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ABSTRACT

Statistical downscaling is based on the fact that the lamgde climatic state and regional/local physiographictufies
control the regional climate. In the present paper, a s&ithaveather generator is applied to seasonal precipitatial
temperature forecasts produced by the International Resdastitute for Climate and Society (IRI). In conjunctiarth
the GLM (generalized linear modeling) weather generatogsampling scheme is used to translate the uncertaintyein th
seasonal forecasts (the IRI format only specifies proliggslfor three categories: below normal, near normal, amdeb
normal) into the corresponding uncertainty for the dailyather statistics. The method is able to generate potgntiaéiful
shifts in the probability distributions of seasonally agggited precipitation and minimum and maximum temperaasrejell
as more meaningful daily weather statistics for crop yieteh as the number of dry days and the amount of precipitatio
on wet days. The approach is extended to the case of climatgelscenarios, treating a hypothetical return to a prsijiou
observed drier regime in the Pampas.
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1. Introduction being much simpler to develop and implement in practice. In

Techniques to downscale climate information can be élhe present paper, we ad(_)pt a statlstlcgl approach and focus
nly on temporal, not spatial, downscaling.

vided into two main categories: dynamical and statistical Stochastic weather generators can be used to temporally

Dynamical downscaling effectively increases the spatisbr : . i
downscale climate information, such as seasonal forecasts

lution, through coupling a higher resolution numerical ebd qgvnks and Wilby, 1999; Benestad et al., 2008). Approaches

(e.g., regional) to a lower resolution model (e.g., globat stochastic weather generation can be divided into twamai

(Giorgi and Mearns, 1991; Hostetler et al., 2011; Xu ancategories: parametric [starting with Richardson (198}

Yang, 2012; Mannig et al., 2013). The alternative technique : .
S o - L non-parametric [generally based on resampling, e.g., Ra-
of statistical downscaling involves empirical relatioipstbe- . ;
. o . agopalan and Lall (1999)]. We adopt the recently introdlice
tween weather and climate variations at different tempora

and/or spatial scales (Wilby and Wigley, 1997; Wilby et algeneralized linear modeling (GLM) (McCullagh and Nelder,

1998: Wilby et al., 2004; Benestad et al., 2008). Yoon et 989) approach to parametric weather generators, which has

(2012) compared dynamically and statistically downscaledeC 23:22@]:90? ;l;gsec')rs]%lri?a:% ?;fcfn'gggtrig?];a(t: ;?\lﬁ;at
seasonal climate forecast for the cold season over the 9 Y N

Recently, Caldwell et al. (2014) used a K-nearest neighborNlno phenomenon) (Furrer and Katz, 2007). Yet, one im-

weather generator for downscaling of IRI (Research Irtsit ortant limitation of parametric stochastic weather ganer

. . . rs is their underestimation of the observed interannai v
for Climate and Society) seasonal forecasts and discussed . .
L . . . nce of seasonally aggregated variables, sometimes termed
skill in the shifts. Although a dynamical approach is appe

ing in principle, a statistical approach has the advantdge guerdispersion” (Buishand, 1978; Katz and Parlange, 1998
ginp pie, P 9€8uch variance underestimation is a shortcoming of statisti

cal downscaling techniques more generally (Benestad,et al.

* Corresponding author: GyuWon LEE 2008).
Email: gyuwon@knu.ac.kr To reduce the overdispersion phenomenon, Kim et al.
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(2012) incorporated time series of seasonal total precipiB65). I; is a seasonal indicator [i.ely, = 1 in austral sum-
tion and seasonal mean minimum and maximum temperatarer (October—March) and = 0 in austral winter (April—
in the GLM weather generator as covariates. These seas@gptember)], whilds; andR,; are LOESS-smoothed sum-
time series are smoothed using locally weighted scatterpioer and winter seasonal total precipitation, respectively
smoothing (LOESS) (Cleveland, 1979; Hastie and Tibshjramiy, a1, 811, B12, V1, V2, B1s and 31, are model coefficients.
1990) to avoid introducing underdispersion (i.e., too much The daily precipitation intensity (i.e., the precipitatio
variance instead of not enough variance). Because the agrount conditionally based dp= 1) is modeled as a gamma
gregate variables appear explicitly in the weather geogratistribution (e.g., Stern and Coe, 1984), with an annualkcyc
downscaling to daily sequences can be readily implementéat. mean intensity, denoted hy:
It should be noted that Wilks (1989) conditioned a stochas-
tic model for daily precipitation based on monthly total pre In(tt) = o + B21C + B22S + BasltPst + Bow(1—1t)Put - (2)
cipitation, and that Hansen and Mavromatis (2001) adjustesre o, 3,1, B22, B2s andBow are model coefficients. The co-
the parameters of a stochastic weather generator in an ad 8@igients 3,1 and B2, control the annual cycle in the mean
fashion to correct for overdispersion. intensity.

In section 2, first, the extended GLM approachto stochas- | et (X,,Y;) denote the minimum and maximum tempera-
tic weather generators, involving the introduction of a&ggrtyre on day t of a given year, jointly modeled as a bivariate

gated climate statistics as covariates, is briefly reviewefst-order autoregressive process of the form (as in Rithar
Next, these models are fitted to time series of daily weathersyn  1981; Furrer and Katz, 2007)

Pergamino and Pilar in the Argentine Pampas, evaluating the

model fit in terms of overdispersion. Section 3 demonstrates %t = Hx,0+ Hx,1J + ¢xX—1+ UxY—1+ Bx1G +

the feasibility of statistical downscaling. The IRI seaalon Bx 2S + Bx sltNst + Bxw(1—lt)Nwt +&xt,  (3)

forecasts are used as prototypes, with a resampling scheme ' '

(Apipattanavis et al., 2007) adopted to translate the uncéf

tainty in the seasonal forecasts into the correspondingrinc vy, — Lo+ ty.1d + SyYe_1+ Uy X + BraC + Br2S +

tainty for the daily weather statistics. In section 4, the-pr By kM ’+ﬁY (1= 1) Mt + & ' @)

posed approach is applied to downscaling shorter-term, (e.g SISt PYwl = T/t T SYt

decadal) projections under climate change scenariosllfzinavherep X, 0), .0, tx,1, lv,1, §x, v, Yx, Yy, Bx 1, Bx 2, Br.1,

the study’s findings are discussed in section 5. B2, Bx s, Bxw; Br,s and By, are model coefficientdNs; and
Nwt (Mst andMyt) are the LOESS-smoothed summer and

o winter seasonal mean minimum (maximum) temperatures.
2. Reviditingthe GLM weather generator Here, the two error termsx; and &y, besides being nor-

The GLM approach to stochastic weather generators fRally distributed with zero means, have no autocorrelation
troduced by Furrer and Katz (2007), focuses on the simpl@&Cross correlation.

form of a generator first proposed by Richardson (1981). Us- Note that the seasonal indicators in Egs. (1-4) allow for
ing the observed (i.e., unsmoothed) seasonal climatesstafifferentrelationships with the aggregated covariatgede-
tics as covariates may introduce excessive noise into 1@ On the season. The degree of LOESS smoothing is deter-
daily weather statistics and result in “underdispersicor” f Mined by the criterion based on minimizing the overdisper-
aggregated climate statistics. Kim et al. (2012) consilon Phenomenon, through trial and error ranging from the
ered smoothed seasonal climate statistics as covariaties incaS€ of no smoothing to as smooth as possible. Kim et al.
GLM weather generator, and adopted LOESS as a smooth_(galz) considered the same degree of smoothness (i.e., 0.4)
tool (Cleveland, 1979), which is a computationally inteesi N &/l GLM models at the two locations. _
method. Except for smoothed seasonal covariates, the GLM Kim et al. (2012) illustrated that the proposed model vir-
stochastic weather generator of Kim et al. (2012) is esséHally eliminates the overdispersion phenomenon in nefly
tially the same as in Stern and Coe (1984) and Furrer afff€s In reproducing variances of annual, as well as summer
Katz (2007). and winter, total precipitation (mm) and mean minimum and
Let % denote the precipitation occurrence state 0n»[da};naximumtemperature%(()) attwo locations in the Argentine
of a given year (i.e.. = 1 if precipitation occurs} = 0 Pampas, Pergamino and Pilar. Both locations have a marked
otherwise), and lep, = P{} = 1},t = 1,2,..., denote the wet season in the Southern Hemisphere summer. They also

probability of a wet day. The logistic transformation of th&ePorted that the results (not shown) were not very seesitiv
probability of precipitation is modeled conditionally onet 0 the precise value of the parameter governing the degree
occurrence state on the previous day;: of smoothing in _LO_ESS (e.g., the_overdlspe_rsm_)n in the sum-

mer total precipitation at Pergamino was still virtuallynel

P inated if the degree of smoothing was 0.5 instead of 0.4). It

In <1_ p[> = G0t Gk 1+ PGPS +1Gh1t s hoted that the introduction of the temporal trend in the
oSk 1+ BuslPst + Bw(1— )Ry, (1) temperature models was insufficient to correct the overdis-

' persion, and the original model came close to reproducing

whereC; = coq2m(t —181)/365) andS = sin(2r(t — 181)/ the precipitation variability in winter.
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In the application to downscaling seasonal forecasts (seontiguous area for which a deviation from climatology is
tion 3), daily weather statistics, such as the total numlber predicted, the same IRI forecast probabilities alwaysyafpl
dry days and the median daily precipitation intensity withi both locations. Nevertheless, the downscaled daily weathe
season, are considered. It was verified that the GLM weatlsgatistics will differ both because of different downsngli
generator with aggregated covariates simulates the aimatelationships and because of different climatology (iass,
logical distribution of these statistics reasonably wedk(ilts reflected in the coefficients in the GLM weather generators).
not shown). Furthermore, Kim et al. (2012) already extefinally, the climate statistics used as covariates in tht/GL
sively validated the proposed GLM weather generator agplievere aggregated over six months, not three months as in the

to Pergamino and Pilar. IRI seasonal forecasts. Rather than attempting to combine
the IRI forecasts for two consecutive three-month periods

3. Downscaling seasonal forecasts

1400

(@)

The IRI seasonal forecast product has been issued sint
October 1997 (Barnston et al., 2010). At present, the fatsca
of seasonal total precipitation and mean temperature have
least a 0.5-month lead time (e.qg., the forecasts for theligcto
through December season are released in mid-Septembe &

on{mm)
1000

Seasonal forecasts with longer lead times of up to 3.5 montlﬂfx
are also produced (e.g., forecasts for the January throug§
March season are also issued in mid-September). These Il
forecasts are probabilistic in nature, in that they are joiexy

as a percentage likelihood in & N : B format, where A’
denotes the percentage chance of above-normal seas@hal tc
rainfall, “N” denotes the percentage chance of near-norme-
rainfall, and ‘B” denotes the percentage chance of below-
normal rainfall—and the three categories are typicallyelas
on the terciles. For example, a forecasfofN: B=40: 35:

25 for an area means that there is a 40% chance of seasor ©
total rainfall being above normal, a 35% chance of rainfall %
being near normal, and a 25% chance of below-normal pre g
cipitation. Forecasts of seasonal mean temperature aliiss
in the same format.

Barnston et al. (2010) thoroughly evaluated the skill of
the IRI seasonal forecasts. Any such skill is necessarly li
ited, with the forecast probabilities frequently coinaigi
with climatology [i.e., (¥3,1/3,1/3)] and only rarely being
higher than 2/3 for a given category. Seasonal precipitatio
probability forecasts are reliable (i.e., well-calibichia the
sense that they can be taken at face value), with the reliabi ¢y
ity of seasonal temperature forecasts suffering from arfil
to correctly incorporate global warming trends. The fostca
skill tends to match the strength of the ENSO signal, bott &
in terms of geographic location and time of year. So, not 3

(°C)

Temp

ture(®

surprisingly, there is some real, if small, skill for bothepr % 2 . i i L ‘
cipitation and temperature during the Southern Hemispher'_ - - -
summer half of the year (October through March) in the Ar- o

gentine Pampas [for more information about the ENSO signe
in the Argentine Pampas, see Furrer and Katz (2007)]. Thi
contribution of the ENSO phenomenon to the IRI forecasts is
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another reason for not including ENSO as a covariate in the-Fig 1. Downscaling of IRI forecasts for October to Decem-

GLM weather generator.

ber 1997-2007, showing boxplots of the corresponding fmtec

The IRI forecasts apply to a particular grid box, rather gistributions of summer (October to March) total precipita
than a Single location. As already mentiOHEd, our appr(IiiCh i(a)’ mean maximum temperature (b) and mean minimum tem-
designed to deal with temporal, not spatial, downscalirg. S perature (c), along with the climatology (CLIM) and obsetve
the IRI forecasts will be treated as if they apply to indivadlu  values (denoted by circles) for Pergamino. Boxplots are not
points. Because Pergamino and Pilar are closely situateghown for years in which the forecast coincides with the aim

relative to the size of the grid boxes or the typical size ef th tology.
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(which are not always available for the second three monthesjsion making will be computed, and compared with the cor-
we adopt the pragmatic approach of using the IRI forecasesponding climatological distribution to quantify thefsin
for the first three months and only the climatology for ththe probabilities and consequently the risk estimatess dj
second three months. Stochastic weather generators bggedch has been demonstrated successfully in a resampling-
on the K-nearest neighbor resampling approach (Rajagopdi@ased weather generator (Apipattanavis et al., 2007) and ha
and Lall, 1999; Beersma and Adri Buishand, 2003; Apipabeen applied to seasonal crop yield forecasts, quantifyéng
tanavis et al., 2007) have been modified (Briggs and Wilksys in highway constructions, and in streamflow forecasts
1996; Yates et al., 2003) to provide weather scenarios cgApipattanavis, 2008; Apipattanavis et al., 2010a, 2010b)
sistent with the seasonal probabilistic forecasts. Wehiset To demonstrate statistical downscaling based on the GLM
modification, first proposed by Yates et al. (2003) and useaather generator, we make use of the IRl seasonal fore-
in Apipattanavis et al. (2007), in the current research.ho tcasts issued in mid to late September for October through
best of our knowledge, this is the first application of itskinDecember in the years 1997 to 2007. For both total precipita-
to a GLM-based, or any other parametric, weather generation and mean temperature, the forecast probabilitie atledi

The methodology proceeds as follows: (1) Historicdfom the climatology for only six of the 11 years. Figure 1
years are classified into three categories—wet, normal asttbws boxplots of the downscaled forecast probability dis-
dry, based on the terciles of the smoothed historical suinibutions of summer (i.e., October through March) totad-pr
mer (October—March) season precipitation (i.e., consisteipitation, maximum temperature, and minimum temperature
with the covariates used in the GLM weather generator). (&) Pergamino. For comparative purposes, the corresponding
The historical years are resampled with replacement badexkplots for the climatological distributions are includas
on the seasonal probabilistic forecast as the weight metnicell, along with the observed seasonal statistics for eah f
Following the previous example of a 40 : 35 : 25 forecastast year (indicated by circles on the boxplots).
we would select years from the wet category with a 0.40 For total precipitation, the IRI seasonal forecasts with th
probability, normal years with a 0.35 probability, and drgreatest deviations from the climatology were for 1997hwit
years with a 0.25 probability. (3) The smoothed seasoraprobability of 0.55 for the above-normal category, and for
(October—March and April-September) precipitation valud 998, with a probability of 0.60 for the below-normal cate-
of the resampled years are used in the GLM weather gengory. The consistent shift in the downscaled forecast box-
ator as covariates to generate a rich variety of daily weath@ots toward wetter than normal conditions in 1997 (drier in
sequences at the point scale. An analogous approach is 888) is evident in the figures, with the observed total greci
ployed for the simulation of minimum and maximum temitation being below normal for both years at Pergamino, but
perature based on the seasonal forecast of mean temperah@ar normal for both years at Pilar. For mean temperature,
The seasonal forecasts are available only for the mean tahe IRl seasonal forecasts with the greatest deviatioma fro
perature and we assume that it reflects the minimum and mthe climatology were for 1998 and 2003, with a probability
imum temperatures as well. The resampling, step (2), is pef-0.50 for the above-normal category. The consistent shift
formed on the probabilistic forecast of the three-month seia the downscaled forecast boxplots toward warmer than nor-
sonal mean temperature—and the corresponding smooth@al conditions for both maximum and minimum temperature
seasonal (October—March and April-September) maximusevidentin the figures. In 1998, the observed seasonal mean
and minimum temperatures are used in their respective Glivaximum temperature was above normal at Pergamino, but
models as covariates. near normal at Pilar, with the observed seasonal mean mini-

Probability distributions of a suite of weather statisticeaum temperature being above normal at both Pergamino and
(mentioned earlier) that are of importance in agricultaled Pilar. In 2003, the observed mean maximum temperature was
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Fig. 2. Downscaling of IRI forecasts for October to December 199072 showing boxplots of the
corresponding forecast distribution of the summer (Oatabéviarch) mean number of dry days (a)
and median daily precipitation intensity (b), along witte ttlimatology (CLIM) and observed values
(denoted by circles) for Pergamino. Boxplots are not shawryéars in which the forecast coincides
with the climatology.
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below normal at Pergamino and near normal at Pilar, with tdays in 1997 (more dry days in 1998) and the boxplots of the

observed seasonal mean minimum temperature being abmeglian intensity consistently shift toward higher values i

normal at Pilar, but near normal at Pergamino. 1997 (lower values in 1998). In 1997, the observed seasonal
In an attempt to further downscale the IRl seasonal preamber of dry days was near normal at Pergamino and below

cipitation forecasts into more meaningful daily statistiEig. normal at Pilar, with the median intensity being below ndrma

2 shows boxplots of downscaled forecast probability distri at Pergamino but near normal at Pilar. In 1998, the observed

tions for the number of dry days and the median precipitati@@asonal number of dry days was near normal at Pergamino

intensity at Pergamino. Focusing again on 1997 and 1998, #red below normal at Pilar, with the median intensity being

years with the highest seasonal forecast probability of@bo below normal at both Pergamino and Pilar.

(or below-) normal total precipitation, the forecast batpl The performance of the downscaled seasonal forecasts

of the number of dry days consistently shift toward less dghown in Fig. 2 is evaluated using the ranked probability
skill score (RPSS) (Wilks, 2006, Chapter 7). The RPSS is

9 calculated based on three categories at the tercile boesdar
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Fig. 3. The PDF of summer precipitation (a), maximum tem-
perature (b) and minimum temperature (c) from the simutatio
(dashed line), climatological PDF (solid line) and the aled
value (vertical line) at Pergamino based on dry seasonal IRI
forecasts (2004).

Fig. 4. The PDF of summer precipitation (a), maximum tem-
perature (b) and minimum temperature (c) from the simutatio
(dashed line), climatological PDF (solid line) and the aled
value (vertical line) at Pergamino based on wet seasonal IRI
forecasts (2000).
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RPSS= 0 corresponds to no skill over the climatologysimilar consistent shifts relative to the climatology (Fg,
whereas RPSS 1 for perfect forecasts. In order to calculatbut are somewhat subtler compared to the dry forecast case
the RPSS, the forecast probabilities of below normal, nearFig. 1-and this can be attributed to the fact that the sea-
normal, and above normal are first derived from the forecasinal forecast for the dry year is closer to the climatology
probability density function (PDF) for each climate vat@b than that of the wet forecast. The shifts in the temperature
At least limited skill is indicated for seasonal total pi@ta- PDFs are consistent with the IRI forecast representing-near
tion, with RPSS= 0.042 for Pergamino and RPSS0.143 normal conditions. These shifts have significant implimagi

for Pilar. Because these forecasts apply to 6-month seasdasthe tail probabilities, i.e., the extremes and, consedjy,

their skill is necessarily less than that for the origindlfiédte- crops yield impacts in agricultural applications.

casts for the first half of the time period. We computed the PDFs of summer dry days (i.e., total

For seasonal mean minimum temperature the resuttsmber of days with no rainfall) and hot days (i.e., total Aum
are inconsistent, with RPSS —0.015 for Pergamino but ber of days with maximum temperature abové@Gpat the
RPSS= 0.073 for Pilar. Similarly, for seasonal mean maxtwo locations for the dry year 2004 (Fig. 5). The shifts in the
imum temperature, with RPSS 0.151 for Pergamino but PDF of hot days at both locations relative to the climatology
RPSS= —0.118 for Pilar. Given that five out of 11 years hadowards higher values, consistent with the shift in the PDF
a climatological forecast, and in other years the climate-fo of mean maximum temperature (Fig. 1), can be seen quite
cast skill is modest at best, we do not expect a high overeléarly, while the summer dry days exhibit weaker shiftse Th
RPSS value. This limited or lack of skill may be attributableorresponding results for the wet-year forecasts of 2080 ar
in part to the original IRI forecasts being specified only ishown in Fig. 6, with the most noticeable shift being toward
terms of mean temperature, not minimum and maximum teanear normal number of hot days at Pilar.
perature, as mentioned earlier.

A clear shift of the forecast PDF of precipitation to the Iefh
of the climatology, consistent with a dry forecast, can lense
at Pilar, but is not quite as apparent at Pergamino (Fig. 3). Climate change projections for the 21st century are avail-
However, the shift in the temperature PDFs to the right of tlable at a monthly time scale and for a spatial scale given by
climatology, consistent with a warmer than normal tempertre climate model grid-size (typically, hundreds of square
ture forecast probability, can be seen at both locationg Tkilometers) based on an ensemble of global climate change
forecast PDFs of precipitation for the wet year of 2000 shomodels (e.g., the Fourth Assessment Report of the Intergov-

Downscaling climate change scenarios
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Fig. 5. The PDF of the number of dry days (a) and hot days (b) from timeilsition (dashed line) and climato-
logical PDF (solid line) at Pergamino based on seasonatéste from IRl (2004).
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logical PDF (solid line) at Pilar based on seasonal foredasin IRI (2000).
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Fig. 7. The simulated means (dashed line) and 95th projection
band (dotted line) for summer seasonal total precipita@n
mean maximum temperature (b) and mean minimum tempera-
tures (c) during the 1931-55 epoch, along with the smoothed
observed time series (solid line), for Pergamino.

Fig. 8. The PDF of the simulated projections (dashed line) of
the summer total precipitation (a), mean maximum tempegatu
(b) and mean minimum temperature (c) for the 1931-55 epoch,
along with the model climatology (solid line), for Pergamin

ernmental Panel on Climate Change, IPCC AR4). For a point To demonstrate this approach, we selected an earlier dry
location, the time series of monthly precipitation and ofite epoch (1931-55) in the Argentine Pampas. The LOESS-
perature, consisting of the ensemble of climate change psoroothed seasonal precipitation and temperature for each
jections at the grid box containing the location, are consigiear of these epochs were used a covariates to the GLM
ered for simplicity. Ensembles of weather sequences baseshther generator to produce daily weather sequences con-
on these projections can be generated by using the procedisent with the decadal variability of these epochs. As be-
described in the previous section—especially step (3)atn pfore, probability distributions of a suite of weather sttitis
ticular, the seasonal projected values of precipitatioitably were computed and compared with the corresponding clima-
smoothed, can be used as a covariate in the GLM weathaogical distributions to check for epochal shifts.

generator described earlier to generate an ensemble gf dail The simulated summer seasonal precipitation, maximum
weather sequences consistent with the projections. This apd minimum temperature for the epoch, along with the pro-
proach can also be used for downscaling shorter-term (ejgctions at both locations, are shown in Fig. 7. The 2.5th
decadal) projections. and 97.5th percentiles of the ensembles, the median and the
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Fig. 9. The PDF of simulated projections (dashed line) of the nunalbeiry days (a) and hot days (b) for the
1931-55 epoch, along with the model climatology (solid)ijfier Pergamino.
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