AIRS footprint and that
of a CERES footprint on the surface is less than 3 km. Un-
der these collocated criteria, about 1.061 million collocated
clear-sky observations over tropical oceans in 2004 are se-
lected. The clear-sky or cloudy scenes are determined from
relative CERES products. Figure 5 shows a histogram of the
differences between OLRAIRS and OLRCERESfor all samples
in 2004. The histogram approximates the Gaussian distribu-
tion and the mean differences are 0.19 W m−2 with a standard
deviation of 1.23 W m−2.

Given that the CERES ADMs use a pair of slightly dif-
ferent anisotropic factors for daytime scenes and nighttime
scenes, we further examine the comparison results in two
groups: one in the ascending node and the other in the de-
scending node. Figures 6a and b show the monthly mean
OLR differences in 2004 of ascending and descending nodes,
respectively. There is only a small fluctuation of OLR dif-
ferences among different months due to the limitation of the
training dataset for PW,Ts and∆T estimation, especially for
the ascending node. The mean OLR differences are within
±0.36 W m−2, while the standard deviations are no more
than 1.18 W m−2 for both nodes. The mean OLR differences
for different discrete intervals are also examined and the re-
sults are shown in Fig. 7. The pattern is similar for both nodes
and there is obvious variation among different discrete inter-
vals. As mentioned above, the samples are not equally dis-
tributed in different discrete intervals during both the training
and validation process. For this OLR comparison in 2004,
the discrete intervals of 3, 4 and 7 have few samples, while
the last four discrete intervals, 11–14, have more than 98% of
all samples. For most discrete intervals except 1, 3 and 7, the
mean OLR differences are within±2 W m−2, which is less
than 1% of typical mean clear-sky OLR over tropical oceans.

In brief, the results of both the theoretical validation and
the AIRS–CERES comparisons show consistent performance
in most situations, except some discrete intervals with lim-
ited samples. This indicates confidence of the algorithm in
obtaining broadband OLR and spectral fluxes at 10 cm−1 or
even larger spectral intervals.

5. Summary and discussion

In order to obtain spectral fluxes in the thermal-IR band,
AIRS spectra are employed as an example to explore the pos-
sibility of developing an algorithm for clear skies over trop-
ical oceans, based only on radiance measurements. The ra-
diances and brightness temperatures in selected AIRS chan-
nels are applied to estimate PW,Ts and ∆T and determine
the proper discrete intervals needed for the spectral ADMs.
Then, the spectral fluxes and broadband OLRs can be con-
verted from AIRS radiances by a spectrally dependent ADM.
The solely radiance-based algorithm is validated against syn-
thetic spectral fluxes as well as collocated CERES OLR ob-
servations, and show good consistency in most situations.
This algorithm can be easily extended to other similar hy-
perspectral radiance measurements.

To make the solely radiance-based algorithm completely
applicable in practical observations, the classification of
clear-sky and cloudy scenes based only on radiance is an
essential precondition. However, it is still a challengingtask
to achieve precisely. The tri-spectrum method (Ackerman et
al., 1990), which uses brightness temperatures of 8, 11 and
12 µm to distinguish clear-sky, water cloud and ice cloud
is no longer effective due to the gap in AIRS radiances be-
tween 8.1 and 9µm. Given that most transparent channels in
the thermal-IR band are at 1231 cm−1, suggested by Aumann
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Fig. 7. (a) The mean differences in each discrete interval be-
tween the clear-sky OLR in 2004 over the tropical oceans es-
timated from AIRS spectra measured during daytime and that
from the collocated CERES measurements. The dots show the
mean differences and the error bars are± standard deviation.
(b) As in (a) but for nighttime.

et al. (2003b, 2006), we also check the differences between
the brightness temperatures of 1231 cm−1 (TB1231) and cor-
responding SST (TOI) from the NOAA’s Optimum Interpo-
lation (OI) SST V2 weekly mean products (Reynolds et al.,
2002). NOAA-OI-SST analysis has been produced weekly
on a 1◦ × 1◦ global grid from 1981 October to the present
day. One month’s AIRS measurements in January 2008 are

used to compute Threshold1231, which is defined as

Threshold1231= TB1231−TOI , (3)

According to the collocated CERES scenes, there are 4646
clear-sky samples and 51 828 cloudy samples in this month.
For example, Threshold1231is set as 3.6 K, then samples with
Threshold1231over 3.6 K are clear-sky scenes and others are
cloudy scenes. The accuracy of this method is 70.66% for
CERES clear scenes and 89.16% for CERES cloudy scenes.
For the CERES cloudy scenes misclassified as clear, 75% of
misclassified samples are lower than 850 hPa, while 90% of
them have a fraction less than 20%. A stricter Threshold1231

can improve the accuracy of clear-sky estimation, but it also
largely excludes actual clear-sky samples, which cannot be
determined exactly. It is still under investigation as to how
to eliminate this kind of low and broken cloud based on radi-
ances only.

For the solely radiance-based algorithm itself, uncertain-
ties in the derived spectral fluxes could originate from various
sources. Due to the complexity of water vapor continuum ab-
sorption, the accuracy of the double-differential approach can
still be improved. Chen and Huang (2014) developed a sim-
ilar differential absorption method to improve the estimation
of the clear-sky column water vapor, although different pairs
of water absorption channels were applied and the contribu-
tion of the lapse rate was also considered. The adjustments
of PW sub-intervals and the finite training dataset cause the
non-uniform distribution among different discrete intervals
for scene-type classification as well as spectral ADM con-
struction. Meanwhile, errors in spectral fluxes over the entire
thermal-IR spectral range exist in the multivariate regression
schemes and also in forward radiative transfer modeling, es-
pecially in the far IR band, which is not covered by the AIRS
instrument. Furthermore, as a first step for deriving TOA
spectral fluxes for all skies based solely on radiance, more
effort is needed to develop a similar algorithm for cloudy
scenes.
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