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ABSTRACT

In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we
used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (Institute of Tibetan Plateau
Research, Chinese Academy of Sciences), Qian] and four LSMs (BATS, VIC, CLM3.0 and CLM3.5), to explore the trends
and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over
mainland China during 1982–2007. The results showed that various simulations of each member and their arithmetic mean
(Ens Mean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more
significant spatial and seasonal variation in the ET compared with observation-based ET estimates (Obs MTE). For the mean
annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs MTE
for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the
Ens Mean was closer to Obs MTE, although the results were underestimated over Southeast China. Furthermore, both the
Obs MTE and Ens Mean exhibited a significant increasing trend during 1982–98; whereas after 1998, when the last big EI
Niño event occurred, the Ens Mean tended to decrease significantly between 1999 and 2007, although the change was not
significant for Obs MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in
ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas
of China.
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1. Introduction

Land surface evapotranspiration (ET), i.e., the sum total
of water transferred from the land surface to the atmosphere,
plays vital roles in the global hydrological cycle, energy bal-
ance, and carbon cycle during land–atmosphere interactions
within the climate system (i.e., latent heat flux) (Dirmeyer,
1994; Jung et al., 2010; Wang and Dickinson, 2012; Shi et al.,
2013). Water exchange returns about 60% of the precipita-
tion on the land surface to the atmosphere, which then affects
the local climate (Oki and Kanae, 2006). Thus, it is very im-
portant to quantify the spatiotemporal patterns and changes
in regional ET to understand the interactions between the
land surface and atmosphere by monitoring the land surface
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conditions that force extreme events, such as drought and
flood, as well as evaluating the potential impact on climate
change (Xu et al., 2006; Gao et al., 2007; Bonan, 2008; Jung
et al., 2010).

Four methods are used to obtain ET estimates: ground-
based observations, the water balance method (Gao et al.,
2007, 2012), satellite retrieval (Chen et al., 2014; Li et al.,
2014; Mao et al., 2015), and land surface modeling (Chen et
al., 2013; Shi et al., 2013), where each has its own advantages
and disadvantages (Wang and Dickinson, 2012). For exam-
ple, ground-based observations can provide high quality ET
records with high temporal resolution, but they have a short
duration and sparse spatial coverage. Satellite retrieval can
characterize the spatial variability of ET well, but these data
cannot be used to establish the relatively long-term climate
variability in ET. Previously, there have been few studies of
long-term regional ET, and most have focused on the water
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balance method (Gao et al., 2007, 2012); however, it is dif-
ficult to derive a significant trend of ET from water balance
because (1) there is large interannual variability of precipita-
tion and inconsistencies between different data sources, and
(2) the river discharge directly flowing into oceans is difficult
to estimate (Wang and Dickinson, 2012).

At present, land surface models (LSMs) are used widely
to obtain ET estimates at global and continental scales be-
cause of their mechanism-based structure (Vinukollu et al.,
2012; Chen et al., 2013; Jaksa et al., 2013; Shi et al., 2013;
Mao et al., 2015); however, LSM simulations of ET still con-
tain many errors (Dirmeyer et al., 2006; Wang and Dickin-
son, 2012). The main sources of error in offline LSM simu-
lations of ET are the uncertainties in meteorological forcing
and those in the land surface parameterizations. The accu-
racy of a simulation based on an LSM depends mainly on
the quality of the meteorological forcing and the land surface
parameterization scheme (Dirmeyer et al., 1999; Wang and
Zeng, 2011; Chen et al., 2013). Multiple-LSM ensembles
have been found to perform significantly better than a single
LSM at land surface modeling, as well as reducing the un-
certainties in the land surface parameterizations (Guo et al.,
2007). Similar findings have been reported for meteorologi-
cal forcing (Liu and Xie, 2013).

However, previous studies of the spatiotemporal patterns
and changes in regional ET have focused mainly on simu-
lations by single LSMs (Shi et al., 2013) or multiple LSM
simulations driven by a single meteorological dataset (Chen
et al., 2013, Mao et al., 2015). Such work does not consider
the uncertainties from the atmospheric forcing dataset and the
land surface parameterizations, simultaneously. Therefore, in
this study, we used three meteorological forcing datasets to
drive four LSMs, to reduce both types of uncertainties in ET.
The three meteorological forcing datasets were developed
by Sheffield et al. (2006) at Princeton University (hereafter,
Princeton), He (2010) at the Institute of Tibetan Plateau Re-
search, Chinese Academy of Sciences (hereafter, ITPCAS),
and Qian et al. (2006) (hereafter, Qian). For the offline
LSM simulation, four widely used LSMs were adopted in this
study: (1) BATS (Dickinson et al., 1993; Giorgi et al., 2003);
(2) VIC (Liang et al., 1996; Liang and Xie, 2001; Mitchell et
al., 2004); (3) CLM3.0 (Oleson et al., 2004); and (4) CLM3.5
(Oleson et al., 2007). First, six simulations based on the four
LSMs and driven by the three meteorological forcing datasets
were conducted for mainland China. Next, the six sets of sim-
ulated ET data were merged by simply using the arithmetic
average, and a comparison was conducted among the six
simulations, ensemble simulations, and global land ET data,
which were derived from the FLUXNET network of eddy co-
variance towers using the model tree ensembles (MTE) ap-
proach (Obs MTE) (Jung et al., 2009, 2010). Furthermore,
we analyzed the trends and spatiotemporal characteristics of
ET over mainland China and the eight major river basins of
China. Finally, we considered the spatiotemporal patterns in
ET in response to climatic factors.

The remainder of the paper is organized as follows: In
section 2, we provide brief descriptions of the three types

of meteorological forcing, as well as the four LSMs, the
Obs MTE data, and the experimental design. In section 3,
we compare the Obs MTE data with individual and ensem-
ble simulations of ET, as well as illustrate the trends and
spatiotemporal characteristics in ET, and the spatiotemporal
patterns of ET in response to climatic factors over mainland
China and the eight major river basins of China. We discuss
the results in section 4 and finally provide a summary and
give our conclusions in section 5.

2. Models, data and method

2.1. Multiple types of meteorological forcing

Offline LSM modeling requires external meteorological
forcing data, and thus the accuracy of LSM modeling de-
pends largely on the quality of meteorological forcing, where
it is especially sensitive to precipitation, radiation, and tem-
perature (Wei et al., 2008; Wang and Zeng, 2011). The ex-
ternal meteorological forcing data used to drive offline LSMs
include the air temperature, wind speed, specific humidity,
surface pressure, precipitation, and radiation. In this study,
we used three sets of meteorological forcing data over main-
land China, which were developed by different institutions to
drive LSMs, as follows:

(1) The Princeton meteorological forcing dataset, which
combines the NCEP–NCAR reanalysis dataset (Kalnay et al.,
1996) and a suite of global observation-based products. The
observation-based products comprise the CRU TS2.0 prod-
uct, the GPCP precipitation product, the TRMM precipita-
tion product, and the NASA Langley Research Center SRB
product. Sheffield et al. (2006) described the details of this
dataset, while Sheffield and Wood (2007) used this dataset to
evaluate the global terrestrial water budget. In addition, Wang
et al. (2011) used this dataset to drive four different physical-
based LSMs to explore soil moisture drought in China.

(2) The ITPCAS forcing dataset, which is a hybrid of data
obtained from the GLDAS dataset (Rodell et al., 2004) [the
old version used the Princeton global meteorological forc-
ing data as background data (Sheffield et al., 2006)] and a
suite of observation-based products from China. Specifically,
it combines the GLDAS dataset with observations from 740
operational stations of the China Meteorological Administra-
tion (CMA) to produce near-surface air temperature, pres-
sure, wind speed, and specific humidity fields, as well as three
merged precipitation datasets to determine the precipitation
field. In addition, the corrected GEWEX-SRB (Pinker and
Laszlo, 1992) shortwave radiation dataset, with reference to
radiation estimates (Yang et al., 2006), is employed to ascer-
tain the incident shortwave radiation fields. Chen et al. (2011)
used the old version to investigate the land surface tempera-
ture in dryland areas of China.

(3) The Qian forcing dataset, which combines NCEP–
NCAR reanalysis data and observation-based analyses of
monthly precipitation, surface air temperature, and surface
downward solar radiation. Details of the dataset, which was
initially available for the period 1948–2004, are described
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in Qian et al. (2006). Later, Tian et al. (2010) extended this
dataset up to 2010 by using ERA-Interim data along with the
precipitation and temperature records from 740 CMA opera-
tional stations. They then employed the dataset to develop a
land data assimilation system.

Table 1 summarizes the primary features and the differ-
ences between the forcing data.

2.2. Multiple LSMs

In this study, we employed four widely used LSMs
(including a macroscale hydrological model)—BATS, VIC,
CLM3.0 and CLM3.5—to model land ET over mainland
China. These LSMs have been used in previous offline land
surface modeling experiments, and their performances evalu-
ated. In these LSMs, ET is parameterized as the sum of veg-
etation evaporation, vegetation transpiration, and soil evapo-
ration. Spatial land surface heterogeneity in the four LSMs
is represented as a subgrid hierarchy in which grid cells
are composed of multiple snow/soil columns, plant function
types, or other surface types. Biogeophysical progresses are
simulated at the subgrid scale, and each subgrid unit main-
tains its own prognostic variables (e.g., ET). However, the
same forcing is used to force all subgrid units within a grid
cell. Finally, the grid-averaged ET is obtained by averaging
the subgrid values weighted by their fraction areas. Thus, the
vegetation and soil parameters should be provided in each
LSM and taken from the LSM’s standard setup.

Table 2 summarizes the primary features and the differ-
ences between these LSMs, as well as the sources of the veg-
etation and soil parameters.

2.3. Obs MTE data

Due to the lack of direct observations of ET, we used
Obs MTE data to compare and evaluate our seven ET simu-
lations (i.e., six simple simulations and their ensemble simu-
lation). The point-wise ET observations from the FLUXNET
measurement sites were up-scaled with geospatial informa-
tion obtained from satellite remote sensing and surface mete-
orological data using the MTE algorithm, which yielded the
monthly ET at a spatial resolution of 0.5◦ during 1982–2010
(Jung et al., 2009, 2010), which we designated as Obs MTE
in this study. Jung et al. (2010) used this dataset to explore
the recent decline in the global land ET and its possible ex-
planations. Shi et al. (2013) also used this dataset to evalu-
ate the ET simulated by CLM4, and to further investigate the
spatiotemporal patterns in ET in response to multiple envi-
ronmental factors.

2.4. Simulation setup

The six ET simulations were determined by four differ-
ent LSMs (described in Table 2) driven by three different
types of forcing (described in Table 1), which we coded as:
(1) VIC Prin (for the VIC model driven by Princeton forc-
ing); (2) BATS Prin (for the BATS model driven by Princeton
forcing); (3) CLM3 Prin (for the CLM3.0 model driven by
Princeton forcing); (4) CLM3.5 Prin (for the CLM3.5 model
driven by Princeton forcing); (5) CLM3.5 Qian (for the
CLM3.5 model driven by Qian forcing); and (6) CLM3.5 ITP
(for the CLM3.5 model driven by ITPCAS forcing). In order
to achieve an equilibrium state in the LSMs, the Princeton
forcing was first used to drive CLM3.5 from 1948 to 2008,

Table 1. Comparison of the major features of the three sets of meteorological forcing data.

Forcing Resolution Coverage Composition Institution References

Princeton 3-h, 1◦ ×1◦ Global, 1948–
2008

1. CRU TS2.0, GPCP, and TRMM precipitation product
2. Temperature and cloud cover from CRU TS2.0
3. NASA Langley SRB radiation product
4. NCEP–NCAR reanalysis data

Princeton Sheffield et al. (2006)

ITPCAS 3-h, 0.1◦×0.1◦ (15◦–55◦N,
70◦–140◦E),
1979–2012

1. Near-surface air temperature, pressure, wind speed,
specific humidity, and precipitation from 740 CMA op-
erational stations

2. GLDAS dataset
3. TRMM3B42 and APHRODITE* precipitation product
4. GEWEX-SRB shortwave radiation data and radiation

estimates from a hybrid radiation model

ITPCAS He (2010);
Rodell et al. (2004);
Yang et al. (2006)

QIAN 3-h, 1.875◦ lon
× 1.915◦ lat

Global, 1948–
2004;

(15◦–55◦N,
70◦–140◦E),
2004–10

1. NCEP–NCAR reanalysis data
2. ERA-Interim data
3. Precipitation from Chen et al. (2002) and GPCP from

Adler et al. (2003)
4. Temperature from Jones and Moberg (2003) and New

et al. (1999)
5. Surface solar radiation from Zhang et al. (2004) and

GEBA
6. Near-surface air temperature and precipitation in China

from 740 CMA operational stations

NCEP

IAPCAS

Qian et al. (2006);

Tian et al. (2010)

*Asian Precipitation-Highly Resolution Observational Data Integration Toward Evaluation of Water Resources.
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Table 2. Comparison of the major features of LSM structures and hydrological schemes.

Model Soil hydrology scheme Vegetation/soil parameters References

BATS Including a vegetation layer, a snow layer and three soil lay-
ers: top soil with depth of 10 cm; soil in root zone with
depth of 1 m, 1.5 m, or 2 m; deep soil with depth of 3 m.
Surface runoff is a function of the soil moisture.

Vegetation and land use data from the
global databases for climate stud-
ies developed by Matthews (1983).
Soil parameters from the FAO.

Matthews (1983);
Dickinson et al. (1993);
Giorgio et al. (2003)

VIC The total soil column is divided into three layers, where the
thickness is specified differently cell by cell with a range
from 0.8 to 3 m. Variable infiltration capacity curve for sur-
face runoff. ARNO model for base flow and drainage driven
by gravity.

Vegetation and soil parameters from
North American Land Data Assim-
ilation System (NLDAS).

Liang et al. (1996);
Liang and Xie (2001);
Mitchell et al. (2004)

CLM3.0 The total soil column of 0–3.43 m is divided into 10 layers,
with variable thickness ranging from 0.0175 to 1.1370 m. A
combination of the TOPMODEL and BATS runoff scheme.

Vegetation data based on one-year
AVHRR data.

Oleson et al. (2004)

CLM3.5 Modified version of CLM3.0, where the hydrological modifi-
cations mainly include canopy interception, runoff water ta-
ble depth, frozen soil, soil water availability, and soil evap-
oration.

Vegetation data from MODIS. Soil
data from IGBP.

Oleson et al. (2004);
Niu et al. (2007)

and the first files from 1 January 2009 were then saved and
used to initialize all six simulations at the beginning of each
of the six modeling processes. These simulations were all run
at a resolution of 0.5◦ × 0.5◦, and the forcing data were also
interpolated to 0.5◦. The six sets of modeled ET data were
then merged using a simple arithmetical averaging ensemble
method and designated as Ens Mean.

2.5. Evaluation method

The evaluation method comprised the following steps:
(1) The Obs MTE data were used to compare and evalu-

ate the six simulations of ET and their ensemble simulation
at a spatial resolution of 0.5◦ during 1982–2007 in China and
the eight major basins of China. Figure 1 shows a map indi-
cating the locations of the eight major basins in China.

(2) The linear regression method (e.g., Fu et al., 2008;
Gao et al., 2012) was used to compute the temporal trends in
ET in China and the eight major basins of China.

(3) The correlation coefficients (R) between ET and cli-
mate variables (temperature, precipitation, radiance, wind
speed etc.) were calculated to explore the sensitivity of ET
to climate change.

3. Results

3.1. Spatial pattern of ET

In order to ensure the credibility of the ensemble simula-
tion of ET, we first compared the six simulations and their en-
semble simulation of the mean annual ET with the Obs MTE

Fig. 1. Locations of the eight major river basins in China: I, Yangtze River
basin; II, Haihe River basin; III, Heihe River basin; IV, Huaihe River basin; V,
Yellow River basin; VI, Songhuajiang River basin; VII, Tarim River basin; and
VIII, Zhujiang River basin.
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data from 1982–2007 in China and the eight major basins
of China (Fig. 2). Figure 2 shows that BATS Prin overesti-
mated the mean annual ET over most of the basins and all
of China, whereas VIC Prin obtained underestimates. The
ensemble simulation Ens Mean produced a closer simulation
to the mean annual ET obtained with Obs MTE data. The
annual mean ET during the study period, over all of China,
was simulated by Ens Mean as 383 mm yr−1, whereas the
Obs MTE estimate was 436 mm yr−1.

Figure 3 shows the spatial distribution of the land annual-
mean ET in China according to Obs MTE, Ens Mean, and
the difference between them. Figure 3 demonstrates that the
Obs MTE data exhibited strong regional variations and there
was an obvious southeast–northwest latitude gradient from
high to low. In general, the lowest annual ET values were
located in the arid/semiarid regions of Northeast China and
Northwest China, such as the provinces of Xinjiang, Gansu,
Inner Mongolia, and Ningxia (<400 mm yr−1), whereas the
annual ET values in South China were relatively high, such
as in the provinces of Hainan, Taiwan, Yunnan, Guangxi, and
Guangdong (>700 mm yr−1) (Fig. 3a). The ensemble simu-
lation Ens Mean captured the spatial distribution of ET very
well in China (Figs. 3a and b), but the Ens Mean simulated
ET was lower than that of the Obs MTE over Southeast China
(Fig. 3c), where the major contributor was the slightly lower
Ens Mean value estimated over all of China compared with

the Obs MTE data (Fig. 2).
From the perspective of hydrological basins, relatively

high annual ET values were found for the Yangtze River,
Zhujiang River, and Huaihe River basins, where the estimated
ET ranged from 641 to 858 mm yr−1 (Fig. 2). In these humid
subtropical basins, the temperature and moisture were suffi-
cient to satisfy the vegetation ET and soil ET. Relatively low
annual ET values were found in the Heihe River and Tarim
River basins, where the estimates of ET ranged from 164 to
189 mm yr−1 (Fig. 2). In these cold and arid basins, moisture
or temperature was the limiting factor. Intermediate annual
ET values were found in the Huanghe River, Haihe River,
and Songhuajiang River basins, where the estimates of ET
ranged from 368 to 507 mm yr−1 (Fig. 2). In these temperate
semihumid basins, the moisture and temperature levels were
intermediate.

3.2. Temporal variation in ET

3.2.1. Seasonal patterns of ET

Figure 4 shows the multi-year seasonal pattern of land
ET in China during 1982–2007 according to the Obs MTE,
Ens Mean, and the difference between them. It can be seen
that the Obs MTE data exhibited obvious seasonal patterns,
where the spatial variability was controlled by the climatic
conditions. The highest ET values occurred in summer (June–

Fig. 2. Comparison of the average ET density (mm yr−1) estimated for the eight major
river basins of China, and all of China, based on multiple LSM simulations, Ens Mean
and Obs MTE, during 1982–2007.
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Fig. 3. Spatial distribution of the annual ET (mm yr−1) during
1982–2007 (a) from Obs MTE, (b) from Ens Mean, and (c) the
difference between Obs MTE and Ens Mean (i.e., Obs MTE
minus Ens Mean). The white area in Northwest China repre-
sents the default Obs MTE values.

August), where the most easterly and southern parts of China
had the most striking high ET values, while there was an
obvious spatial variation pattern where ET decreased from

southeast to northwest. Relatively high ET values occurred in
spring (March–May), whereas the lowest ET values occurred
in winter (first column in Fig. 4). Thus, the moisture and the
temperature were sufficient to satisfy ET over the southeast
of China in the summer.

The ensemble simulation captured the seasonal pattern of
ET in China very well (second column in Fig. 4), but the
Ens Mean simulated ET was lower than that of Obs MTE
over Southeast China (Fig. 4c), which was the major contrib-
utor to the slightly lower value of the Ens Mean estimated for
all of China compared with the Obs MTE data.

3.2.2. Time series

In order to examine the performance of the ensemble-
simulated ET quantitatively, we compared the Ens Mean and
Obs MTE time series averaged over the eight major basins
of China for 1991–2002 (Fig. 5). Figure 5 shows that the
Ens Mean captured the seasonal cycle and temporal evolu-
tion of Obs MTE very well, but there were errors in some
basins, such as those of the Heihe River, Zhujiang River, and
Tarim River basins. The errors in the Heihe River basin may
have been due to the greater human activity levels, such as
land use, agricultural water use, and water use for environ-
mental conservation. The errors in the Zhujiang River basin
may have been due to complex surfaces, such as dense veg-
etation and complex terrain. There were large errors in the
Tarim River basin (Obs MTE higher than Ens Mean), which
were probably caused mainly by using the default Obs MTE
values in some areas of this basin because most of this area is
desert and the ET values were very low.

3.2.3. Interannual variation and temporal trend of ET

Figure 6 shows the changes in Chinese annual land ET
anomalies for both the Obs MTE and Ens Mean data from
1982 to 2007, which demonstrate that both the Obs MTE and
Ens Mean exhibited significant interannual variability during
this period. Relatively low values occurred in 1984, 1985,
2001 and 2003, whereas the highest values occurred in 1998.
During 1982–98, the ensemble-simulated ET Ens Mean val-
ues were generally consistent with the Obs MTE data (R =
0.92, P < 0.05). After 1998, the Ens Mean data exhibited
more significant interannual variability than Obs MTE, and
they were not consistent.

On average, the Obs MTE and Ens Mean data exhibited
a significant positive trend during 1982–98 (Obs MTE: y =
x− 10.15, P < 0.05; Ens Mean: y = 0.89x− 3.79, P < 0.05).
During 1998–2007, the Ens Mean data exhibited a signif-
icant negative trend (y = −2.19x+ 3.24, P < 0.10) and the
Obs MTE data also exhibited a negative trend (y = −0.53x+
0.49), but it was not significant. After 1998, when the last big
EI Niño event occurred, the increasing trend in the land ET
disappeared, and the subsequent declining trend was consis-
tent with the Ens Mean. This conclusion is consistent with
the analysis of Obs MTE for global ET data by Jung et al.
(2010), but slightly different from the results based on eight
satellite-based ET models (Chen et al., 2014), in which four
of the eight models showed significant increases in ET, while
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Fig. 4. Seasonal distribution of land ET (mm month−1) in China during 1982–2007 obtained from Obs MTE (first column),
Obs MTE (second column), and the difference between Obs MTE and Ens Mean (i.e., Obs MTE minus Ens Mean; third
column). The white area in Northwest China represents the default Obs MTE values.

the other models presented relatively constant long-term val-
ues, or slightly decreasing ET, over terrestrial ecosystems in
China from 1982 to 2009. The differences in satellite-based
ET model structure and their dominant variables were the ma-
jor causes (Chen et al., 2014).

We also considered the regional-scale interannual vari-
ability in the land ET over the eight major basins of China.
Figure 7 shows the temporal evolution of the annual land

ET anomalies over the eight major basins of China, in terms
of both the Obs MTE and Ens Mean, from 1982 to 2007.
The results show that the Ens Mean captured the basin-scale
international variability in ET over the eight major basins
in China, especially during 1982–1998, but the Ens Mean
exhibited more significant interannual variability compared
with the MTE product. In 1998–2007, the Obs MTE and Ens
Mean exhibited differences in their interannual variability
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Fig. 5. Time series for land ET (mm month−1) obtained from the Obs MTE reported by Jung et al. (2009, 2010) and the
Ens Mean, for the eight major river basins of China.

Fig. 6. Comparison of the differences in Chinese annual land
ET anomalies between the Obs MTE reported by Jung et al.
(2009, 2010) and the Ens Mean: (a) linear trend during 1982–
2007�(b) linear trend during 1982–1998 and 1999–2007.

over most of the basins of China, and this conclusion is con-
sistent with that over all of China.

3.3. Sensitivity to climate change

In order to explore the sensitivity of ET to climate change,
we studied the relationship between ET and climate variabil-
ity. Figure 8 shows the correlation coefficients for the rela-
tionships between ET and climate variability in China, i.e.,
air temperature (Ta), shortwave radiation (Rn), precipitation,
and wind speed. In general, the results demonstrate T a was
the driver of ET over moist areas, with a significant positive
correlation, e.g., in most parts of South China and some areas
of Northeast China, where the correlation coefficients were
lower in drier areas and negative over arid areas (Fig. 8b).
We found a similar relationship between Rn and ET (Fig. 8c),
but the positive correlation was more significant between T a

and ET. Precipitation controlled ET over dry areas, with a
significant positive correlation, e.g., in most parts of North-
west China, where the correlation coefficients were lower in
moister areas and zero or even negative for humid areas (Fig.
8d). There were few significant correlations between wind
speed and ET in most parts of China, except the northwest of
China (Fig. 8a). Thus, we found that the annual T a and pre-
cipitation were important climate variables that affected the
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Fig. 7. Comparison of the differences in the annual land ET anomalies for the eight major basins between the Obs MTE reported
by Jung et al. (2009, 2010) and the Ens Mean.

variation in ET, and there was a significant spatial pattern in
the ET response to Ta and precipitation over mainland China
during 1982–2007.

We further investigated the regional-scale relationship
between ET and the important climate variables for the eight
major basins of China. Table 3 shows the correlation co-
efficients for the relationships between ET and the climate
variables (Ta and precipitation). These results demonstrate
that ET had a significant positive correlation with T a for most
of the major basins in China, except the Tarim River basin
and Heihe River basin, which are located in arid areas, and
the correlation was higher for humid areas (e.g., the Yangtze
River basin, Huaihe River basin, and Zhujiang River basin).
Our conclusions were similar for the correlation between ET
and Rn, but ET only had a significant positive correlation in
humid areas (Yangtze River basin, Huaihe River basin, and
Zhujiang River basin; not shown in Table 3), where T a or
Rn mainly controlled the long-term variation in ET in humid
areas, and these conclusions agree with those of Wang et
al. (2010) and Li et al. (2014). ET and precipitation were

positively correlated in arid and semi-arid areas (Heihe River
basin, Tarim River basin, Haihe River basin, Yellow River

Table 3. Correlations (R) between mean annual ET and climate vari-
ables (Air temperature and Precipitation) for the eight major river
basins of China.

Air temperature Precipitation

R P* R P

Yangtze River Basin 0.82 P < 0.01 −0.07 –
Haihe River Basin 0.45 P < 0.05 0.34 P < 0.1
Heihe River Basin 0.19 – 0.62 P < 0.01
Huaihe River Basin 0.55 P < 0.01 0.24 –
Yellow River Basin 0.43 P < 0.05 0.36 P < 0.1
Songhuajiang Basin 0.35 P < 0.1 0.4 P < 0.05
Zhujiang River Basin 0.81 P < 0.01 0.01 –
Tarim River Basin −0.41 – 0.26 –

*“P < 0.01” represents the correlation coefficient is significant at 0.01 level,
“–” represents the correlation coefficient is non-significant.
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Fig. 8. Spatial distributions of the correlation coefficients for the relationships between annual ET and climate variables:
(a) WIND, wind speed; (b) Ta, air temperature; (c) Rn, shortwave radiation; (d) Prec, precipitation. The white area in
Northwest China represents the default Obs MTE values.

basin, and Songhuajiang River basin), where the water avail-
ability in the root zone or shallow surface controlled the ET
process. It should be noted that ET had the strongest pos-
itive correlation with precipitation in the Tarim River basin
(most of this area is desert), whereas the correlation coeffi-
cient between ET and precipitation in the Tarim River basin
was the lowest in the arid and semi-arid areas [Heihe River
basin (R = 0.62), Tarim River basin (R = 0.26), Haihe basin
(R = 0.34), Yellow river basin (R = 0.36), and Songhuajiang
River basin (R= 0.4)]. This could largely be explained by the
use of default values for the Obs MTE data in some areas of
the Tarim River basin.

4. Discussion

Land ET is a very important variable for the global hydro-
logical cycle and energy cycle because of land–atmosphere
interactions within the climate system. Due to the lack of
actual long-term ET observation data, quantifying the spa-
tiotemporal patterns and changes in regional ET are major
challenges for the hydrology and climate research commu-
nity. Thus, in this study, we employed multiple types of forc-
ing and multiple models in an ensemble method to reduce

the uncertainties during simulations of the actual ET using
land surface modeling, which is a promising method for re-
producing high resolution long-term spatial and temporal ET
data.

It should be noted that this study had some limitations.
First, the use of multiple types of forcing and multiple mod-
els in ensemble simulations can reduce some uncertainties,
and the ensemble-simulated ET obtained using a simple arith-
metical averaging ensemble method (Ens Mean) captured the
spatial patterns and temporal variations very well in China;
however, some errors were still present, such as underesti-
mated ET in South China (Figs. 3–6). The simple arithmeti-
cal averaging ensemble method is an effective strategy for re-
ducing the uncertainty of individual ensemble members, but
it is still inferior to the best individual ensemble member in
most cases (Guo et al., 2007).

Therefore, it may be necessary to employ a more ad-
vanced ensemble method, such as the Bayesian model av-
eraging (BMA) method (Liu and Xie, 2013). The BMA en-
semble method can be applied to multiple types of forcing
and multiple models to obtain the ensemble-simulated ET
and further reduce the uncertainties, thereby obtaining more
accurate actual ET estimates.
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Second, in order to evaluate and compare the ensemble-
simulated actual ET, we used Obs MTE data as the ET ob-
servations. In fact, the Obs MTE data comprise estimates of
the local ET and meteorological records based on FLUXNET
tower and satellite observations. Thus, these data contain er-
rors, e.g., in cold and dry deserts these data do not consider
the non-vegetated areas (Jung et al., 2009, 2010). We did
not consider the uncertainty of Obs MTE data in the present
study.

5. Summary and conclusion

In this study, we conducted comparisons of six simula-
tions and the Ens Mean with Obs MTE over mainland China
and the eight major river basins of China during 1982–2007,
where we explored the trends and spatiotemporal character-
istics of ET, as well as the spatiotemporal pattern of ET in
response to climatic factors.

In general, the six simulations and Ens Mean showed
similar broad spatial patterns of ET, with a decrease from
southeast to northeast, and then to the northwest, and the low-
est annual ET values located in the Tarim River and Heihe
River basins of Northwest China. However, there were con-
siderable differences in magnitude among the four LSMs.
For example, BATS driven by the Princeton dataset overes-
timated the mean annual ET for most of the basins, whereas
VIC obtained underestimates using the same forcing dataset.
Compared with the Obs MTE product (436 mm yr−1), the
Ens Mean underestimated the annual mean ET in China by
18% (383 mm yr−1); however, the simulated ET exhibited
more significant overall variation. In terms of the temporal
trend in ET, both the Obs MTE and Ens Mean in mainland
China exhibited significant increasing trends during 1982–
98, whereas the Ens Mean exhibited a significant decreas-
ing trend during 1998–2007 and the Obs MTE had a non-
significant decreasing trend.

The sensitivity of ET to climate change in this study
showed that air temperature was the main factor that con-
trolled the long-term variation in ET over humid areas (e.g.,
the Yangtze River basin, Huaihe River basin and Zhujiang
River basin), whereas precipitation made more of a contribu-
tion in arid and semi-arid areas (e.g., the Heihe River basin,
Tarim River basin, Haihe River basin, Yellow River basin,
and Songhuajiang River basin).

These results suggest that climatic factors such as precip-
itation and air temperature can have a significant impact on
future projections of water cycle dynamics at basin and re-
gional scales.
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