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ABSTRACT

Model errors offset by constant and time-variant optimal forcing vector approaches (termed COF and OFV, respectively)
are analyzed within the framework of El Niño simulations. Applying the COF and OFV approaches to the well-known
Zebiak–Cane model, we re-simulate the 1997 and 2004 El Niño events, both of which were poorly degraded by a certain
amount of model error when the initial anomalies were generated by coupling the observed wind forcing to an ocean com-
ponent. It is found that the Zebiak–Cane model with the COF approach roughly reproduced the 1997 El Niño, but the 2004
El Niño simulated by this approach defied an ENSO classification, i.e., it was hardly distinguishable as CP-El Niño or EP-El
Niño. In both El Niño simulations, substituting the COF with the OFV improved the fit between the simulations and obser-
vations because the OFV better manages the time-variant errors in the model. Furthermore, the OFV approach effectively
corrected the modeled El Niño events even when the observational data (and hence the computational time) were reduced.
Such a cost-effective offset of model errors suggests a role for the OFV approach in complicated CGCMs.
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1. Introduction

The uncertainty in forecast results is an important fac-
tor in numerical weather forecasting and climate prediction.
This uncertainty usually comprises both initial and model er-
rors. Conventionally, much work has explored the initial er-
rors in predictions (Lorenz, 1965; Evensen, 1994; Talagrand,
1997; Toth and Kalnay, 1997; Morss et al., 2001; Mu et al.,
2003). Meanwhile, meteorologists seek to improve model
predictability by minimizing model errors. Statistical meth-
ods dealing with time-variant model errors have been pro-
posed and applied to numerical predictions with varying suc-
cess (Leith, 1978; Chen et al., 2000; Barreiro and Chang,
2004). Alternatively, D’andrea and Vautard (2000) improved
the forecast results by a perturbation approach, where an ap-
propriate constant term is added to the tendency equations
(also see Roads, 1987; Vannitsem and Toth, 2002). The con-
stant forcing sensitivity vector (termed COF for convenience)
proposed by Barkmeijer et al. (2003) potentially achieves the
greatest constant error reduction in the model. Meanwhile,
Feng and Duan (2013) argued that the COF could be an
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effective approach to reducing model error even for the time-
dependent model error by using a conceptual model. How-
ever, the performance of COF in correcting the most realistic
models has yet not been shown. On the other side, Duan et al.
(2014) developed the optimal forcing vector (OFV) approach,
which offsets the time-variant tendency errors and was shown
to be effective in correcting a realistic ENSO model. Sub-
sequently, we naturally ask: what is the difference between
the roles of the two approaches in reducing the effects of the
model error, especially when applied to the simulations of
two types of El Niño [EP-El Niño and CP-El Niño (Ashok et
al., 2007; Kao and Yu, 2009; Kug et al., 2009)] by using the
most realistic Zebiak–Cane ENSO model (Zebiak and Cane,
1987)?

According to recent studies, CP-El Niño events are more
challenging to simulate than their counterparts, and model er-
rors seem to be an important factor (Kug et al., 2010; Kim et
al., 2012; Ham and Kug, 2012; Duan et al., 2014). Duan et
al. (2014) noted that the model errors may exert greater influ-
ence in CP-El Niño simulations than in EP-El Niño simula-
tions, and the Zebiak–Cane model has the potential for repro-
ducing EP-El Niño events. Nevertheless, the 1997/98 EP-El
Niño event involved a poor simulation. For this EP-El Niño
event, although it could be reproduced to some extent in Duan
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et al. (2014) with the data assimilation initialization scheme,
the simulated development and intensity of this event were
still considerably different from the observation and reflected
some degree of the model uncertainty.

In this study, to improve El Niño simulations by the
Zebiak–Cane model, we correct the model errors. We in-
vestigate and compare error offset by COF and OFV while
simulating two types of El Niño events with the Zebiak–Cane
model. The uncorrected model could not replicate all features
of the 1997 EP-El Niño and 2004 CP-El Niño, and our depic-
tions will focus on these two events. Section 2 introduces
the basic concepts of COF and OFV, and presents the related
calculations. Section 3 applies both approaches in El Niño
simulations and then investigates the time interval of each
OFV component in the OFV-based simulations. Specifically,
section 3.3 discusses the model uncertainties that influence
the El Niño simulations by comparing the spatial structures
of the COF and OFV results. The paper concludes with a
summary and discussion in section 4.

2. The optimal forcing vector approach

The motion of the atmosphere or oceans can be predicted
from the following nonlinear partial differential equation:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t
= F(u, t) ,

u|t=0 = u0 ,

(1)

where u(x, t) = [u1(x, t),u2(x, t), . . . ,un(x, t)] is denoted as the
state vector, F represents a nonlinear operator, u 0 is the ini-
tial state, (x, t) ∈ Ω× [0, τ], Ω is a domain in Rn, τ < +∞,
x = (x1, x2, . . . , xn) and t indicates the time. Several errors are
associated with this model. Given an initial field u0, Eq. (1)
gives the following solution for the state vector u at time τ:

u(x, τ) = Mτ(u0) . (2)

Here, Mτ is the propagator. Let the observations at time 0 and
τ be uobs,t0 and uobs,tτ , respectively; the approximate predic-
tion error introduced by the model is then written as

Eτ = ‖Mτ(uobs,t0 )−uobs,tτ‖ , (3)

Here, ‖ · ‖ denotes the norm that measures the magnitudes of
the prediction errors.

When f (x) is taken so as to make the simulation gener-
ated by Eq. (4) closest to the observation at the terminal time,
it can then be referred to as constant optimal external forc-
ing [also known as COF; see Feng and Duan (2013)]. Feng
and Duan (2013) showed that the COF can also reduce time-
dependent model errors to a certain extent by using a concep-
tual model. However, the performance of COF in correcting
the most realistic models has not been shown.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t
= F(u, t)+ f (x) ,

u|t=0 = u0 .

(4)

Duan et al. (2014) reduced the effects of the model errors by
superimposing a time-variant external forcing [ f (x, t) rather
than f (x) in Eq. (4)] that drives the model results toward the
observations. The choices of f (x, t) that minimize the dif-
ferences between the model simulation and the observations
constitute an optimization problem. That is,

J( fmin ti) =min‖Mti+1−ti ( fti)(uti)−uobs,ti+1‖ , (5)

where ti, ti+1 ∈ [t0, tk]. Here, the time window [t0, tk] is simi-
lar to the aforementioned [0, τ] and the time interval [t i, ti+1]
is not necessary to be a time step of numerical integra-
tion, but could represent several days, a month or others.
Mti+1−ti( fti ) propagates in Eq. (5) from time t i to ti+1, and uti =

Mti−ti−1 ( fmin,ti−1 )(uti−1). The OFV (i.e., the optimal f (x, t)),
denoted fmin,tk−t0 = ( fmin,t0 , fmin,t1 , fmin,t2 , . . . , fmin,tk−1 ) is then
obtained from Eq. (5) as the model simulation that best repro-
duces the observation during the time window [t0, tk]. Rele-
vant details of OFV calculations are reported in Duan et al.
(2014).

3. Comparison of the constant and time-
variant optimal forcing approaches in El
Niño simulations

As mentioned in the introduction, the Zebiak–Cane
model could not replicate all features of the 1997 and 2004 El
Niño events. These kinds of difficulties are manifested from
the effects of model errors. Following Duan et al. (2014),
here we investigate the COFs of the Zebiak–Cane model and
explore the differences between simulations with COFs and
OFVs for the observed El Niño events.

3.1. Model and data

The Zebiak–Cane model is composed of a Gill-type
steady-state linear atmospheric model and a reduced-gravity
oceanic model, which depict the thermodynamics and dy-
namics of the tropical Pacific with oceanic and atmospheric
anomalies near the mean climatological state specified from
observations. The model has been extensively applied in dy-
namics and predictability studies of EP-El Niño events (Blu-
menthal, 1991; Xue et al., 1994; Chen et al., 2004; Tang et
al., 2008). However, few studies have simulated CP-El Niño
events using this model, largely because the model errors pre-
clude an accurate reproduction of such events. The effects
of model errors on the 1997 and 2004 El Niño simulations
were highlighted in Duan et al. (2014), who modeled sev-
eral El Niño events with a corrected Zebiak–Cane model and
emphasized the importance of model error cancellation for
ENSO simulation, especially for CP-El Niño reproduction.

Here, we require the observational data used by Duan
et al. (2014). Specifically, we adopt the SST data from the
HadISST analyses datasets (Rayner et al., 2003) and the wind
data from the NCEP–NCAR reanalysis products (Kalnay
and Coauthors, 1996). The Zebiak–Cane model was initi-
ated using the monthly wind stress anomalies derived from
Florida State University analyses (Bourassa et al., 2005).
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We also borrowed the data of 20◦C depth from the NOAA
NCEP EMC (Environmental Modeling Center) CMB (Cli-
mate Modeling Branch) Pacific (hereafter referred to as the
EMC/CMB data) (Behringer et al., 1998).

3.2. Simulations of El Niño events by COF and OFV

This section analyzes simulations of the El Niño years
1997 and 2004, which were poorly degraded by a certain de-
gree of error in the Zebiak–Cane model. For each El Niño
event, we compute the corresponding COF and OFV, respec-
tively. Prior to simulating the El Niño events, the initial
anomalies in the Zebiak–Cane model were obtained using
the initialization procedure of Chen et al. (1995), where the
model was initialized in a coupled manner by nudging the
modeled wind to the observations to some extent. Given the
initial anomalous fields, we further calculate the OFV and
OFV in relation to the tendency equation (namely, the SST
equation) of the model. Subsequently, we superimpose the
COF and OFV onto the model and attempt to fit the simu-
lated warm events to their corresponding observations.

As the time window [t0, tk] associated with the optimal
terms (including both the OFV and COF) (see section 2),
twelve months prior to the peak phase was selected for each
El Niño event and specified just as the simulation period.
For instance, the 1997 El Niño event peaked in December
1997; thus, the simulation time window for this event was
January–December of 1997. Within the simulation time win-
dow, we compute one OFV component per month using the
predetermined initial anomaly fields, yielding an OFV with
11 components. In contrast, the COF has a single compo-
nent because it is time-invariant throughout the time window
(see section 2). Considering the COF approach tries to fit the
mature phase of the El Niño event to its corresponding obser-
vation, it is understandable that the closer to the end of the
simulation, the better this approach behaves.

To acquire the initial fields at the start time t0 of the opti-
mization time window [t0, tk], here we adopt the same initial-
ization procedure as Chen et al. (1995). And then, based on
the initial anomalies, the model integrations with correspond-
ing COF and OFV are obtained for one year and compared
directly to the observed El Niño events.

Figure 1 plots the observed and simulated SST anomaly
patterns during the 1997 El Niño year. Both the OFV- and
COF-based simulations yield an EP-El Niño event but differ
in their similarities to the observations. In the COF evolu-
tion, the reproduced SSTA of the first half-year is quite rough,
and includes inconspicuous zonal warming along the equator;
moreover, the intensity of this event in the mature phase is
much weaker than in the unique 1997 EP-El Niño event. The
simulations and observations are further compared in Table
1. The SSTA fields modeled by OFV and COF are directly
contrasted. In particular, the fields simulated by OFV are
strongly correlated with the observed spatial patterns and fit
the data very well.

The other physical variables in the OFV-based simula-
tion, such as the thermocline depth anomaly and zonal wind
field, are also shown in accordance with the related observa-

Table 1. Correlation coefficients of the observed versus simulated
SST anomalies during the 1997 and 2004 El Niño years. OFV
(COF) denotes the correlation coefficient of the SST anomalies sim-
ulated with OFV (COF) versus the observed anomalies. All results
simulated with the OFV are statistically significant at the 99% con-
fidence level.

Correlation Coefficients

Feb. Apr. June Aug. Oct. Dec.

1997 COF −0.205 0.170 0.459 0.770 0.887 0.940
OFV 0.997 0.991 0.994 0.993 0.990 0.994

2004 COF 0.172 0.195 0.137 0.408 0.559 0.617
OFV 0.995 0.972 0.976 0.902 0.835 0.805

tions (Figs. 2 and 3). In practice, the zonal westerly anoma-
lies over the western Pacific present an eastward expansion
(see Fig. 2), and ultimately cover a large part of the tropical
Pacific. The subsurface water warms and cools in the east-
ern and western regions of the equatorial Pacific, respectively
(see Fig. 3). As the thermocline deepens over the equatorial
eastern Pacific, it is conducive to surface warming through
warm vertical advection via in-situ mean upwelling (An and
Jin, 2001). All of the aforementioned conditions in the OFV-
based simulation were observed in the real 1997 EP-El Niño
event. In fact, a strong westerly wind burst (WWB) event
played an important role in this El Niño event, and whether
or not this WWB event in spring can be simulated success-
fully determines the ultimate performance in simulating the
1997 El Niño (also see Duan et al., 2014). Both the COF
and OFV methods help establish the WWB event to varying
degrees (Figs. 3b and c), successfully reproducing the sud-
den occurrence of this event after January–March. In the
COF simulation, the relationships between the variables are
much weaker. The weakened seesaw pattern is accompanied
by weaker basin-scale zonal wind, implying that COF cannot
eliminate so much of the time-variant errors in the model.

Next, the OFV and COF (Fig. 4) approaches in the simu-
lations of the 2004 CP-El Niño event are compared (Fig. 5).
As pointed out by Duan et al. (2014), this El Niño event could
hardly be reproduced without the introduction of OFV. Table
1 lists the spatial correlations of the observed versus simu-
lated SST anomaly components during this El Niño year. The
SST anomalies in the spatial patterns simulated with OFV are
very highly correlated with the observed patterns, whereas
those simulated with COF are less correlated with the ob-
servations. Moreover, from its appearance, the 2004 event
simulated by COF is hardly distinguishable as CP-El Niño or
EP-El Niño, which is a critical factor to justify the simula-
tion appearance. Considering that subsurface feedback may
rarely affect the evolution of CP-El Niño (Kao and Yu, 2009;
Kug et al., 2009; Yu and Kim, 2010; Duan et al., 2014), the
OFV-corrected Zebiak–Cane model may not describe the ob-
served thermocline depth variation, although it reproduces
the SSTA component of CP-El Niño events well (Duan et
al., 2014). This result can also be explained by the accom-
panying air–sea variables in the 2004 CP-El Niño simulated
with COF. The seesaw pattern in the thermocline depth fields
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Fig. 1. The SST anomaly (units: K) component of the seasonal evolutions of the observed 1997 El Niño event (a) and
its simulations by the Zebiak–Cane model with OFV (b) and with COF (c). Here, a year is divided into four seasons:
January to March (JFM), April to June (AMJ), July to September (JAS), and October to December (OND).

(Fig. 3) and the slight eastward propagation of the zonal wind
anomalies (Fig. 2) differ from the observations, muddling the
classification of the event (which evolves similarly to an EP-
El Niño).

All of these results show that the OFV approach effec-
tively offsets the time-variant model errors, which are better
than those handled by COF. Corrected by the OFV method,
the Zebiak–Cane model properly reproduces the El Niño
events and improves the fit between the simulations and ob-
servations. In the COF approach, the model better simulated
the 1997 El Niño than the 2004 El Niño. We also tested
other El Niño events with the two approaches, as in Duan
et al. (2014), and the comparison of COF and OFV changed
little. That is, the model correction always performed bet-
ter in EP-El Niño simulations than in CP-El Niño simula-
tions, regardless of whether OFV or COF was adopted, and
both the COF and OFV approach could further improve the
simulation of EP-El Niño. In contrast, the time-dependent

errors in the Zebiak–Cane model are particularly severe in
CP-El Niño simulations, and the OFV rather than the COF
approach could help reproduce a clear classification of the
warm events.

3.3. Difference between COF and OFV

So why do both approaches help to reproduce the 1997 El
Niño event, while for the 2004 El Niño event the simulation
benefits greatly from the OFV approach only? The differ-
ences between COF and OFV for the 2004 CP-El Niño may
help to explain.

Specifically, in the 2004 El Niño, both the COF and OFV
corrections yielded large positive values in the eastern trop-
ical Pacific, suggesting that the uncertainties in the Zebiak–
Cane model are dominated by SST tendency errors in this
zone (Fig. 4). On the other hand, seasonal differences be-
tween OFV and COF are apparent over the one-year evolu-
tion period. Throughout the first season, the uncertainties in
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Fig. 2. The zonal wind anomalies (units: m s−1) in the 1997 El Niño event. The anomalies are averaged from March
to July and from August to December. (a) Observed zonal wind, derived from the NCEP–NCAR reanalysis data; (b)
zonal wind simulated with OFV; and (c) zonal wind simulated with COF. Panels (d–f) show the corresponding results
for the 2004 El Niño event.

Fig. 3. As in Fig. 2 but showing the thermocline depth anomalies (units: m). The observations are obtained from the
EMC/CMB data.
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Fig. 4. (a) COF and (b) OFV simulations (units: K month−1) of the 2004 El Niño event, and (c) their seasonal differ-
ences (OFV minus COF). The OFV includes 11 components in the El Niño year, corresponding to 11 time intervals
(where one interval ranges from one month to the next). The COF includes a single component that remains constant
throughout the year.

the SSTA tendency traverse the entire tropical Pacific (Fig.
4b) in the OFV simulations but are lost in the western Pacific
in the COF simulations. During spring (April–June), the dif-
ferential plots (OFV−COF plots; see Fig. 4c) exhibit limited
regions of negative values in the eastern Pacific. In this sea-
son, it is apparent that the intensity of OFV is much weaker
than at other times, while it helps to maintain the zonal gradi-
ent of SSTA fields (Fig. 5b). In the latter half of the year, the
positive values of COF are much smaller and the differences
between OFV and COF cluster around the equator, particu-
larly in the central-eastern Pacific (Figs. 4b and c). Consid-
ering the SSTA growth rates related to OFV are nearly the
same in the central and eastern Pacific in the latter half of the
year (Fig. 4b), the zonal gradient of SSTA evolution (Fig. 5b)
remains and helps concentrate warm water westward. Con-

sequently, the SSTA increase in the equatorial central-eastern
Pacific follows the zonal gradient of the SSTA field in the
same area, favoring the westward march of the warm center
from the Pacific east coast (Figs. 5b and c).

3.4. Simulations by the OFV approach with different time
intervals

As described in section 2, the model error effects are
offset by a proper time-variant external forcing f (x, t) that
matches the simulations with the observations. To cope with
the time-variant errors, the OFV method consists of several
components within the time window [t0, tk] of the El Niño
simulation. Selecting the interval between each of these com-
ponents is largely subjective but is important for reducing the
computational time of the simulations. In the simple Zebiak–
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Fig. 5. The SST anomaly (units: K) component of the seasonal evolutions of the observed 2004 El Niño event (a) and
its simulations by the Zebiak–Cane model with OFV (b) and with COF (c).

Cane model, the time interval can be set to one or several
months without affecting the computation. However, when
the model tendency errors are offset by the OFV approach
concerning a much more complicated model, the computa-
tional time may become unacceptable under the calculation
conditions. On the one hand, extending the time interval of
each OFV component reduces the cost of obtaining the OFV.
On the other hand, adopting different time intervals for the
OFV components and the different amount of observational
data required consequently obscures the simulation perfor-
mance.

Within the time window [t0, tk] of the OFV (see section
2), we selected time intervals of 1, 2 and 3 months prior
to the peak phase of the El Niño events for the OFV com-
ponents (the 1-month interval was adopted in section 3.2).
Given the predetermined initial anomaly fields and these sim-
ulation time windows, we computed one OFV component ev-
ery month, every second month (January, March, May, July,

September, November, December), and every third month
(January, April, July, October, December), obtaining OFVs
with 11 components, 6 components and 4 components, re-
spectively. For simplicity, we refer to these El Niño simula-
tions as OFV, S-OFV and T-OFV, respectively.

To compare the SSTA evolutions simulated by OFV, we
ran the Zebiak–Cane model forced by the corresponding S-
OFV and T-OFV for one year, obtained the simulations of
both El Niño events, and checked their differences. The over-
all evolution features of the 1997 EP-El Niño event (Fig. 6)
are reproduced in both S-OFV and T-OFV, although the sim-
ulations differ slightly from observations in the first season of
the year. That is, the overall performances of S-OFV and T-
OFV are comparable to that of OFV. Similar conclusions can
be drawn for the 2004 CP-El Niño (Fig. 7). Central warming
is observed even in the T-OFV simulation (three-month in-
terval), and the SSTA pattern improves during the latter half
of the year (see Table 2), indicating that the OFV-corrected
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Fig. 6. The SST anomaly (units: K) components of the seasonal evolutions of the 1997 El Niño event simulated by the
Zebiak–Cane model with (a) OFV, (b) S-OFV and (c) T-OFV, respectively.

Zebiak–Cane model can reasonably simulate the 1997 and
2004 El Niño events at reduced computational cost.

Table 2. Correlation coefficients of the observed versus OFV-
simulated SST anomalies in the 1997 and 2004 El Niño years.
OFV (S-OFV, T-OFV) denote the correlation coefficients of the
SST anomalies simulated with OFV (S-OFV, T-OFV) versus the
observed anomalies. All results simulated with the OFV are sta-
tistically significant at the 99% confidence level.

Correlation Coefficients

Feb. Apr. June Aug. Oct. Dec.

1997 T-OFV 0.157 0.977 0.941 0.974 0.993 0.995
S-OFV 0.431 0.834 0.958 0.984 0.974 0.994
OFV 0.997 0.991 0.994 0.993 0.990 0.994

2004 T-OFV −0.242 0.454 0.539 0.957 0.819 0.772
S-OFV 0.548 0.619 0.832 0.783 0.758 0.867
OFV 0.995 0.972 0.976 0.902 0.835 0.805

Typically, as the model becomes more complicated, the
integrations consume increasing amounts of time, regard-
less of finding the optimal forcing (OFV) for the tendency
equation. We found that reducing the input of observational
data (and hence the computational time) improved the cost-
effectiveness of the Zebiak–Cane simulations. Such cost re-
ductions would benefit the OFV approach in more compli-
cated CGCMs.

4. Conclusion and discussion

Model errors are generally time-dynamic; therefore, an
error-cancelation method that treats time-variant errors can
potentially improve model simulations and predictions. In
this study, ENSO simulations by the Zebiak–Cane model
were corrected by COF and OFV, and the performances of
the corrections were compared. The 1997 and 2004 El Niño
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Fig. 7. As in Fig. 6 but simulating the 2004 El Niño.

events, which were badly reproduced by the uncorrected
Zebiak–Cane model to some extent, were better simulated by
OFV and COF. But, nonetheless, it was found that the COF
correction yields worse fits to El Niño observations com-
pared with the OFV results, mainly because the latter handles
time-variant model errors better. Specifically, when the ini-
tial anomalies were generated by coupling the observed wind
forcing to the ocean component, the Zebiak–Cane model with
COF roughly reproduced the 1997 El Niño event; however,
the 2004 El Niño simulated by COF defied an ENSO classifi-
cation and the simulated evolution (warm SST concentrating
in the central-eastern Pacific) typified an EP-El Niño event.
Furthermore, the OFV approach effectively corrects the El
Niño simulation model even when the observational data in-
put (and thus the computational time) is reduced. This cost-
effective offset of model errors will favor the OFV approach
in more complicated CGCMs.

Regarding the 2004 El Niño event, the differences in the
SSTA patterns obtained by OFV and COF revealed many sea-

sonal variations. Signals of positive SSTA tendency prevailed
in the western Pacific at the beginning of the year; in the latter
half, positive anomalies were concentrated in the equatorial
central-eastern Pacific (see Fig. 4). Therefore, in this event,
the SST tendency errors (which dominate the uncertainties in
the Zebiak–Cane model) reflect the time-varying character-
istics of the model errors. Furthermore, although the same
SSTA growth rate introduced by OFV occurs in the central
and eastern Pacific during the latter half-year, the warmer
background to the west helps to generate stronger feedbacks
between SSTAs and wind fields, and favors westward warm-
ing from the east coast of the Pacific. Consequently, the 2004
event appears as a CP-El Niño rather than an EP-El Niño.

In ENSO simulations, the multi-model mean state does
not significantly change from CMIP3 to CMIP5, highlight-
ing the potential for model error cancelation (Guilyardi et al.,
2012). CP-El Niño simulations are particularly challenged
by new feedback (which amplifies biases in the model), un-
certain model parameters, and subjective contact with obser-
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vational data. The present paper proposes an efficient OFV
application for model error treatment. Meanwhile, if we con-
sider additional tendency equations of different physical vari-
ables including the SSTA equation, the performance of the
approach might be further improved. Furthermore, it is nec-
essary to introduce complicated models concerning ENSO
simulations, which will properly benefit from the OFV ap-
proach.
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