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ABSTRACT

The purpose of this review article is to discuss the development and associated estimation of uncertainties in the global
and hemispheric surface temperature records. The review begins by detailing the groups that produce surface temperature
datasets. After discussing the reasons for similarities and differences between the various products, the main issuesthat
must be addressed when deriving accurate estimates, particularly for hemispheric and global averages, are then considered.
These issues are discussed in the order of their importance for temperature records at these spatial scales: biases in SST data,
particularly before the 1940s; the exposure of land-based thermometers before the development of louvred screens in the late
19th century; and urbanization effects in some regions in recent decades. The homogeneity of land-based records is also
discussed; however, at these large scales it is relatively unimportant. The article concludes by illustrating hemispheric and
global temperature records from the four groups that produce series in near-real time.
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1. Introduction

A number of groups routinely update gridded datasets of
surface temperature for land and marine regions, which can
be used to produce time series of global and hemispheric tem-
peratures. The four main groups are: the UK Meteorological
Office Hadley Centre/Climatic Research Unit, which pro-
duces HadCRUT4 (Morice et al., 2012; http://www.cru.uea.
ac.uk/cru/data/temperature/, and http://hadobs.metoffice.com/
hadcrut4/)—an updated version of HadCRUT3 (Brohan et
al., 2006); the US National Centers for Environmental Infor-
mation (NCEI; Karl et al., 2015; https://www.ncdc.noaa.gov/
climate-monitoring), which is an updated version of Smith et
al. (2008) and Vose et al. (2012); the Goddard Institute for
Space Studies (GISS; Hansen et al., 2010; http://data.giss.
nasa.gov/gistemp/), which is an updated version of Hansen et
al. (1999, 2006); and the Berkeley Earth Group (BEST; Ro-
hde et al., 2013a, 2013b; http://berkeleyearth.org/). Oneother
group monitors land-based temperatures (Lugina et al., 2006)
and another monitors SST (Ishii et al., 2005). Surface temper-
ature datasets are comprised of measurements from the land
(from air temperatures at fixed locations) and SST data from
the ocean (from moving ships and buoys). SST data are used
for the oceans instead of marine air temperatures (MAT, taken
by ships), as a few SSTs in an area of ocean are much more
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reliable than the same number of MAT measurements. Addi-
tionally, the number of MAT measurements must be further
reduced by half, due to daytime heating caused by the ship,
so only night-time MAT (see discussion in Kent et al., 2013)
can be used. Data from the two components are combined
as anomalies from a base period. The base period, however,
is different for the four data sets: 1961–90 for HadCRUT4;
1901–2000 for NCEI; and 1951–80 for GISS and BEST.

All the groups use much the same input data, but em-
ploy different approaches to interpolation to develop gridded
products. HadCRUT4 and NCEI both use a 5◦

×5◦ latitude-
longitude grid that is produced first for separate domains for
land and ocean. These two gridded products have overlaps
at coastlines and islands and are combined in different ways
by the four groups. HadCRUT4 combines land data from
CRUTEM4 (Jones et al., 2012) with SST data from HadSST3
(Kennedy et al., 2011a, 2011b; see also Kennedy, 2014).
NCEI use land data from the ISTI database (Rennie et al.,
2014) and their ERSSTv4 dataset of SST anomalies over the
ocean (Huang et al., 2015; Liu et al., 2015). GISS data are de-
rived by first averaging all the land station data (from NCEI)
into 160 approximately equal-area boxes, and then combin-
ing these with SST values (currently using ERSSTv4) from
marine areas. BEST uses numerous station datasets from
NCEI, and also those used by CRUTEM4 combined with ma-
rine data from HadSST3.

If there are no data for a given month in one of the grid
boxes, the HadCRUT4 value is missing. All the other datasets
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perform some sort of spatial infilling to produce more glob-
ally complete fields–NCEI by using an eigenvector-based
technique, where this is judged to produce statistically reli-
able estimates; GISS uses 160 equal-area boxes effectivelyto
provide some infilling in data-sparse areas, so only a few of
the boxes are completely missing for all months; and BEST
use kriging procedures (see Rohde et al., 2013a, 2013b). The
amount of infilling undertaken with NCEI, GISS and BEST
is unknown without station coverage for each month/year.
Maps of all stations used are unhelpful without knowing their
data availability, especially before the 1950s. Additionally, a
fifth group, the Japanese Meteorological Agency, combines
the Ishii et al. (2005) SST data with land stations from NCEI,
http://ds.data.jma.go.jp/tcc/tcc/products/gwp/temp/annwld.
html, but the method has not been formally published. De-
spite these differences in the methods used to combine the
basic data, the hemispheric- and global-scale time series are
very similar [see the trends calculated over three different
periods in Table 3.3 of Trenberth et al. (2007) for IPCC AR4,
and Table 2.7 of Hartmann et al. (2013) for IPCC AR5]. In
section 7 of the present paper, trends for global averages over
three periods (1901–2014, 1951–2014 and 1979–2014) are
calculated.

The purpose of this article is to first discuss (in section 2)
the principal reasons for the similarities at large spatialscales,
and then (in section 3) the important issues that need to be
considered to ensure reliability and to assess the accuracyof
the monthly and annual estimates (for hemispheric and global
averages and also at the grid-box scale). Section 4 illustrates
these for the biases (SSTs, exposure and urbanization), while
land-station homogeneity is addressed in section 5. Section
6 discusses the results from a number of reanalyses of the
climate system (e.g., ERA-Interim; Dee et al., 2011) in the
context of changes in spatial coverage through time. With
all this knowledge, section 7 discusses the hemispheric and
global analyses produced by the four groups, and section 8
concludes.

2. Similarity and homogeneity of large area-
average time series

There are three principal reasons for the close similarity
between the four independently derived data series. The first
is that they use much the same raw (monthly-mean) input data
for the land areas and separately similar input data (Interna-
tional Comprehensive Ocean Atmosphere Dataset, ICOADS)
for the marine areas. The second is that similar bias and ho-
mogeneity adjustments are applied to both sets of data, par-
ticularly for the ocean, and these form the main discussion
points of this paper. While there are some minor differences
in the input data and the adjustments applied, many of the
homogeneity issues are essentially random; so, when aver-
aged over large areas, the differences tend to cancel out. The
third factor is often ignored and poorly understood; namely,
that grid-box temperature time series from neighbouring lo-
cations are highly spatially correlated. Thus, even though

there are records from thousands of sites on land and from
millions of measurements from ships and buoys across the
world’s oceans, the “effective” number is much less than
this. Estimates (using both observational data and globally
complete climate model data) indicate that the effective num-
ber of independent observations at the monthly timescale for
the global surface area is about 100 (see Jones et al., 1997).
Thus, provided input datasets have at least 100 well-spaced
sampling points for which the data are relatively free of non-
climatic biases, even if the locations of these sites are dif-
ferent between the different groups, they will lead to very
similar large-scale area averages. For annual or decadal av-
erages the required number of well-spaced locations can be
substantially less than 100.

A similar situation exists for pressure data. Here, the cor-
relation decay length is similar to that for temperature, so
relatively few sites can produce reliable area averages. For
precipitation, however, the required number of data seriesto
produce reliable area averages is much greater than for tem-
perature, as correlation decay lengths are much smaller. The
number of locations required to derive similar datasets from
daily temperature averages would be larger, as at the daily
timescale correlation decay lengths would also be smaller.

The relatively small number of locations required to es-
timate large-scale area averages accurately means that, even
for early parts of the temperature record when the data net-
work was relatively sparse, area averages are reliable backto
the second half of the 19th century. A test of the adequacy
of the evolving network of temperature data sites for deriving
large area-average time series is provided by Le Treut et al.
(2007, Fig. 1.3). Here, many of the series developed before
1985 (all of which are just for the land regions of the world)
are compared and shown to agree well. Even the record de-
veloped by Köppen (1873) for the Northern Hemisphere land
masses is similar to averages developed today by CRUTEM4.
The adequacy of the network used by Callendar (1938, 1961)
is also excellent when compared to CRUTEM4 (Hawkins and
Jones, 2013).

The adequacy of early networks has also been illustrated
using subsamples involving the use of present-day regions
that had good sampling in the 19th century. Parker et al.
(2009), for example, have shown that the number of sites re-
quired to produce a reliable area average is small (see their
Fig. 1). They did this by calculating global land averages
using a limited set of 5◦ grid boxes, and then with another
analysis offset from the first by 10◦ of longitude and latitude.
Earlier, Jones (1994) used a sparse but more constant net-
work of stations to show that the sparser networks available
in the second half of the 19th century could reproduce the
global average reliably on decadal timescales and so ensure
the consistency of large-scale area-average time series. In-
dividual months and years may differ, particularly prior to
1900, but sparse networks are very reliable for decadal and
longer-timescale averages.

Network adequacy has also been discussed by Cowtan
and Way (2014), who claim that HadCRUT4 underestimates
warming in the last 15 years due to missing grid boxes in
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Table 1. Temperature change [◦C (10 yr)−1] explained by the linear
trend for the global annual average of the four datasets introduced
in section 1 of this paper. These series are plotted in the lower panel
of Fig. 1. All trends for all three periods are statisticallysignificant
at the 99% confidence level, or better.

1901–2014 1951–2014 1979–2014

HadCRUT4.4 0.076 0.110 0.159
GISS 0.086 0.137 0.158
NCEI/NOAA 0.084 0.130 0.147
NCEI/NOAA (Uncorrected) 0.107 0.117 0.146
BEST 0.082 0.113 0.165

the Arctic. Cowtan and Way (2014) infill all missing grid
boxes in HadCRUT4 from 1979 onwards using reanalysis
products, lower tropospheric temperatures, or by kriging—
not just across the Arctic, but also for the Antarctic, partsof
Africa, and a few smaller areas. Using reanalysis can cause
problems in the Antarctic (Jones and Lister, 2015) and is not
to be recommended. Infilling by kriging tends to produce
fields that are smoother than observed data show. In section
7, it is shown that the trends of the various datasets demon-
strate that warming rates in HadCRUT4 are not significantly
different from the other three datasets (see Table 1).

The strong spatial correlation of temperature is also
important in paleo-temperature reconstructions from proxy
data. Here, the number of sites is much fewer than for instru-
mental data, but reliable area averages can still be produced
(see Jansen et al., 2007). Further back in time, millennial-and
multi-millennial-scale temperature histories are derived from
a few ice cores and/or deep sea cores (see Masson-Delmotte
et al., 2013).

3. Issues to consider in series adjustment and
error assessment

The effective number of spatial degrees of freedom is one
of the key parameters in estimating the statistical uncertainty
in estimates of large-scale averages. In an earlier study bythe
HadCRUT group (Brohan et al., 2006), estimated uncertain-
ties also account for uncertainties in homogeneity and bias
adjustments to the basic data, possible urbanization influ-
ences, as well as the effects of sparser sampling in the earlier
years. The incorporation of these components is complicated
by the fact that some issues cancel by the number of measure-
ments (particularly those due to land-station homogeneity),
while the biases tend to be consistent so do not cancel. In
order for uncertainty errors to be widely used, Morice et al.
(2012) introduced the concept of multiple, but equally plau-
sible, realizations of the past. The HadCRUT4 dataset has
developed 100 such realizations with a best guess, the me-
dian value for each grid box, and the median of the 100 re-
alizations of global and hemispheric averages. The range of
these realizations expands for years earlier in the record,but
is still quite low in regions with good coverage back to 1850.
Smith and Reynolds (2005) have also looked at the effects of

sparser coverage in earlier years.
Knowledge of the potential sources of error and their cor-

relative structure is key information if the uncertaintiesin
the global temperature record are to be reduced. The great-
est potential for improvement will come from infilling data
gaps in early years, particularly through the incorporation of
more marine data [where improvements in metadata will also
be important–as evidenced in the work of Thompson et al.
(2008, 2009)]. As will be shown in this paper, the greatest
uncertainty is in the marine data before World War 2, and
this has recently been well illustrated by Karl et al. (2015).

To discuss the different uncertainty components, it is nec-
essary to understand their structure; but before that, there is
a need to define a few terms commonly used in climatology.
There are three basic issues in the development of the grid-
ded temperature products and global and hemispheric means:
homogeneity of the basic raw station or marine time series;
large-scale systematic biases that might affect large areas;
and the lack of coverage in parts of the world, particularly
before the 1950s. These will be discussed in the next sections
in their order of importance for the large-scale averages: bi-
ases, coverage, and homogeneity of the individual site series.
At the local (grid-box) scale, the order of importance would
differ: coverage, then homogeneity, and finally bias. The fact
that the order of importance depends on the spatial scale is
a particularly vital aspect to realize. Additionally, the com-
ponents of the uncertainty are independent of each other, so
may be combined in quadrature (Brohan et al., 2006; Morice
et al., 2012), as opposed to being additive in nature.

It is important to note, however, that these problems apply
to the original (raw) input data. For the data that are used to
produce standard area-average time series, corrections have
been applied to remove, as far as possible, these potential
sources of error. The fact that four different organizations
have made such corrections independently is a testimony to
the robustness and accuracy of the resulting homogenized
data (see this illustrated in section 7). Related to this, adjust-
ments for land data are estimated completely independently
from the marine series, so these two components mutually
support each other.

4. Biases

Biases are homogeneity issues that affect large portions
of the observational dataset. They may be smaller in mag-
nitude than the effects of site moves and other factors (see
section 5), but they can be important if they similarly affect
significant fractions of the basic input data. These will be dis-
cussed in order of importance, as measured by their impact
on hemispheric-and global-average series. The three most
important factors are: methods of measuring SST; exposure
issues with temperature recorded at land stations before the
development of louvred screens; and the time-varying effects
of increasing urbanization due to the growth of cities (see
also Jones and Wigley, 2010). This third factor is linked to
the representativeness of the site in the context of possible
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land-use or environmental change across the grid box within
which it is located. Land station homogeneity is discussed in
section 5.

4.1. SST measurements

Any issue of homogeneity or bias in measuring SSTs will
have a serious impact on global temperature estimates be-
cause almost 70% of the planet’s surface is ocean. The his-
tory of marine instrumental measurements goes back to the
18th century and the basic meteorological measurements (not
just SST, but air temperature, pressure, wind direction and
speed, etc.) were entered into ship logbooks. Even before
instruments, ships kept logbooks as these were essential for
navigation.

The first SST measurements were taken using wooden
buckets tied to a rope. A sample of sea water was hauled
onto the ship’s deck and the temperature measured. In the
earliest years these measurements came mostly from voyages
of exploration. By the early 19th century a whole array of
measurements, including SST became a routine part of life at
sea (Maury, 1855). The advent of steamships in the mid-19th
century led to ships increasing their speed and deck height
above the sea surface. By the late-19th century, many SST
measurements were made with canvas buckets, which were
more flexible and much cheaper to construct. The use of can-
vas buckets continued on most merchant and naval vessels up
to about 1940. Bucket use continued after this, but designs
were improved (see Kent et al., 2010).

When SST data were first examined in detail by climatol-
ogists in the 1970s (see references discussed by Folland and
Parker, 1995; Kent et al., 2010; and Kennedy, 2014), it was
soon realized that the method of measurement might influ-
ence the results. Between the wars there were a number of
comparisons made of different measurement techniques on
research vessels and on cruises, i.e., comparisons of differ-
ent types of bucket, as well as with thermometers fitted into
the engine cooling-water intake pipes of ships (see Kent et
al., 2010; and Kennedy, 2014 for details). More comparisons
were undertaken in the 1960s and 1970s, and it was at this
time that an extra code was added into both logbooks and
transmitted data to indicate how the measurement was made
(Woodruff et al., 2011).

The different thermal properties of the buckets: wooden,
canvas, and also, more recently, rubber, mean that to use
these data it is necessary to determine their relative biases,
and to develop a history of which types of bucket were used.
Bucket-type biases have been extensively assessed by Farmer
et al. (1989) and Folland and Parker (1995). Assessments are
continuing as more of the history of recording is being found
and more ship-logbook data digitized [see more recent dis-
cussion in Ishii et al. (2005), Kennedy et al. (2011a, 2011b),
Kent et al. (2013), and Kennedy (2014)].

With regard to changing instrumentation, a basic assump-
tion is that wooden buckets dominated in the 19th century,
canvas buckets from 1900 to 1941, and engine intake mea-
surements from then on. These were not, of course, abrupt

changes, but spatially variable transitions over time, so cor-
recting for these changes is not a simple task (Kennedy,
2014). The importance of these measurement technique bi-
ases is evident from the average size of the adjustment across
the world’s oceans–canvas bucket measurements need to be
raised by about 0.4◦C between 1900 and 1941 compared to
engine intakes. The main cause here is the evaporative cool-
ing of the sea water between the times of sampling and read-
ing of the thermometer. The procedures provide corrections
that can be applied for each part of the ocean with different
values during the seasonal cycle. Temperatures measured in
wooden buckets before the 1890s must also be raised rela-
tive to engine intake measurements, but by smaller amounts
than for canvas buckets. Uncertainties in these adjustments
are also incorporated in the overall error range accompany-
ing each grid-box or larger-scale value [see discussion re-
lated to the multiple realizations in Kennedy et al. (2011b)
and Morice et al. (2012)]. These uncertainties are dependent
on the size of the adjustments, so are larger for the canvas as
opposed to wooden buckets. Thus, even though coverage is
sparser in the late 19th century, the uncertainties are larger
between 1910 than 1940 than those from the earlier sparser
coverage.

Although the major issues with SST data relate to the pe-
riod before about 1940, there are still issues with recording
in recent times. First, recent work has suggested that SST
data for the period 1945 to 1960 are too cold (Thompson et
al., 2008, 2009). This is related to many of the measurements
in this period being taken by British naval ships, which seem
to have continued their canvas bucket method of sampling.
These issues are being resolved with improved metadata and
by attempting to relate individual measurements to the ships
that took them (see discussion in Kennedy, 2014), but for
about 30% of the SST observations during the period 1950–
75, the measurement method is unknown. As stated earlier,
buckets continued to be used after 1945, but designs were
also much improved to minimize the bias (see Kent et al.,
2010). Second, since the late 1970s, there have been major
changes to the marine observing system, with the principal
aim of improving weather forecasts and seasonal climate pre-
dictions. Satellites began to measure SSTs at this time, and
fixed buoys have been deployed in the equatorial Pacific to
help ENSO predictions. Further, since the late 1980s a large
number of drifting buoys have been regularly deployed across
the world’s oceans. Little consideration was given to the ho-
mogeneity of measurements at the time these instrumental
changes and additions were made.

As a consequence, when detailed comparisons have been
made, potentially important inhomogeneities have been dis-
covered [see discussion in Kennedy (2014), Huang et al.
(2015), and Liu et al. (2015)]. For example, it seems that
the new drifting buoys estimate SST values slightly lower
than ships by 0.1◦C to 0.2◦C, so their use might introduce a
spurious cooling in the record. More extensive discussion of
the SST adjustment procedures are provided by the different
data centres [see Kennedy et al. (2011a, 2011b) and Kennedy
(2014) for HadSST3, and Huang et al. (2015) and Liu et
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al. (2015) for ERSSTv4]. The recent study by Karl et al.
(2015) illustrates that SST adjustments are by far the largest
factor impacting hemispheric and global temperature mea-
surements. If the adjustments were not applied then century-
timescale warming would be greater, and there would be a
major discrepancy between the land and marine components
prior to about 1940. This will be illustrated in section 7.

4.2. Exposure of thermometers

The problem of thermometer exposure, primarily to avoid
the direct impact of sunshine on the instruments, was solved
during the mid-to-late 19th century with the invention of
screens. The problem had been recognized for many decades.
Many different variants were tried, but it wasn’t until the
development of white-louvred screens by Stevenson around
1870 (https://en.wikipedia.org/wiki/Stevensonscreen) that
consistent exposures were established. Louvred screens have
had different names around the world, e.g., “cotton region
shelters” in the United States. Other changes to instrument
exposure have also taken place in different regions around
the world [see Parker (1994); and Trewin (2010) for exten-
sive discussions]. Prior to the development of screens, ther-
mometers were generally positioned on north wall locations
of buildings in the NH, so as not to be in direct sunlight. De-
spite this, they would have received some sun exposure dur-
ing the early morning and late evenings during the summer,
particularly the farther north the location. Before the useof
screened locations, it was likely that air temperatures during
the summer half of the year could be biased warm. Measure-
ments during the winter half of the year would be unaffected.

Although the long-term homogeneity of station tempera-
ture series can be assessed (see section 5 for more discussion
of this issue), the accuracy of these approaches in early years
in Europe has been questioned by some authors, particularly
for measurements made during the summer (see Moberg et
al., 2003; Jones et al., 2003), as all series are similarly af-
fected by screens being introduced in some regions at the
same time. The discussion in these papers has centred on two
aspects of long temperature series: (1) the warmth of summer
temperatures in the pre-1880 period; and (2) the lower long-
term warming rates in summer compared to the other three
seasons. Crucially, if these issues are important, it will be re-
gional in nature (especially in Europe and for the early parts
of individual station records), but they will be of little signif-
icance for global-scale changes over the period since 1880.

Moberg et al. (2003) showed that the long-term warm-
ing in Swedish winters is consistent with changes in the at-
mospheric circulation (the North Atlantic Oscillation in this
case) and the warming of SSTs in the North Atlantic, so
is likely to be reliable. The reliability of the summer data
is harder to determine, however. The circulation and local
SSTs influence summer temperatures considerably less, and
the principal determining factor here is the radiation received.
This can be estimated from long series of cloudiness data but
the long-term homogeneity of cloudiness data from early ob-
servers is beset with even more problems than for temper-
atures, and so cannot help to assess the reliability of long

summer temperature series.
When any change to observing practice takes place, it is

always recommended that parallel measurements are made
[see the GCOS Monitoring Principles in Bojinski et al.
(2014)]. This doesn’t always happen, and even if it did in the
19th century, the comparison measurements have probably
not survived. Climatologists have recently begun to collect
modern parallel measurements to attempt to resolve these in-
strument exposure issues. Two examples of this type of work
are studies in the Greater Alpine Region (GAR) by Böhm et
al. (2010) and in Spain by Brunet et al. (2011). The former
used parallel measurements at one site in Austria, which en-
abled the differences between the old and modern exposure
methods to be estimated and related to the directional expo-
sure of all earlier sites in the GAR. The Spanish example re-
built screens from 19th century diagrams and made modern
parallel measurements, again developing correction formulae
to apply to the original 19th century data. The results were
similar in both cases—summer temperatures on average were
recorded about 0.4◦C warmer with the old, compared to the
modern, exposures. These results are very similar to pioneer-
ing assessments made at Adelaide in Australia (Nicholls et
al., 1996). It is believed that instrumental series across much
of Australia before 1910 are affected (Trewin, 2010).

Assessment of early instrumental exposure is vital not
just for long-term homogeneity, but also for the response of
many natural proxies (particularly trees) to summer temper-
atures. Temperature reconstructions from proxy data records
clearly require the primary temperature data against which
the proxy data are calibrated to be reliable. If the homo-
geneity of pre-1900 temperature records from individual sites
could be improved, this could enhance the reliability of such
temperature reconstructions.

4.3. Urbanization effects

Station history information often shows that many sites
began at locations in small towns, and that, over the last 100
years, some of these towns have developed into major cities.
Such urban growth is likely to affect temperature records
from urban sites, and warming trends from such sites are
likely, on average, to be larger than if the city or town were
not there (see review by Arnfield, 2003). In climatology, this
issue is referred to as the urbanization effect or the urban heat
island. The implication of this effect for gridded datasets
is that urban-affected sites will no longer be representative
of the majority of the grid box. This could potentially im-
pact large-scale temperature averages if gradually more ofthe
sites during the 20th century are located in urban areas. The
issue is not the urbanization effectper se, but whether nearby
rural and urban locations show similar long-term trends. For
example, city centre sites in London and Vienna are warmer
than their rural counterparts, but the urban time series during
the 20th century change at exactly the same rate (see Jones et
al., 2008; Jones and Lister, 2009).

Numerous papers have addressed urban climates and
found large differences between city centre sites and rural
neighbours for individual day and night temperatures (see ref-
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erences in Arnfield, 2003) but these studies are generally not
relevant to the global-scale data bases described here. This
is because most of these comparisons only consider days that
maximise the urban/rural difference and so are not directly
relevant in the context of long-term monthly averages for typ-
ical (non-city-centre) weather stations. Using the example
from London (Wilby et al., 2011) an urbanization effect over
decadal timescales is apparent, but this could easily be ex-
plained by some periods being dominated by circulation pat-
terns that emphasize an effect while other patterns reduce the
effect.

There are a number of other factors that make the assess-
ment of urbanization effects difficult, but as shown below, it
is likely that residual errors are small. The first factor that
must be considered is that sites in urban areas are generally
not in the downtown part of the city, but are more likely to be
in a parkland setting or at an airport (see Peterson and Owen,
2005). The second is that each case probably has to be as-
sessed individually. It is impossible to make generalizations:
European cities, for example, will differ from cities in other
parts of the world.

Despite the difficulties in correcting for urbanization ef-
fects, there are two strong arguments that indicate that any
residual urbanization effects in the standard (homogenized)
temperature datasets are probably very small. The first of
these is that SSTs are not affected, so the similarity of warm-
ing trends from land and marine regions argues against the ef-
fect being important. Second, datasets can be constructed us-
ing only rural locations. Although this restricts coverage, be-
cause of the spatial correlations, sparser networks can be used
to derive reliable large-scale averages [see section 2 about
earlier discussion on spatial degrees of freedom in Jones et
al. (1997)]. When compared with results using many stations,
the differences are small [see the review by Parker (2010)].

As noted above, many assessments of urbanization effects
at the large scale have considered rural-only sites and com-
pared these to averages based on all sites, or on urban-only
sites [see, for example, Jones et al. (1990), Parker (2004,
2006, 2010), and Peterson and Owen (2005)]. Differences
are always small, and always an order of magnitude smaller
than any long-term warming—implying that any urbaniza-
tion effect is small. Wickham et al. (2013) assessed all the
land stations in the BEST land station dataset, putting each
station into one of two groups (“very rural” and “not very ru-
ral”) depending on the land-use around the station location.
Interpolating these two categories separately, they foundno
statistically significant differences in their two global average
series.

Locally, however, the effects may be larger, and much re-
cent work has emphasized China (e.g., Ren et al., 2008) be-
cause here the effect may be larger than in other parts of the
world (Jones et al., 2008). Urban growth has been dramatic
in the recent 30 years across eastern China, but an impor-
tant consideration is that very few of the series are located
in rural locations [see discussion in recent papers by Li et
al. (2014) and Zhao et al. (2014)]. As in other parts of the
world, the issue that is especially important in China is the

representativeness of the network, particularly for locations
that are distant from the measuring sites. Do urban sites rep-
resent rural regions in eastern China? Averages produced for
China or parts of China, e.g., by Li et al. (2014) and Zhao
et al. (2014), use networks of different station densities,in-
cluding both rural and urban stations. Others (e.g., Ren et al.,
2008) omit the more urban stations. For both types, averag-
ing doesn’t consider land use except at the stations. Wang
et al. (2015) addressed this issue in a different way in a re-
cent study by considering land-use information across China
for the period since 1980 and determined an urban land in-
dex for each of their 607 stations across the country. Sta-
tions were then divided into three categories (intense, moder-
ate and minimal urbanization) and each of the three groups
was used separately in developing gridded products (for a
2.5◦ × 2.5◦ latitude–longitude grid). A China average was
then calculated according to the proportion of urban land in-
dex across the country. The simple average of all the stations
shows a greater warming than the land-use weighted series
because urban areas (which constitute less than 1% of the to-
tal area of the country) are where 68% of stations are located.
In summary, there is an urbanization effect in eastern China,
but its impact could be considerably reduced by using a net-
work of rural sites.

5. Homogeneity of individual land-based
records

Individual temperature records from land sites are homo-
geneous (Conrad and Pollak, 1962) if the variations in the
measurements result solely from regional-scale variations (at
the scale of 10◦× 10◦ of latitude–longitude) in the weather
and climate. Inhomogeneities result from many factors, some
of which (instrument exposure, urbanization) have already
been discussed. In addition, individual records may be af-
fected by changes in site location, changes in the times each
day the measurements are made, changes in the method used
to calculate daily-and hence monthly-mean temperatures, and
changes in instrumentation [see the recent review by Trewin
(2010)].

Several homogenization algorithms have been identified
and assessed in recent years [see Venema et al. (2012)
for comparisons of the methods]. Once inhomogeneities are
identified, the raw individual site records need to be adjusted
to produce homogeneous time series. Adjustment factors are
determined using station histories and metadata information
(where this is available). Both physically-based corrections
and corrections derived from objective statistical tests (com-
paring temperature time series from neighbouring sites) are
estimated. Where necessary, adjustment factors are then cal-
culated and the early parts of the records are made compat-
ible with the most recent data. Additionally, those methods
also calculate the uncertainties of the adjustments. Whilethe
effects of inhomogeneities vary from site to site, occasion-
ally all the sites within a particular country may be affected
(changes to exposure and urbanization both fall into this cat-
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egory in some countries). When this happens, homogeneity
assessment using neighbours may not work well, as all series
are likely to be similarly affected.

For individual site records and for small-scale averages
(such as at the single grid box level), homogenization is es-
sential. As stated earlier, at this scale, site homogeneityis-
sues are likely the most important of all the factors. At the
hemispheric and global scale, however, because adjustments
of both signs occur with similar frequencies, the adjustment
factors tend to cancel. While there are uncertainties in ad-
justments at the site level, at larger scales the effects of such
uncertainties are small compared to the SST biases and expo-
sure issues (see section 4). The cancelling can be easily seen
in a number of recent papers [e.g., Brohan et al. (2006, Fig.
4), Menne et al. (2009, Fig. 6), and locally for China in Xu
et al. (2013, Fig. 3)]. Each of these figures shows histogram
counts of the magnitude of adjustments, with the first two
showing bimodal distributions with peaks for both positive
and negative adjustments. The overall average of adjustments
across multiple sites in a region is essentially zero. As station
homogeneity is important at the local scale, adjustments are
still made for individual sites since these are necessary topro-
duce the best-possible gridded data.

A more recent example of changes in instrumentation is
the automation of measurements across whole countries and
regions that has taken place during the last 25 years [e.g., for
the U.S., in Quayle et al. (1991)]. It is, however, possible to
identify such changes and correct for them, provided dates of
the changes are known. Another example from the USA is the
change in observation time of daily maximum and minimum
temperatures from late afternoon to early morning, which has
been referred to as “time of observation bias” (TOB) and cor-
rected for by Karl et al. (1986). The effect is noticeable be-
cause morning readings tend to be slightly cooler than those
taken in the late afternoon. Figure 4 in Menne et al. (2009)
shows the effect of the TOB for the contiguous U.S. average
from 1900, amounting to a difference of about 0.2◦C between
adjusted and unadjusted data during the present decade. In
other words, the TOB leads to a spurious cooling trend in the
unadjusted data.

6. Comparison with reanalyses

Atmospheric reanalyses have been produced since the
mid-1990s (Kalnay et al., 1996), and these potentially pro-
vide a means to assess gridded products of surface temper-
ature. The most comprehensive current reanalysis (ERA-
Interim; Dee et al., 2011) is in excellent agreement with sur-
face temperature datasets (see Simmons et al., 2010), but this
is not unexpected as this reanalysis assimilates surface tem-
perature data. Extended reanalyses, e.g., 20CR [Twentieth
Century Reanalysis(Compo et al., 2011)] and ERA-20C (Poli
et al., 2013), only assimilate surface pressure data. They have
been given similar SST data for the world’s oceans, so com-
parisons with gridded surface temperature products need to
be restricted to the terrestrial regions. Agreement is excel-

lent [see, for example, Compo et al. (2011, 2013) and Parker
(2011) for 20CR, and also Poli et al. (2013) for ERA-20C and
Hersbach et al. (2015) for ERA-20CM], which attests to the
reliability of both the terrestrial surface air temperature data
and the driving SST data. If the latter had not been adjusted
for the large bias due to the change from bucket measure-
ments, then the agreement with the land record would not
have been produced. Folland (2005) illustrated this by forc-
ing an atmospheric GCM with adjusted and unadjusted SST
data from HadSST2 (Brohan et al., 2006). Air temperatures
over land areas forced by unadjusted SSTs were incompatible
with observed air temperatures over land areas. Differences
were clearest in the less variable regions of the world, such
as the tropics.

Reanalysis products have also been used to assess poten-
tial urbanization effects in surface air temperatures overland
areas, particularly over China. The assumption here is thatre-
analyses do not know about changes in land use. Initial work
in this area was suggestive of a large effect [e.g., Zhou et
al. (2004) for southern China], but more detailed studies over
different parts of China and for different periods (Wang et al.,
2013) showed results were very susceptible to the choices of
region and period.

7. Comparison of hemispheric and global av-
erages

Figure 1 shows hemispheric and global averages from the
four groups, with results expressed as anomalies from the
1961–90 base period used by HadCRUT4. The uncertainty
estimates from HadCRUT4 show the 5th and 95th percentile
range based on the 100 ensembles of the uncertainty compo-
nents (Morice et al., 2012). For the NCEI/NOAA analysis,
the additional analysis using unadjusted data (for both the
land and marine components) is also shown (from Karl et al.,
2015). The Berkeley Earth analysis only produces a global
average (http://berkeleyearth.lbl.gov/auto/Global/Land and
Oceansummary.txt).For the NH, agreement is excellent with
the NCEI/NOAA and GISS series within the HadCRUT4 un-
certainty range. This uncertainty range expands before 1950
as slightly more of the NH has missing coverage. For the
SH, error ranges for HadCRUT4 are wider than for the
NH, reflecting the greater area of missing data coverage for
HadCRUT4. Both NCEI/NOAA and GISS, for the SH, are
near the lower uncertainty range (5th percentile) for the pe-
riod from about 1920 to 1940 and from 1945 to 1965. As
both these datasets use ERSSTv4, this is a result of differ-
ent adjustment procedures for SST compared to HadSST3.
HadSST3 assumed more of the SST measurements during
these periods were from canvas buckets, particularly the lat-
ter period (see Kennedy et al., 2011b; Thompson et al., 2008,
2009). Getting SSTs correct in the SH is more important
there than for the NH.

The global average is (NH + SH)/2, but the greater in-
terannual variability of the NH tends to dominate. BEST
is only available for the global average. The BEST series
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Fig. 1. Hemispheric and global averages, based on land and marine data, from
the four datasets discussed in this paper: HadCRUT4 (Moriceet al., 2012);
NCEI/NOAA (Karl et al., 2015); GISS (Hansen et al., 2010); and Berkeley Earth
(http://berkeleyearth.lbl.gov/auto/Global/LandandOceansummary.txt). The HadCRUT4 range
encompasses the 5% and 95% values from their 100 ensembles (Morice et al., 2012). The unadjusted
data are from NCEI (Karl et al., 2015). All data are expressedas anomalies from the 1961–90 average.

follows HadCRUT4, principally due to their common use of
HadSST3 for ocean areas. Despite this, BEST implies cooler
temperatures during the period before about 1890—a feature
which must be related to cooler land temperature anoma-
lies than HadCRUT4. Finally, the unadjusted NCEI/NOAA
data imply much cooler temperatures before 1940, as can-

vas bucket adjustments were not applied (see also Karl et al.,
2015). To further illustrate the importance of the ocean ad-
justments, Figs. 2 and 3 are similar to Fig. 1 but show hemi-
spheric and global plots for the land (Fig. 2) and marine (Fig.
3) parts of the world. The unadjusted NCEI/NOAA data
for the land areas of the world (Fig. 2) are not distinguish-
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Fig. 2. Hemispheric and global averages, based on land data, from the four datasets discussed in this pa-
per: CRUTEM4 (Jones et al., 2012); NCEI/NOAA (Karl et al., 2015); GISS (Hansen et al., 2010); and
Berkeley Earth (http://berkeleyearth.lbl.gov/regions/global-land). The CRUTEM4 range encompasses
the 5% and 95% values from their 100 ensembles (Morice et al.,2012). The unadjusted data are from
NCEI (Karl et al., 2015). All data are expressed as anomaliesfrom the 1961–90 average.

able from the CRUTEM4, NCEI/NOAA (adjusted), GISS
and BEST time series. Minor differences occur, but they
are within the CRUTEM4 5%/95% uncertainty ranges. For
marine regions (Fig. 3), the unadjusted NCEI/NOAA marine
data are clearly offset (for periods before the 1960s) from
their adjusted data (ERSSTv4) and HadSST3, and fall out-

side the 5%/95% uncertainty ranges based on HadSST3. Fur-
thermore, the difference between ERSSTv4 and HadSST3 is
quite large at times, particularly for the SH (e.g., for the 1930s
and the 1950s)—clear evidence that the uncertainty in SST
bias adjustment is much larger than for the terrestrial partof
the world in Fig. 2.
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Fig. 3. Hemispheric and global averages, based on marine data, fromtwo of the datasets discussed in
this paper: HadSST3 (Kennedy et al., 2011b) and NCEI/NOAA (Karl et al., 2015). The HadSST3 range
encompasses the 5% and 95% values from their 100 ensembles (Morice et al., 2012). The unadjusted
data are from NCEI (Karl et al., 2015). All data are expressedas anomalies from the 1961–90 average.

On interannual timescales in all three figures, warm years
can be clearly related to El Niño years and cool years to
La Niña years or to large explosive volcanic eruptions in
the tropics [see illustrations of this in Foster and Rahmstorf
(2011)]. The greatest El Niño events of the last 200 years oc-
curred in 1877/78 and 1997/98. On longer timescales, the
world has warmed in two phases, from about 1920 to the

early 1940s and from the late-1970s. The warmest year in all
four global records is 2014, but this value only just exceeds
that measured in 1998, 2005 and 2010. Initial data for 2015,
partly due to the current El Niño, indicate that 2015 will be
significantly warmer than all other years. If the El Niño event
continues, then it is possible that 2016 will be warmer still.

Finally, in this section, trends are calculated for the global
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average (from the land and marine datasets) for the four
datasets and for NCEI-unadjusted for three different time pe-
riods (1901–2014, 1951–2014 and 1979–2014). The final pe-
riod represents the period of satellite coverage. The results
are given in Table 1 and all trends are statistically significant
at the 99% level for all periods. The NCEI uncorrected series
is also included and this clearly shows a greater long-term
warming (for 1901–2014) than would have occurred if the
bias and homogeneity adjustments were not applied. The re-
sults presented here and in Karl et al. (2015) and Kennedy et
al. (2011b) clearly show that this is due to the SST bias (see
Fig. 3).

Much has been written about temperature trends over the
past 15 years (often starting during or just after the major El
Niño event of 1997/98), with the period being referred to asa
“ hiatus” in warming (e.g., Hartmann et al., 2013; Karl et al.,
2015, and references therein). A number of possible explana-
tions have proposed for this, but Karl et al. (2015) conclude
that their new analysis doesn’t support the notion of a hiatus.
From a data perspective, this will be further enhanced by the
upcoming warm years of 2015 and 2016. As La Niña events
generally follow El Niño events, it is likely that 2017 and
2018 might be cooler. Rather than then starting a new hiatus,
it could be beneficial to additionally discuss global average
temperatures after the effects of El Niño and La Niña events
have been removed [using approaches similar to Thompson
et al. (2009) or Foster and Rahmstorf (2011)].

8. Conclusions

The importance of inhomogeneities in raw surface tem-
perature observations becomes clear when comprehensive
models to estimate the uncertainties involved are developed
(e.g., Brohan et al., 2006; Morice et al., 2012; Karl et al.,
2015). Factors that affect individual site records tend to be
random (i.e., they can lead to positive or negative biases) and
so uncertainties in any adjustments for land stations become
less and less important as data are averaged over larger areas.
Biases that affect multiple sites or records (such as changing
measurement techniques for SSTs, changes in exposure of
land stations and urbanization), although smaller in magni-
tude than many individual land station adjustments, become
more important the larger the area averaged. As illustrated
by Fig. 1, the four groups independently account for all these
issues and produce series within the error estimates of Had-
CRUT4. Using only unadjusted data, Karl et al. (2015) show
that if the biases and homogeneity issues are ignored, the
world would have warmed more. This result is primarily due
to the SST bucket bias.

The impacts of sparser coverage in early decades are only
important before 1880, and, even then, the impact is mostly
felt in the Southern Hemisphere (Jones, 1994). For the North-
ern Hemisphere, it is possible to derive reliable hemispheric
averages from instrumental data back to about 1850. For ex-
ample, Karl et al. (1994) show that global 100+ year trends
become quite reliable after the 1870s based on historical sam-

pling.
Understanding the major sources of inhomogeneity pro-

vides key information for reducing uncertainties in hemi-
spheric averages. Uncertainties would be most significantly
reduced through the inclusion of more SST data in the 19th
century than through adding more land station series since the
1950s. A number of current projects are seeking to digitize
much of the British logbook material available in archives.
The potential size and importance of SST data, also requires
enhancements to our knowledge of how SST and MAT mea-
surements were taken in the past (Kent et al., 2010; Kennedy,
2014). More SST data are not only important for improv-
ing the reliability of hemispheric and global temperature se-
ries, but can help to improve infilled SST fields, which are
vital for extended reanalyses. For terrestrial regions, adding
more land stations can also help reduce uncertainties, but em-
phasis needs to be focussed on regions with sparse cover-
age, as opposed to simply increasing station numbers in well-
monitored regions. For identifying past large-scale changes
in temperature at the Earth’s surface, however, the homoge-
nized datasets currently available provide highly reliable in-
formation back into the 19th century and show unequivocally
that the world has warmed considerably over this period.
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