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ABSTRACT

Statistical downscaling is based on the fact that the large-scale climatic state and regional/local physiographic features
control the regional climate. In the present paper, a stochastic weather generator is applied to seasonal precipitation and
temperature forecasts produced by the International Research Institute for Climate and Society (IRI). In conjunctionwith
the GLM (generalized linear modeling) weather generator, aresampling scheme is used to translate the uncertainty in the
seasonal forecasts (the IRI format only specifies probabilities for three categories: below normal, near normal, and above
normal) into the corresponding uncertainty for the daily weather statistics. The method is able to generate potentially useful
shifts in the probability distributions of seasonally aggregated precipitation and minimum and maximum temperature,as well
as more meaningful daily weather statistics for crop yields, such as the number of dry days and the amount of precipitation
on wet days. The approach is extended to the case of climate change scenarios, treating a hypothetical return to a previously
observed drier regime in the Pampas.
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1. Introduction

Techniques to downscale climate information can be di-
vided into two main categories: dynamical and statistical.
Dynamical downscaling effectively increases the spatial reso-
lution, through coupling a higher resolution numerical model
(e.g., regional) to a lower resolution model (e.g., global)
(Giorgi and Mearns, 1991; Hostetler et al., 2011; Xu and
Yang, 2012; Mannig et al., 2013). The alternative technique
of statistical downscaling involves empirical relationships be-
tween weather and climate variations at different temporal
and/or spatial scales (Wilby and Wigley, 1997; Wilby et al.,
1998; Wilby et al., 2004; Benestad et al., 2008). Yoon et al.
(2012) compared dynamically and statistically downscaled
seasonal climate forecast for the cold season over the U.S.
Recently, Caldwell et al. (2014) used a K-nearest neighbor
weather generator for downscaling of IRI (Research Institute
for Climate and Society) seasonal forecasts and discussed the
skill in the shifts. Although a dynamical approach is appeal-
ing in principle, a statistical approach has the advantage of
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being much simpler to develop and implement in practice. In
the present paper, we adopt a statistical approach and focus
only on temporal, not spatial, downscaling.

Stochastic weather generators can be used to temporally
downscale climate information, such as seasonal forecasts
(Wilks and Wilby, 1999; Benestad et al., 2008). Approaches
to stochastic weather generation can be divided into two main
categories: parametric [starting with Richardson (1981)]and
non-parametric [generally based on resampling, e.g., Ra-
jagopalan and Lall (1999)]. We adopt the recently introduced
generalized linear modeling (GLM) (McCullagh and Nelder,
1989) approach to parametric weather generators, which has
the advantage of being readily able to incorporate covariates,
accounting for seasonality and teleconnections (e.g., with the
El Niño phenomenon) (Furrer and Katz, 2007). Yet, one im-
portant limitation of parametric stochastic weather genera-
tors is their underestimation of the observed interannual vari-
ance of seasonally aggregated variables, sometimes termed
“overdispersion” (Buishand, 1978; Katz and Parlange, 1998).
Such variance underestimation is a shortcoming of statisti-
cal downscaling techniques more generally (Benestad et al.,
2008).

To reduce the overdispersion phenomenon, Kim et al.
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(2012) incorporated time series of seasonal total precipita-
tion and seasonal mean minimum and maximum temperature
in the GLM weather generator as covariates. These seasonal
time series are smoothed using locally weighted scatterplot
smoothing (LOESS) (Cleveland, 1979; Hastie and Tibshirani,
1990) to avoid introducing underdispersion (i.e., too much
variance instead of not enough variance). Because the ag-
gregate variables appear explicitly in the weather generator,
downscaling to daily sequences can be readily implemented.
It should be noted that Wilks (1989) conditioned a stochas-
tic model for daily precipitation based on monthly total pre-
cipitation, and that Hansen and Mavromatis (2001) adjusted
the parameters of a stochastic weather generator in an ad hoc
fashion to correct for overdispersion.

In section 2, first, the extended GLM approach to stochas-
tic weather generators, involving the introduction of aggre-
gated climate statistics as covariates, is briefly reviewed.
Next, these models are fitted to time series of daily weather at
Pergamino and Pilar in the Argentine Pampas, evaluating the
model fit in terms of overdispersion. Section 3 demonstrates
the feasibility of statistical downscaling. The IRI seasonal
forecasts are used as prototypes, with a resampling scheme
(Apipattanavis et al., 2007) adopted to translate the uncer-
tainty in the seasonal forecasts into the corresponding uncer-
tainty for the daily weather statistics. In section 4, the pro-
posed approach is applied to downscaling shorter-term (e.g.,
decadal) projections under climate change scenarios. Finally,
the study’s findings are discussed in section 5.

2. Revisiting the GLM weather generator

The GLM approach to stochastic weather generators, in-
troduced by Furrer and Katz (2007), focuses on the simplest
form of a generator first proposed by Richardson (1981). Us-
ing the observed (i.e., unsmoothed) seasonal climate statis-
tics as covariates may introduce excessive noise into the
daily weather statistics and result in “underdispersion” for
aggregated climate statistics. Kim et al. (2012) consid-
ered smoothed seasonal climate statistics as covariates inthe
GLM weather generator, and adopted LOESS as a smoothing
tool (Cleveland, 1979), which is a computationally intensive
method. Except for smoothed seasonal covariates, the GLM
stochastic weather generator of Kim et al. (2012) is essen-
tially the same as in Stern and Coe (1984) and Furrer and
Katz (2007).

Let Jt denote the precipitation occurrence state on dayt
of a given year (i.e.,Jt = 1 if precipitation occurs,Jt = 0
otherwise), and letpt = P{Jt = 1},t = 1,2, . . . , denote the
probability of a wet day. The logistic transformation of the
probability of precipitation is modeled conditionally on the
occurrence state on the previous dayJt−1:

ln

(

pt

1− pt

)

= α0 + α1Jt−1 + β11Ct + β12St + γ1CtJt−1 +

γ2StJt−1 + β1sItPs,t + β1w(1− It)Pw,t , (1)

whereCt = cos(2π(t −181)/365) andSt = sin(2π(t−181)/

365). It is a seasonal indicator [i.e.,It = 1 in austral sum-
mer (October–March) andIt = 0 in austral winter (April–
September)], whilePs,t andPw,t are LOESS-smoothed sum-
mer and winter seasonal total precipitation, respectively.
α0,α1,β11,β12,γ1,γ2,β1s andβ1w are model coefficients.

The daily precipitation intensity (i.e., the precipitation
amount conditionally based onJt = 1) is modeled as a gamma
distribution (e.g., Stern and Coe, 1984), with an annual cycle
for mean intensity, denoted byµt :

ln(µt) = α +β21Ct +β22St +β2sItPs,t +β2w(1− It)Pw,t . (2)

Here,α,β21,β22,β2s andβ2w are model coefficients. The co-
efficientsβ21 andβ22 control the annual cycle in the mean
intensity.

Let (Xt ,Yt) denote the minimum and maximum tempera-
ture on day t of a given year, jointly modeled as a bivariate
first-order autoregressive process of the form (as in Richard-
son, 1981; Furrer and Katz, 2007)

Xt = µX ,0 + µX ,1Jt + ϕX Xt−1 + ψXYt−1 + βX ,1Ct +

βX ,2St + βX ,sItNs,t + βX ,w(1− It)Nw,t + εX ,t , (3)

and

Yt = µY,0 + µY,1Jt + ϕYYt−1 + ψY Xt + βY,1Ct + βY,2St +

βY,sItMs,t + βY,w(1− It)Mw,t + εY,t , (4)

whereµ(X ,0),µY,0,µX ,1,µY,1,ϕX ,ϕY ,ψX ,ψY ,βX ,1,βX ,2,βY,1,
βY,2,βX ,s,βX ,w,βY,s andβY,w are model coefficients.Ns,t and
Nw,t (Ms,t andMw,t ) are the LOESS-smoothed summer and
winter seasonal mean minimum (maximum) temperatures.
Here, the two error terms,εX ,t andεY,t , besides being nor-
mally distributed with zero means, have no autocorrelation
or cross correlation.

Note that the seasonal indicators in Eqs. (1–4) allow for
different relationships with the aggregated covariates depend-
ing on the season. The degree of LOESS smoothing is deter-
mined by the criterion based on minimizing the overdisper-
sion phenomenon, through trial and error ranging from the
case of no smoothing to as smooth as possible. Kim et al.
(2012) considered the same degree of smoothness (i.e., 0.4)
in all GLM models at the two locations.

Kim et al. (2012) illustrated that the proposed model vir-
tually eliminates the overdispersion phenomenon in nearlyall
cases in reproducing variances of annual, as well as summer
and winter, total precipitation (mm) and mean minimum and
maximum temperatures (◦C) at two locations in the Argentine
Pampas, Pergamino and Pilar. Both locations have a marked
wet season in the Southern Hemisphere summer. They also
reported that the results (not shown) were not very sensitive
to the precise value of the parameter governing the degree
of smoothing in LOESS (e.g., the overdispersion in the sum-
mer total precipitation at Pergamino was still virtually elim-
inated if the degree of smoothing was 0.5 instead of 0.4). It
was noted that the introduction of the temporal trend in the
temperature models was insufficient to correct the overdis-
persion, and the original model came close to reproducing
the precipitation variability in winter.
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In the application to downscaling seasonal forecasts (sec-
tion 3), daily weather statistics, such as the total number of
dry days and the median daily precipitation intensity within a
season, are considered. It was verified that the GLM weather
generator with aggregated covariates simulates the climato-
logical distribution of these statistics reasonably well (results
not shown). Furthermore, Kim et al. (2012) already exten-
sively validated the proposed GLM weather generator applied
to Pergamino and Pilar.

3. Downscaling seasonal forecasts

The IRI seasonal forecast product has been issued since
October 1997 (Barnston et al., 2010). At present, the forecasts
of seasonal total precipitation and mean temperature have at
least a 0.5-month lead time (e.g., the forecasts for the October
through December season are released in mid-September).
Seasonal forecasts with longer lead times of up to 3.5 months
are also produced (e.g., forecasts for the January through
March season are also issued in mid-September). These IRI
forecasts are probabilistic in nature, in that they are provided
as a percentage likelihood in anA : N : B format, where “A”
denotes the percentage chance of above-normal seasonal total
rainfall, “N” denotes the percentage chance of near-normal
rainfall, and “B” denotes the percentage chance of below-
normal rainfall—and the three categories are typically based
on the terciles. For example, a forecast ofA : N : B = 40 : 35 :
25 for an area means that there is a 40% chance of seasonal
total rainfall being above normal, a 35% chance of rainfall
being near normal, and a 25% chance of below-normal pre-
cipitation. Forecasts of seasonal mean temperature are issued
in the same format.

Barnston et al. (2010) thoroughly evaluated the skill of
the IRI seasonal forecasts. Any such skill is necessarily lim-
ited, with the forecast probabilities frequently coinciding
with climatology [i.e., (1/3,1/3,1/3)] and only rarely being
higher than 2/3 for a given category. Seasonal precipitation
probability forecasts are reliable (i.e., well-calibrated in the
sense that they can be taken at face value), with the reliabil-
ity of seasonal temperature forecasts suffering from a failure
to correctly incorporate global warming trends. The forecast
skill tends to match the strength of the ENSO signal, both
in terms of geographic location and time of year. So, not
surprisingly, there is some real, if small, skill for both pre-
cipitation and temperature during the Southern Hemisphere
summer half of the year (October through March) in the Ar-
gentine Pampas [for more information about the ENSO signal
in the Argentine Pampas, see Furrer and Katz (2007)]. This
contribution of the ENSO phenomenon to the IRI forecasts is
another reason for not including ENSO as a covariate in the
GLM weather generator.

The IRI forecasts apply to a particular grid box, rather
than a single location. As already mentioned, our approach is
designed to deal with temporal, not spatial, downscaling. So,
the IRI forecasts will be treated as if they apply to individual
points. Because Pergamino and Pilar are closely situated,
relative to the size of the grid boxes or the typical size of the

contiguous area for which a deviation from climatology is
predicted, the same IRI forecast probabilities always apply to
both locations. Nevertheless, the downscaled daily weather
statistics will differ both because of different downscaling
relationships and because of different climatology (i.e.,as
reflected in the coefficients in the GLM weather generators).
Finally, the climate statistics used as covariates in the GLM
were aggregated over six months, not three months as in the
IRI seasonal forecasts. Rather than attempting to combine
the IRI forecasts for two consecutive three-month periods

Fig. 1. Downscaling of IRI forecasts for October to Decem-
ber 1997–2007, showing boxplots of the corresponding forecast
distributions of summer (October to March) total precipitation
(a), mean maximum temperature (b) and mean minimum tem-
perature (c), along with the climatology (CLIM) and observed
values (denoted by circles) for Pergamino. Boxplots are not
shown for years in which the forecast coincides with the clima-
tology.
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(which are not always available for the second three months),
we adopt the pragmatic approach of using the IRI forecasts
for the first three months and only the climatology for the
second three months. Stochastic weather generators based
on the K-nearest neighbor resampling approach (Rajagopalan
and Lall, 1999; Beersma and Adri Buishand, 2003; Apipat-
tanavis et al., 2007) have been modified (Briggs and Wilks,
1996; Yates et al., 2003) to provide weather scenarios con-
sistent with the seasonal probabilistic forecasts. We use this
modification, first proposed by Yates et al. (2003) and used
in Apipattanavis et al. (2007), in the current research. To the
best of our knowledge, this is the first application of its kind
to a GLM-based, or any other parametric, weather generator.

The methodology proceeds as follows: (1) Historical
years are classified into three categories—wet, normal and
dry, based on the terciles of the smoothed historical sum-
mer (October–March) season precipitation (i.e., consistent
with the covariates used in the GLM weather generator). (2)
The historical years are resampled with replacement based
on the seasonal probabilistic forecast as the weight metric.
Following the previous example of a 40 : 35 : 25 forecast,
we would select years from the wet category with a 0.40
probability, normal years with a 0.35 probability, and dry
years with a 0.25 probability. (3) The smoothed seasonal
(October–March and April–September) precipitation values
of the resampled years are used in the GLM weather gener-
ator as covariates to generate a rich variety of daily weather
sequences at the point scale. An analogous approach is em-
ployed for the simulation of minimum and maximum tem-
perature based on the seasonal forecast of mean temperature.
The seasonal forecasts are available only for the mean tem-
perature and we assume that it reflects the minimum and max-
imum temperatures as well. The resampling, step (2), is per-
formed on the probabilistic forecast of the three-month sea-
sonal mean temperature—and the corresponding smoothed
seasonal (October–March and April–September) maximum
and minimum temperatures are used in their respective GLM
models as covariates.

Probability distributions of a suite of weather statistics
(mentioned earlier) that are of importance in agriculturalde-

cision making will be computed, and compared with the cor-
responding climatological distribution to quantify the shift in
the probabilities and consequently the risk estimates. This ap-
proach has been demonstrated successfully in a resampling-
based weather generator (Apipattanavis et al., 2007) and has
been applied to seasonal crop yield forecasts, quantifyingde-
lays in highway constructions, and in streamflow forecasts
(Apipattanavis, 2008; Apipattanavis et al., 2010a, 2010b).

To demonstrate statistical downscaling based on the GLM
weather generator, we make use of the IRI seasonal fore-
casts issued in mid to late September for October through
December in the years 1997 to 2007. For both total precipita-
tion and mean temperature, the forecast probabilities deviated
from the climatology for only six of the 11 years. Figure 1
shows boxplots of the downscaled forecast probability dis-
tributions of summer (i.e., October through March) total pre-
cipitation, maximum temperature, and minimum temperature
at Pergamino. For comparative purposes, the corresponding
boxplots for the climatological distributions are included as
well, along with the observed seasonal statistics for each fore-
cast year (indicated by circles on the boxplots).

For total precipitation, the IRI seasonal forecasts with the
greatest deviations from the climatology were for 1997, with
a probability of 0.55 for the above-normal category, and for
1998, with a probability of 0.60 for the below-normal cate-
gory. The consistent shift in the downscaled forecast box-
plots toward wetter than normal conditions in 1997 (drier in
1998) is evident in the figures, with the observed total precip-
itation being below normal for both years at Pergamino, but
near normal for both years at Pilar. For mean temperature,
the IRI seasonal forecasts with the greatest deviations from
the climatology were for 1998 and 2003, with a probability
of 0.50 for the above-normal category. The consistent shift
in the downscaled forecast boxplots toward warmer than nor-
mal conditions for both maximum and minimum temperature
is evident in the figures. In 1998, the observed seasonal mean
maximum temperature was above normal at Pergamino, but
near normal at Pilar, with the observed seasonal mean mini-
mum temperature being above normal at both Pergamino and
Pilar. In 2003, the observed mean maximum temperature was

(a) (b)

Fig. 2. Downscaling of IRI forecasts for October to December 1997–2007, showing boxplots of the
corresponding forecast distribution of the summer (October to March) mean number of dry days (a)
and median daily precipitation intensity (b), along with the climatology (CLIM) and observed values
(denoted by circles) for Pergamino. Boxplots are not shown for years in which the forecast coincides
with the climatology.
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below normal at Pergamino and near normal at Pilar, with the
observed seasonal mean minimum temperature being above
normal at Pilar, but near normal at Pergamino.

In an attempt to further downscale the IRI seasonal pre-
cipitation forecasts into more meaningful daily statistics, Fig.
2 shows boxplots of downscaled forecast probability distribu-
tions for the number of dry days and the median precipitation
intensity at Pergamino. Focusing again on 1997 and 1998, the
years with the highest seasonal forecast probability of above-
(or below-) normal total precipitation, the forecast boxplots
of the number of dry days consistently shift toward less dry

(a)

(b)

(c)

Fig. 3. The PDF of summer precipitation (a), maximum tem-
perature (b) and minimum temperature (c) from the simulation
(dashed line), climatological PDF (solid line) and the observed
value (vertical line) at Pergamino based on dry seasonal IRI
forecasts (2004).

days in 1997 (more dry days in 1998) and the boxplots of the
median intensity consistently shift toward higher values in
1997 (lower values in 1998). In 1997, the observed seasonal
number of dry days was near normal at Pergamino and below
normal at Pilar, with the median intensity being below normal
at Pergamino but near normal at Pilar. In 1998, the observed
seasonal number of dry days was near normal at Pergamino
and below normal at Pilar, with the median intensity being
below normal at both Pergamino and Pilar.

The performance of the downscaled seasonal forecasts
shown in Fig. 2 is evaluated using the ranked probability
skill score (RPSS) (Wilks, 2006, Chapter 7). The RPSS is
calculated based on three categories at the tercile boundaries.

(a)

(b)

(c)

Fig. 4. The PDF of summer precipitation (a), maximum tem-
perature (b) and minimum temperature (c) from the simulation
(dashed line), climatological PDF (solid line) and the observed
value (vertical line) at Pergamino based on wet seasonal IRI
forecasts (2000).
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RPSS= 0 corresponds to no skill over the climatology,
whereas RPSS= 1 for perfect forecasts. In order to calculate
the RPSS, the forecast probabilities of below normal, near
normal, and above normal are first derived from the forecast
probability density function (PDF) for each climate variable.
At least limited skill is indicated for seasonal total precipita-
tion, with RPSS= 0.042 for Pergamino and RPSS= 0.143
for Pilar. Because these forecasts apply to 6-month seasons,
their skill is necessarily less than that for the original IRI fore-
casts for the first half of the time period.

For seasonal mean minimum temperature the results
are inconsistent, with RPSS= −0.015 for Pergamino but
RPSS= 0.073 for Pilar. Similarly, for seasonal mean max-
imum temperature, with RPSS= 0.151 for Pergamino but
RPSS= −0.118 for Pilar. Given that five out of 11 years had
a climatological forecast, and in other years the climate fore-
cast skill is modest at best, we do not expect a high overall
RPSS value. This limited or lack of skill may be attributable
in part to the original IRI forecasts being specified only in
terms of mean temperature, not minimum and maximum tem-
perature, as mentioned earlier.

A clear shift of the forecast PDF of precipitation to the left
of the climatology, consistent with a dry forecast, can be seen
at Pilar, but is not quite as apparent at Pergamino (Fig. 3).
However, the shift in the temperature PDFs to the right of the
climatology, consistent with a warmer than normal tempera-
ture forecast probability, can be seen at both locations. The
forecast PDFs of precipitation for the wet year of 2000 show

similar consistent shifts relative to the climatology (Fig. 4),
but are somewhat subtler compared to the dry forecast case
in Fig. 1–and this can be attributed to the fact that the sea-
sonal forecast for the dry year is closer to the climatology
than that of the wet forecast. The shifts in the temperature
PDFs are consistent with the IRI forecast representing near-
normal conditions. These shifts have significant implications
for the tail probabilities, i.e., the extremes and, consequently,
crops yield impacts in agricultural applications.

We computed the PDFs of summer dry days (i.e., total
number of days with no rainfall) and hot days (i.e., total num-
ber of days with maximum temperature above 35◦C) at the
two locations for the dry year 2004 (Fig. 5). The shifts in the
PDF of hot days at both locations relative to the climatology
towards higher values, consistent with the shift in the PDF
of mean maximum temperature (Fig. 1), can be seen quite
clearly, while the summer dry days exhibit weaker shifts. The
corresponding results for the wet-year forecasts of 2000 are
shown in Fig. 6, with the most noticeable shift being toward
a near normal number of hot days at Pilar.

4. Downscaling climate change scenarios

Climate change projections for the 21st century are avail-
able at a monthly time scale and for a spatial scale given by
the climate model grid-size (typically, hundreds of square
kilometers) based on an ensemble of global climate change
models (e.g., the Fourth Assessment Report of the Intergov-

(a) (b)

Fig. 5. The PDF of the number of dry days (a) and hot days (b) from the simulation (dashed line) and climato-
logical PDF (solid line) at Pergamino based on seasonal forecasts from IRI (2004).

(a) (b)

Fig. 6. The PDF of the number of dry days (a) and hot days (b) from the simulation (dashed line) and climato-
logical PDF (solid line) at Pilar based on seasonal forecasts from IRI (2000).
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(a)

(b)

(c)

Fig. 7. The simulated means (dashed line) and 95th projection
band (dotted line) for summer seasonal total precipitation(a),
mean maximum temperature (b) and mean minimum tempera-
tures (c) during the 1931–55 epoch, along with the smoothed
observed time series (solid line), for Pergamino.

ernmental Panel on Climate Change, IPCC AR4). For a point
location, the time series of monthly precipitation and of tem-
perature, consisting of the ensemble of climate change pro-
jections at the grid box containing the location, are consid-
ered for simplicity. Ensembles of weather sequences based
on these projections can be generated by using the procedure
described in the previous section—especially step (3). In par-
ticular, the seasonal projected values of precipitation, suitably
smoothed, can be used as a covariate in the GLM weather
generator described earlier to generate an ensemble of daily
weather sequences consistent with the projections. This ap-
proach can also be used for downscaling shorter-term (e.g.,
decadal) projections.

(a)

(b)

(c)

Fig. 8. The PDF of the simulated projections (dashed line) of
the summer total precipitation (a), mean maximum temperature
(b) and mean minimum temperature (c) for the 1931–55 epoch,
along with the model climatology (solid line), for Pergamino.

To demonstrate this approach, we selected an earlier dry
epoch (1931–55) in the Argentine Pampas. The LOESS-
smoothed seasonal precipitation and temperature for each
year of these epochs were used a covariates to the GLM
weather generator to produce daily weather sequences con-
sistent with the decadal variability of these epochs. As be-
fore, probability distributions of a suite of weather statistics
were computed and compared with the corresponding clima-
tological distributions to check for epochal shifts.

The simulated summer seasonal precipitation, maximum
and minimum temperature for the epoch, along with the pro-
jections at both locations, are shown in Fig. 7. The 2.5th
and 97.5th percentiles of the ensembles, the median and the
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(a) (b)

Fig. 9. The PDF of simulated projections (dashed line) of the numberof dry days (a) and hot days (b) for the
1931–55 epoch, along with the model climatology (solid line), for Pergamino.

smoothed time series projection during this epoch are shown
in the figure. It can be seen that the ensembles track the
projection very well at both locations, indicating that the
methodology is able to generate consistent weather sequences
with a rich variety. The PDFs from the simulations of the
summer precipitation (Fig. 8) both show clear shifts consis-
tent with the drier epoch relative to the climatological PDF
at both locations. Most noticeable shifts in temperature are
towards lower minimum temperature at Pergamino. Shifts in
the PDFs of summer dry days towards drier conditions are
also clear at the two locations (Fig. 9).

5. Conclusions

Using the incorporation of smoothed seasonally aggre-
gated climate statistics into the GLM model as covariates, it
has been demonstrated how the incorporation of such season-
ally aggregated climate statistics facilitates statistical down-
scaling of seasonal climate forecasts. These results are en-
couraging in that the methodology provides a robust tool to
generate weather sequences consistent with any seasonal cli-
mate forecast of potential use in resources planning and man-
agement. In the case of seasonal forecasts, the GLM weather
generator makes it straightforward to translate the uncertainty
in the seasonal forecast product into that for the correspond-
ing conditional daily weather statistics.

From a climate diagnostics perspective, it is somewhat
uninformative to remove overdispersion through explicit use
of seasonal aggregated climate statistics as covariates inthe
GLM weather generator. A more appealing approach could
involve replacing these covariates with a hidden variable to
reflect unobserved shifts in climate “regimes” on an inter-
annual or longer (e.g., decadal) time scale. Using a hid-
den Markov model (e.g., MacDonald and Zucchini, 1997) to
represent this regime state would allow for long-term persis-
tence, as well as having the advantage of being a fully prob-
abilistic approach (i.e., explicitly modeling the uncertainty
about which climate regime is presently occurring). In addi-
tion, our approach can be applied in the spatiotemporal ver-
sions of GLM weather generators by using seasonal spatial
average precipitation as the covariate (Verdin et al., 2015).
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