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ABSTRACT

A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled
model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation
algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter
uncertainty. The “observation” of the SST anomaly, which issampled from a “truth” model simulation that takes default
parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parametersset
erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction
skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve
better real-time ENSO prediction.
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1. Introduction

ENSO is the strongest interannual phenomenon in the
tropical Pacific, directly inducing climate anomalies world-
wide. Thus, accurately and effectively predicting ENSO
events is of great significance to society. In recent decades,
great advancements have been made in understanding ENSO
and developing models for its real-time prediction (e.g.,
Bjerknes, 1969; Wyrtki, 1975; McCreary, 1983; Cane et al.,
1986; Zhang et al., 2013). At present, various types of air–
sea coupled models have been developed, including interme-
diate coupled models (ICMs; e.g., Zebiak and Cane, 1987;
Balmaseda et al., 1994; Zhang et al., 2003), hybrid coupled
models (e.g., Neelin, 1990; Barnett et al., 1993; Zhang et
al., 2015), and fully coupled general circulation models (e.g.,
Philander et al., 1992; Rosati et al., 1997). Currently, these
coupled models enable us to make six-month to one-year
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real-time ENSO predictions in advance with reasonable suc-
cess.

However, certain challenges still exit in the real-time pre-
diction of ENSO events. For example, model biases cause
ENSO simulations to depart far away from observations,
making model state estimation and prediction inaccurate
(Zhang et al., 2005c). In addition, high-quality ocean ob-
servations are very scarce, which results in uncertaintiesin
ocean state estimation (Wang et al., 2000). Accordingly, diffi-
culties emerge in providing accurate initial ocean conditions
for ENSO prediction. Thus, it is essential to find a way to
make model solutions coherent with observations by produc-
ing optimal initial conditions for predictions. To this end,
data assimilation is an effective way to provide optimal ini-
tializations for ENSO analysis and prediction. However, a
related issue is how to effectively use limited observations
in data assimilation (Mu et al., 2015). To achieve this, ob-
serving system experiments need to be performed to identify
target observations with sensitive domains where data assim-
ilation can be used effectively to improve prediction. Thus,
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an effective data assimilation system necessarily includes not
only highly-quality data and a good data assimilation scheme,
but also a method for these two aspects to be combined in a
smart way, ultimately providing much more realistic initial
analysis fields for predictions (Mu et al., 2015).

Various data assimilation algorithms have been used to
initialize ENSO prediction. Originally, the nudging method,
which directly forces the model solution to approximate ob-
servations, was used to force the modeled SST to reflect ob-
served values to initialize ENSO prediction (e.g., Chen et al.,
1995; Kirtman and Zebiak, 1997; Kumar et al., 2014; Zhu et
al., 2015). Later, ensemble Kalman filters (Evensen, 1994)
were introduced into ocean modeling, providing probabilis-
tic forecasts of ENSO (e.g., Houtekamer and Mitchell, 1998;
Zheng et al., 2006, 2009; Zhang et al., 2007; Tang et al.,
2014; Wu et al., 2014). As an important branch of data as-
similation, variational (three- and four-dimensional) methods
(3D-Var and 4D-Var, respectively) are also widely used in
ENSO analysis and prediction. For example, the 4D-Var data
assimilation method pursues the analysis solutions by min-
imizing the distance between the model trajectory and ob-
servation time series [i.e., the so-called cost function (e.g.,
Tang and Hsieh, 2001; Zhang et al., 2001; Han et al., 2006,
2015; Peng and Xie, 2006; Zhang et al., 2015b)]. Compared
with economic 3D-Var analysis (Derber and Rosati, 1989;
Zhu et al., 2006), the 4D-Var data assimilation method is
more dynamically and mathematically consistent (e.g., Dom-
menget and Stammer, 2004; Sugiura et al., 2008). For in-
stance, Weaver et al. (2003) assimilatedin situ temperature
data into an OGCM by the 3D-Var and 4D-Var methods,
and demonstrated that 4D-Var is more effective than 3D-Var
in producing a consistent ocean state between model solu-
tions and observations. Additionally, the 4D-Var method has
been applied to ENSO prediction using various models and
has achieved some success (Kleeman et al., 1995; Galanti et
al., 2003; Dommenget and Stammer, 2004). The main dif-
ficulty in 4D-Var-based initialization of ENSO prediction is
that the method requires the development of an adjoint model
to compute the gradient of the cost function with respect to
the control variables, which is very complicated and time-
consuming.

Our goal in this study is to implement the 4D-Var method
to an improved intermediate coupled model (ICM) that was
developed for ENSO studies (e.g., Zhang et al., 2003; Zhang
et al., 2005b). The ICM used is a simplified coupled ocean–
atmosphere model with two statistical submodels for the tem-
perature of subsurface water entrained into the mixed layer
(Te) and wind stress (τ). Te is optimally calculated in terms
of sea level (SL) anomalies using an EOF analysis technique.
Wind stress anomalies are estimated based on an SVD anal-
ysis between SST anomalies andτ anomalies (Zhang et al.,
2003, 2015). Therefore, the wind anomalies are represented
as a response to SST, and the subsurface thermal effect on
SST is parameterized by the ocean dynamical field. Al-
though the ICM has been used for realistic predictions of
ENSO (Zhang et al., 2013), it has not yet applied the 4D-Var
method to initialize the real-time prediction. Since the 4D-

Var method is more dynamically and mathematically consis-
tent in offering an initial ocean state for improving forecast
accuracy, we specifically address the following question in
this paper: Can the ENSO forecast skill generated by the ICM
be increased by using the 4D-Var method?

Herein, we provide a detailed description of the incorpo-
ration of the 4D-Var data assimilation method into the afore-
mentioned ICM, including the development of the associated
tangent linear model and adjoint model. Based on the suc-
cessful implementation of the 4D-Var data assimilation for-
mulation into the ICM, we then report the preliminary results
of a series of sensitivity experiments. Previously, Zheng et al.
(2009) incorporated an ensemble Kalman filter method into
the ICM and achieved improved ENSO prediction.

The paper is organized as follows: Section 2 describes
the ICM and 4D-Var data assimilation method. The experi-
mental setup is introduced in section 3, and the assimilation
impacts are analyzed in section 4. Finally, a conclusion and
discussion are presented in section 5.

2. Methodology

In this section, we briefly describe the ICM that has been
routinely used to make ENSO predictions [see a summary of
the model ENSO forecasts at the International Research Insti-
tute for Climate and Society (IRI) website: http://iri.columbia.
edu/climate/ENSO/currentinfo/SSTtable.html]; the real-time
prediction results are posted on the IRI website every month,
now referred to as the IOCAS (Institute of Oceanology/Chi-
nese Academy of Sciences) ICM. Then, the 4D-Var data as-
similation procedure is described, including its tangent linear
model and adjoint model and the corresponding minimization
processes.

2.1. Description of the ICM

The ICM consists of a dynamic ocean model, an SST
anomaly model, and two statistical anomaly models forTe

andτ. The atmosphere component is a simple empirical sta-
tistical model for theτ anomaly, which depicts the response
of τ to an SST field. It is constructed by the SVD method,
based on historical data of the SST andτ; symbolically, the
relation between these two anomalous fields is expressed as
τ = ατFτ (SSTinter), in whichFτ is the relationship betweenτ
and SSTinter derived using statistical methods from historical
data, andατ is a scalar parameter indicating the strength of
wind forcing. The combined SVD method is used to obtain
the covariance between the SST and zonal and meridionalτ

fields. The seasonality of interannualτ variability is taken
into account with 12τ models constructed for each month.
Theτ field is then used to drive the ocean model.

The ocean component of the ICM includes a dynamical
ocean model, an SST anomaly model, and a statistical model
of Te. The dynamical ocean model was developed by Keenly-
side and Kleeman (2002), based on the McCreary (1981)
baroclinic model. It includes linear and nonlinear parts. In
the vertical direction, the modal decomposition approach is
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adopted to solve the linear part, which retains the first 10
baroclinic modes, whereas the higher 11 to 30 modes are rep-
resented only in the two surface layers. The nonlinear part is
highly simplified and represented as the residual term in the
momentum equation and is used to make a correction to the
linear solutions that are ignored by the linear assumption that
can be broken down in the equatorial region. It is worth not-
ing that by introducing the horizontal stratification variation
and partial nonlinear effects, the dynamic ocean model can
simulate features of the actual equatorial current system well,
such as the equatorial undercurrent and surface current and
their seasonal variability (Keenlyside and Kleeman, 2002).

The SST anomaly model, which is embedded in the dy-
namical ocean model, describes the evolution of interannual
temperature anomalies over the surface mixed layer. The time
tendency of the SST anomaly is determined by its horizontal
advection and diffusion terms, vertical advection and diffu-
sion terms and thermal dissipation. The diagnostic analysis
of the SST budget demonstrates that the vertical advection
and diffusion terms (which are related to theTe anomaly) are
important in determining the variation in the SST anomaly.
The SST anomaly model is equipped with a parameterization
for Te that is diagnosed by the sea level anomaly (SLinter) field
based on an EOF. The relationship between theTe anomaly
(T ′e) and SLinter can be written asT ′e = αTeFTe (SLinter), in
which FTe is the relationship betweenT ′e and SLinter derived
using statistical methods from historical data, andαTe is a
scalar parameter introduced as the subsurface thermal forc-
ing strength.

For each time step, the integration of the ICM can be
sequentially implemented as follows (Zhang et al., 2005a):
First, the SST anomaly equation is integrated to update the
SST anomaly, which is used to calculate theτ anomaly based
on theτmodel. Second, the obtainedτ anomaly field is used
as the forcing to drive the dynamic ocean to update the SL,
current fields in the mixed layer, and vertical velocity at the
bottom of the mixed layer. Third, theTe anomaly is calcu-
lated using the updated SL anomaly based on theTe model,
which is then used to simulate the vertical thermal effect in
the SST anomaly equation. Repeating these processes can
provide interannual variations of the oceanic and atmospheric
wind fields. Further details regarding the ICM can be found
in the study by Zhang and Gao (2015).

2.2. The 4D-Var data assimilation method

The 4D-Var method achieves the analysis solution of ini-
tial fields through minimizing the distance between the model
trajectory and observation, which is constrained strictlyby
the model dynamical equations (Klinker et al., 2000).

In general, the governing equations of the ICM can be
symbolically expressed as follows (Kalnay, 2003):

∂XXX
∂t
= F(XXX) ,

XXX|t0 = XXX0 ,

(1)

wheret is time andt0 is the initial time;XXX is the vector of con-
trol variables, which includes SST, SL and horizontal ocean

current velocities (U andV) in the ICM;XXX0 is the initial value
of XXX; andFFF is the nonlinear forward operator.

For the 4D-Var algorithm, the cost function can be for-
mulated as (Kalnay, 2003)

J(XXX0) =
1
2

[XXX(t0)−XXXb]TBBB−1[XXX(t0)−XXXb] +

1
2

N
∑

i=1

{HHH[XXX(ti)] −YYYo(ti)}TRRR−1{HHH[XXX(ti)] −YYYo(ti)},(2)

where the superscript “T” represents the transpose of a ma-
trix and subscripts “b” and “o” represent the background field
and observation, respectively;N indicates the number of in-
tegrations in the minimization time window;YYYo represents
the observation; andBBB, RRR and HHH represent the background
error covariance matrix, the observation error covariancema-
trix and the observation operator, respectively. In this study,
BBB andRRR are simply set as the identity matrix multiplied by
the standard deviation of the observational error.

An optimization algorithm is needed to obtain the optimal
solutions. The input arguments of an optimization algorithm
include the initial guess and the number of control variables,
the cost function and the gradient of the cost function with
respect to the control variable. The computation of the gradi-
ent of the cost function involves the backward integration of
the adjoint model. Mathematically, if we consider the adjoint
model as an operator, the adjoint model is the transpose of the
tangent linear model that is the linearization of the nonlinear
forward model. Whether an optimization algorithm can cor-
rectly yield an analysis solution depends on the accuracy of
the gradient. Thus, it is necessary to examine the accuracy of
the gradient computed by the adjoint model. At this point, the
tangent linear model is an effective tool to perform the above-
mentioned verification. In this section, we simply introduce
the tangent linear model and the adjoint model of the ICM,
as well as the optimization algorithm used in this study.

2.2.1. The tangent linear model
The tangent linear model results from the linearization of

the original nonlinear model. The model is not directly in-
volved in the 4D-Var data assimilation procedure, but it is
helpful for developing the adjoint model and testing whether
the adjoint model is correct.

The tangent linear model of the ICM can be expressed as
(Kalnay, 2003)

∂XXX′

∂t
=
∂F(XXX)
∂XXX

XXX′ = MMM(XXX)XXX′ ,

XXX′|t0 = XXX′0 ,
(3)

whereXXX′ is a small perturbation vector ofXXX and MMM(XXX) =
∂F(XXX)/∂XXX is the tangent linear operator ofFFF, which is a first-
order approximation.

To verify whether the established tangent linear model of
the ICM is correct, one can use a formula based on the first-
order approximation as follows (Navon et al., 1992):

RV =
‖F(XXX+ δXXX′)−F(XXX)‖
δ‖MMM(XXX,XXX′)‖

= 1+O(δ) , (4)
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where‖ · ‖ is the L2-norm;δ is a small value ranging from
0 to 1, andO(δ) is the high-order small perturbation. RV is
the ratio of the differences between the ICM variable tenden-
cies caused by a small perturbation inùto the perturbation
calculated by the tangent linear model, which ideally should
approach 1. The test results (double precision) of the tangent
linear model in association with the 4D-Var method based on
the ICM are shown in Table 1. Asδ gradually decreases by
one order of magnitude from 10−1 to 10−5, the value of RV
consistently approaches 1. It should also be noted that when
δ is too small, e.g., with a decrease by one order of magni-
tude from 10−6 to 10−10, the value of RV conversely becomes
slightly larger, which is the result of a truncation error. Thus,
it is evident that the established tangent linear model of the
ICM is correct.

2.2.2. The adjoint model

Generally, the adjoint model is an efficient solution for
evaluating the gradient of the cost function with respect to
high-dimensional control variables in the 4D-Var data assim-
ilation method. The model is the transpose of the tangent
linear model, i.e., it features the reverse of the temporal and
spatial integration and other characteristics.

The equations of the adjoint model of the ICM can be
written as follows (Kalnay, 2003):

−
∂XXX∗

∂t
=

(

∂F(XXX)
∂XXX

)T

XXX∗ = MMMTXXX∗ = MMM∗XXX∗ ,

XXX∗|t=N = 0 ,
(5)

whereXXX∗ is the adjoint ofXXX andMMM∗ = (∂F(XXX)/∂XXX)T = MMMT

is the adjoint ofMMM, which is the tangent linear model of the
ICM. The gradient of the cost function is obtained by a back-
ward integration of the adjoint model.

Based on the relationship between the tangent linear
model and the adjoint model, one can verify the accuracy of
the adjoint model using the following formula (Navon et al.,
1992):

〈MMMXXX0,MMMXXX0〉 = 〈MMM
∗MMMXXX0,XXX0〉 , (6)

Table 1. Test results (double precision) obtained for the tangent lin-
ear model in association with the 4D-Var method based on the ICM.
Here,δ is a small value gradually approaching 0, and RV is the ratio
of the differences between the ICM variable tendencies caused by a
small perturbation inδ to the perturbation calculated by the tangent
linear model, which ideally should approach 1.

δ RV

10−1 0.9969131317710270
10−2 0.9996664164813890
10−3 0.9999692317079850
10−4 0.9999969328883560
10−5 0.9999996029827230
10−6 0.9999993932446230
10−7 1.0000248186382400
10−8 1.0002195754411600
10−9 1.0005791264619800
10−10 1.0024624889518900

where〈, 〉 represents the inner product between the two vec-
tors. For the LHS of Eq. (6), the tangent linear model is inte-
grated forward using the initial conditionXXX0 to obtainMMMXXX0,
which is then used to compute its own inner product. For the
RHS of Eq. (6), the adjoint model is integrated from the ini-
tial conditionMMMXXX0 to obtainMMM∗MMMXXX0, which is used to com-
pute the inner product with the initial conditionXXX0. Then,
how one inner equals the other can be checked with a given
precision.

Following the above-described approach, we perform a
set of sensitivity experiments to demonstrate how the accu-
racy of the adjoint model of the ICM is affected by the length
of the assimilation time window in the 4D-Var data assimila-
tion process. Table 2 presents the test results for the exper-
iments, obtained using different assimilation time windows
(days). The results show that at least the first 10 valid dig-
its of 〈MMMXXX0,MMMXXX0〉 are equal to those of〈MMM∗MMMXXX0,XXX0〉 when
using different assimilation time windows, indicating that the
adjoint model is accurate. Additionally, as the length of the
assimilation window becomes longer from 4 days to 28 days,
the equal valid digits become shorter from 12 to 10; this is be-
cause the nonlinearity becomes stronger as the length of the
assimilation window becomes longer. Note that the experi-
mental settings in the tangent linear model and adjoint model
must remain the same as in the original nonlinear model, in-
cluding the resolution, time step, physical processes and sim-
plified dynamics.

2.2.3. The minimization procedure

After the adjoint model of the ICM is properly con-
structed, a minimization algorithm is used to find the 4D-Var
analysis solution. First, the ICM model is integrated forward
from an initial guess ofXXX0 to obtain the cost functionJ. Sec-
ond, the ICM is integrated backward with the adjoint model
to obtain the gradient ofJ with respect toXXX0. Third, the
Limited-Memory BFGS (L-BFGS) algorithm (Liu and No-
cedal, 1989) is used to minimize the cost function to obtain
the analysis solution ofXXX0 (Zou et al., 1993). The L-BFGS
algorithm is an improved version of the BFGS algorithm,
which is a quasi-Newton algorithm. The L-BFGS requires

Table 2. Test results (double precision) for the adjoint model of
the ICM in the 4D-Var data assimilation process, obtained using
different assimilation time windows (days). Here,MMM is the tan-
gent linear model operator;MMM∗ is the adjoint model operator; and
XXX0 is the initial condition. The tangent linear model is integrated
forward using the initial conditionXXX0 to obtain MMMXXX0, which is
saved as〈MMMXXX0,MMMXXX0〉, and the adjoint model is integrated back-
ward from the initial conditionMMMXXX0 to obtainMMM∗MMMXXX0, which is
saved as〈MMM∗MMMXXX0,XXX0〉. The difference between〈MMMXXX0,MMMXXX0〉 and
〈MMM∗MMMXXX0,XXX0〉 is an indicator of the accuracy of the 4D-Var data
assimilation process.

Time window 〈MMMXXX0,MMMXXX0〉 〈MMM∗MMMXXX0,XXX0〉

4 Days 38243.9322968130 38243.9322965545
7 Days 101439.163365451 101439.163359537
14 Days 306869.173465571 306869.173491971
28 Days 789400.566949510 789400.566192024
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four input arguments: an initial guess for the value ofXXX0, the
dimension ofXXX0, the cost functionJ, and the gradient of the
cost function with respect toXXX0.

An example of the convergence of the cost function with
respect to the iteration number is shown in Fig. 1. The fig-
ure shows that the cost function rapidly reaches equilibrium
after four iterations. Thus, the 4D-Var based on the ICM is
efficient and reliable. To save on computational cost, we set
the maximum value of the iteration number to 20, which is
sufficient to satisfy the convergence of the cost function. At
this point, the 4D-Var data assimilation based on the ICM has
been established.

3. Assimilation experiments

To partly reflect reality, we design a biased twin exper-
iment (Zhang et al., 2014; Zhang et al., 2015a; Wu et al.,
2016) to test the 4D-Var method, and report the results in
this section. The twin experiment includes the observing net-
work, model error and the assimilation schemes. Note that
the model settings are the same for all data assimilation and
prediction experiments, which prevents the “initial shock”
that can result from the inconsistency of the coupled model
physics and initial conditions in the transition from the assim-
ilation phase to the prediction phase using the ICM (Keenly-
side et al., 2005).

3.1. Observing network and model error

We assume that only the SST anomaly is observed and
sampled once a day from the “truth” model that takes the
default values of model parameters. The observed position
of the SST anomaly is assumed to be the same as that of
the model grids. To simulate the observational error, Gaus-
sian noise with a mean and standard deviation of 0 and 0.2 is
added to the sampled “truth” daily SST anomaly.

For the assimilation model, we assume that the model
error only arises from parameter perturbations to roughly
mimic the model error in the real situation. The default
values of three model parameters are modified: the coupling
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Fig. 1. Variation in the cost function with respect to the iter-
ation number. Here, the cost function is defined as the sum
of the background error term and observational error term,
which decreases rapidly and converges to a constant value.

coefficient between the SST anomaly andτ anomaly,ατ,
which is varied from 1.03 to 1.03× 1.01; the vertical diffu-
sivity coefficient,Kv, which is varied from 1.0×10−3 to 1.0×
10−3×0.95; and the thermal damping coefficient,λ, which is
varied from 1/(100×86400) to 1/(100×86400)×1.01. The
modifications of these parameters cause the trajectories ofthe
assimilation model to depart from those of the “truth” model.
However, the basic ENSO features simulated by the assim-
ilation model, such as the spatiotemporal structure and the
amplitude, remain unchanged. Starting from the same initial
conditions, these two simulations are respectively conducted
for 200 model years. Note that each model calendar month is
assumed to have 30 days in this study. Figure 2a shows the
time series of the Niño3.4 indices for the “truth” model and
the assimilation model in the first 100-year simulations. It
is clear that both model simulations can simulate the promi-
nent ENSO features. Note that the stochastic forcing of the
atmospheric wind field is not included in the ICM; thus the
ENSO events depicted by the ICM are quite regular (Zhang
et al., 2008; Zhang and Gao, 2015). In addition, even though
the two model simulations start from the same initial con-
ditions, the simulated Niño3.4 indices gradually depart from
each other. To detect the significant periods of ENSO events
produced by the two simulations, we perform a power spec-
trum analysis of the Niño3.4 indices with the total 200-year
outputs (Fig. 2b). The results indicate that both model simu-
lations have a 2–7-year period that passes the 95% confidence
level. The “truth” model has a dominant period of 3.81 years,
whereas the assimilation model has a dominant period of 3.92
years.

3.2. Assimilation designs

In this study, three experiments are conducted to evalu-
ate the 4D-Var data assimilation method based on the ICM:
Expt. 1 is the control experiment of the “truth” model, used to
produce the “observation” field; Expt. 2 is the 4D-Var assim-
ilation experiment, which provides the optimal initial condi-
tions by assimilating the “observation” of the SST anomaly;
and Expt. 3 is the non-assimilation experiment of the assimi-
lation model. The simulation period comprises 20 years from
model time 2080/01/01 to 2099/12/30.

Figure 3 is a schematic diagram illustrating the experi-
mental configuration for Expt. 2. From the initial condition
(restart0) at model time 2000/01/01 (which is represented as
1 January 2000, in the model time), both the “truth” model
and the assimilation model are integrated for 80 years. It is
clear that the two simulations diverge from each other (see
Fig. 2a). Then, the “truth” model is further integrated for
20 years from restart1 at model time 2080/01/01 to gener-
ate the “observations”. The assimilation model is then inte-
grated forward by assimilating “observations” from restart2
at model time 2080/01/01. In this 4D-Var data assimilation
process, the “observed” SST anomaly is assimilated into the
assimilation model at the first step of every day. The length of
the minimization time window in this 4D-Var is determined
by trial and error. In this study, considering the nonlinear-
ity effect and the computational efficiency, the minimization
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Fig. 2. (a) Time series of the Niño3.4 indices for the “truth” model(blue) and the assim-
ilation model (red) in the first 100-year simulations. (b) Power spectrum analysis of the
Niño3.4 indices during the first 200-year simulations for the “truth” model (blue) and the
assimilation model (red), with the 95% confidence level indicated by the dashed curve.

Fig. 3. Schematic diagram illustrating the process of the 4D-Var data assimilation. The
“truth” model and the assimilation model are integrated from the same initial condition
(restart0), and the models gradually diverge from each other. Then, the “truth” model is in-
tegrated for 20 years from restart1 to sample “observations”, which are assimilated into the
assimilation model with 4D-Var to obtain the optimal initial condition for ENSO prediction.

time window is set to 15 days in length. For example, start-
ing from restart2 at model time 2080/01/01, the assimilation
model is subject to assimilating daily “observations” of the
SST anomaly within a 15-day window to obtain the optimal
initial condition at model time 2080/01/01. The assimilation
model is then integrated with the optimal initial conditionun-
til model time 2080/01/16 to enter the next data assimilation
cycle. Thus, each month has two data assimilation cycles.

The key measure for assessing assimilation quality is the
prior RMSE, which is defined as

RMSE=

√

√

√

1
G

G
∑

i=1

(XXXi −XXXtruthi )
2 , (7)

where XXX is the control vector;XXXtruth is the corresponding
“truth” vector obtained from Expt. 1;i is the grid index; and

G is the total number of model grids. When the RMSE falls to
a value that changes only slightly, the assimilation methodis
considered to have a converged solution. The assimilation pe-
riod is chosen to have 20 model years. The results show that
the spin-up period of the state estimation is approximately2
years.

4. Assessing the impacts of data assimilation

The principles of the twin experiment are introduced in
section 3, where the assimilation model is assimilated with
the “observation” field to retrieve the analysis solution. To
assess the success of this 4D-Var data assimilation method
based on the ICM, the focus will be on ENSO phenomena
when performing the twin experiment. In this section, the ef-
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Fig. 4. Time series of RMSEs for prior anomalies of (a) SST (units:◦C), (b) zonalτ (units: dyn
cm−2) and (c) SL (units: cm) over the full tropical Pacific region (30◦N–30◦S, 124◦E–78◦W).
Here, the RMSE is calculated on the first day of each month in the first 10-year simulations for
the assimilation (red) and non-assimilation (blue) experiments.

fect of assimilation on ENSO analysis is demonstrated first,
and that on ENSO prediction is then discussed.

4.1. Impact on ENSO analysis

In this section, we first check the time series of the RM-
SEs of several key variables. Figure 4 shows the time series
of RMSEs for prior anomalies of SST, zonalτ and SL over
the full tropical Pacific region (30◦N–30◦S, 124◦E–78◦W)
for Expt. 2 and Expt. 3. Being directly assimilated, the RMSE
of the SST anomaly (Fig. 4a) is rapidly reduced. Because the
τ anomaly is directly diagnosed from the SST anomaly using
its SVD model, it is the first beneficiary of the assimilation
of the SST anomaly. The RMSE of the zonal wind anomaly
(Fig. 4b) is rapidly reduced, similar to the RMSE of the SST
anomaly. In contrast, the SL anomaly is indirectly affected
by the SST anomaly assimilation, causing most RMSEs of
the SL anomaly produced in Expt. 2 to be smaller than those
produced in Expt. 3 (Fig. 4c). All the RMSEs indicate that
assimilating the “observations” of the SST anomaly into the
ICM by 4D-Var can improve the model state estimate, thus
being able to provide optimal initial conditions.

Secondly, we examine the spatial RMSEs for Expt. 2 and
Expt. 3. Figure 5 plots the spatial distributions of RMSEs
for prior anomalies of SST, zonal and meridionalτ, SL and
Te for Expt. 2 and Expt. 3. The RMSE here for each grid is
calculated as follows:

RMSEi, j =

√

√

√

1
N

N
∑

t=1

(XXXi, j,t −XXXtruthi, j,t )
2 , (8)

whereXXX represents the vector of the anomaly variables, in-
cluding SST, zonal and meridionalτ, SL andTe; XXXtruth is the
corresponding “truth” value ofXXX; i and j represent the (i, j)
grid; t is the time index; andN is the total number of analysis
times. The RMSEs of all variables for Expt. 2 (Figs. 5a–e)
are much smaller than those for Expt. 3 (Figs. 5f–j), but the
spatial patterns are quite similar. For the SST anomaly, both
maximum RMSEs [0.15◦C for Expt. 2 (Fig. 5a) and 0.5◦C
for Expt. 3 (Fig. 5f)] are centered in the eastern and central
equatorial Pacific. For the zonalτ anomaly, the maximum
RMSEs are located in the central equatorial Pacific, with val-
ues of 0.027 dyn cm−2 and 0.16 dyn cm−2 for Expt. 2 (Fig.
5b) and Expt. 3 (Fig. 5g), respectively. Similar results are
obtained for the meridionalτ anomaly (Figs. 5c and h), SL
anomaly (Figs. 5d and i) andTe anomaly (Figs. 5e and j).
Generally speaking, the differences in the RMSEs of the SST
andτ (zonal and meridional components) anomalies between
Expt. 2 and Expt. 3 are much larger than those of theTe and
SL anomalies. The reason is the fact that only the “observa-
tions” of the SST anomaly are assimilated in Expt. 2 andτ
anomalies are directly calculated from the SST anomaly field
using theτmodel. Thus, the assimilation process has a direct
effect on the SST anomaly field and thereby on theτ anomaly
field. In contrast, the SL andTe fields are indirectly impacted
by the SST anomaly assimilation through the model physi-
cal processes. In general, the RMSEs produced by Expt. 2
are slightly smaller than those produced by Expt. 3. These
results demonstrate that the 4D-Var method can effectively
reduce the error in the initial conditions, thereby leadingto
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Fig. 5. Spatial distributions of RMSEs for prior anomalies of (a, f)SST (units:◦C), (b, g) zonalτ (units: dyn cm−2), (c, h)
meridionalτ (units: dyn cm−2), (d, i) SL (units: cm), and (e, j)Te (units: ◦C). Here, the RMSE is calculated from results
obtained for the first 20-year simulations for the assimilation (left panels) and non-assimilation (right panels) experiments.

more accurate state estimations for ENSO events.
Thirdly, we check the temporal evolution of the SST and

τ anomalies. Figure 6 shows the longitude–time sections of
the SST anomalies along the equator during the first 12-year
simulations (model time from 2080/01/01 to 2091/12/30) for
the “truth” fields, Expt. 2 and Expt. 3. It can be seen that the
ENSO period, spatial structure and phase transition are well

represented in the ICM. Excluding the spin-up period of 4D-
Var, Expt. 2 (Fig. 6b) can retain nearly the same variabilityof
the SST anomaly as in the “truth” simulation (Fig. 6a). For
Expt. 3 (Fig. 6c), the biases arise from the initial conditions
and the three model parameter perturbations cause the mod-
eled SST anomaly to differ greatly from the “truth” field. For
example, the amplitude of the modeled SST anomaly exhibits
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Fig. 6. Longitude–time sections of SST anomalies along the equatorfor the (a) “truth” value, (b) assimilation exper-
iment and (c) non-assimilation experiment during the first 12-year simulations (model time period of 2080/01/01 to
2091/12/30). Contour interval: 0.5◦C.

some bias, especially in the eastern Pacific. Additionally,the
phase transition time of the SST anomaly also differs from
the “truth” value. Similar to Fig. 6, Fig. 7 illustrates the
longitude–time sections of zonalτ anomalies along the equa-
tor. The spatiotemporal structure and amplitude of the zonal
τ anomaly produced by Expt. 2 (Fig. 7b) are much more con-
sistent with the “truth” field than those produced by Expt. 3
(Fig. 7c).

The ocean subsurface fields play an important role in
the development of the ENSO events. To capture the ENSO
events, it is necessary to adequately depict theTe field. Fig-
ure 8 shows the longitude–time sections ofTe anomalies
along the equator for the “truth” fields, Expt. 2 and Expt. 3.
Through the model adjustment achieved by assimilating “ob-
servations” of the SST anomaly, the spatiotemporal evolution
of Te produced by Expt. 2 (Fig. 7b) is in good agreement
with the “truth” field (Fig. 7a) compared with that produced
by Expt. 3 (Fig. 7c).

Finally, we check the analysis quality of ENSO produced
by 4D-Var by taking the Niño3.4 index as the key parame-
ter of ENSO. Figure 9a shows the time series of the Niño3.4
indices during the first 10-year simulations for the “truth”
value, Expt. 2 and Expt. 3. It can be seen that Expt. 2 (red
dashed) can keep tracking the “truth” value (green dotted)

very well, whereas Expt. 3 (blue dashed) shows some devia-
tion. For clarity, the time series of the absolute errors of the
Niño3.4 indices in Expt. 2 and Expt. 3 are presented in Fig.
9b. It is evident that the absolute error produced by Expt. 2 is
much smaller than that produced by Expt. 3. Furthermore, the
absolute error produced by Expt. 3 gradually becomes larger
(even reaching approximately 1.2◦C) due to the existence of
model error. This finding again demonstrates that the 4D-var
data assimilation can recover ENSO conditions well. Thus,
the high level of agreement between the assimilation results
and the “truth” value can provide a better initialization for
ENSO prediction.

4.2. Impact on ENSO prediction

In general, a better prediction of ENSO events is a strict
test for model simulation and analysis through data assim-
ilation. Therefore, improved prediction accuracy is an im-
portant indicator for assessing the quality of the 4D-Var data
assimilation approach. Based on state estimation with a
2-year spin-up period, we perform an array of 1-year fore-
cast experiments starting from the analysis solutions on the
first day in each month between the model time 2082/01/01
and 2099/12/01. Thus, there are 18× 12= 216 forecast ex-
periments in total, which are used to perform the statistical
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Fig. 7. As in Fig. 6 but for zonal wind anomalies. Contour interval: 0.1 dyn cm−2. 1 dyn cm−2 = 0.1 N m−2

Fig. 8. As in Fig. 6 but forTe anomalies. Contour interval: 1◦C.
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Fig. 9. (a) Time series of the Niño3.4 indices (units:◦C) for the “truth” value (green), assimi-
lation experiment (red) and non-assimilation experiment (blue) during the first 10-year simula-
tions. (b) Time series of the absolute errors of the Niño3.4indices (unit:◦) for the assimilation
(red) and non-assimilation (blue) experiment during the first 10-year simulations.

Fig. 10. Time series of the Niño3.4 indices for the “truth” value
(green) and predictions made at 12-month lead times using ini-
tial conditions with (red) and without (blue) data assimilation
during the model time period 2083/01 to 2099/12.

analysis. The prediction results with and without data assim-
ilation are compared below.

Figure 10 presents the time series of the Niño3.4 in-
dices for the “truth” value and predictions made at 12-month
lead times using initial conditions with and without data as-

similation during the model time period 2083/01–2099/12.
The Niño3.4 indices in the assimilation case are very close
to the “truth” value, whereas those in the non-assimilation
case depart to a certain extent from the “truth” value. The
correlation coefficient between the “truth” and the predicted
Niño3.4 index in the assimilation case is 0.99, whereas that
between the “truth” and the predicted Niño3.4 index in the
non-assimilation case is 0.84. The RMSEs of the predicted
Niño3.4 index for the assimilation and non-assimilation cases
are 0.05 and 0.66 in the 1-year lead time. The results are
likely idealized to a certain extent because they are evalu-
ated in a twin experiment, but these experiments provide us
with important information about the way the 4D-Var data as-
similation approach can effectively improve the model state
estimation and prediction of ENSO events using the ICM.

5. Conclusion and discussion

Data assimilation is an effective way to improve the accu-
racy of model simulations and analyses for weather and cli-
mate through an optimal combination of model solutions and
observations. In particular, the advanced 4D-Var data assim-
ilation method is more dynamically and mathematically con-
sistent in constraining numerical models with observations
to achieve the optimal initialization for ENSO analysis and
prediction. In this study, we implement the 4D-Var method
based on an improved ICM that has been routinely used for
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real-time ENSO prediction. The construction of the 4D-Var
assimilation system includes the tangent linear model and ad-
joint model of the ICM and a minimization procedure. Strict
testing justifies the accuracy of the adjoint model and the ef-
fectiveness of the 4D-Var in constraining dynamical models
with observations.

The impacts of the optimal initialization produced by 4D-
Var on ENSO analysis and prediction are evaluated through
a biased twin experiment. In this study, only “observations”
of the SST anomaly are assimilated into the model to op-
timize the initial conditions. Results show that, compared
with the non-assimilation case, the assimilation results are
more consistent with the “truth” value, and the RMSEs of the
anomalies for the SST,τ, SL andTe fields are much smaller
(especially for the SST andτ fields). Additionally, the pre-
diction accuracy is improved by optimizing the initial condi-
tions. The results obtained in this study provide some insight
into the way in which ENSO prediction can be improved with
the 4D-Var algorithm.

The work performed in this study is a first step towards
improving real-time ENSO analysis and prediction by ap-
plying the 4D-Var algorithm in the ICM. Further modeling
studies using the 4D-Var are underway. As noted above,
the ICM has been successfully used for real-time ENSO pre-
diction, whose result, now named IOCAS ICM, is collected
and posted every month at IRI/Columbia University, a multi-
model product for real-time ENSO monitoring and prediction
(see the IRI website). In this application, however, no sophis-
ticated data assimilation is applied in the ICM; instead, a sim-
ple initialization method is currently taken for the model fore-
cast, as follows: The observed interannual SST anomalies
are the only field used in the prediction initialization (Zhang
et al., 2013). In real-time practice, experimental predictions
are typically conducted near the middle of each month, when
the monthly mean SST fields from the previous month and
the weekly mean SST fields from the first week of the cur-
rent month are available from NOAA’s Environment Mod-
eling Center (Reynolds et al., 2002), which can be obtained
online from the IRI data library. Then, the observed SST
anomalies are used to derive interannualτinter fields using the
empiricalτmodel. The derivedτinter fields are taken to force
the ocean model to produce an initial ocean state for the first
day of each month, from which predictions are made. Addi-
tionally, as part of the initialization procedure, the observed
SST anomalies are directly inserted into the ICM when mak-
ing predictions. Based on results from this paper, the 4D-Var
method will be incorporated in the ICM for real-time ENSO
predictions.

Additionally, even without data assimilation, the fore-
casts using the ICM show a fairly high level of skill (Fig. 10,
blue line) because the ENSO events simulated are so regular.
This is attributed to the fact that stochastic atmospheric wind
forcing is not included in the ICM (Zhang et al., 2008). In
a more realistic global coupled climate model, however, the
forecast skill of Niño 3.4 SST initialized by the SST-nudging
scheme is very limited (Kumar et al., 2014; Zhu et al., 2015).
In the future, we plan to assess the impact of the 4D-Var data

assimilation in a more realistic way by including stochastic
atmospheric forcing in the ICM, whose effects on ENSO sim-
ulations were evaluated by Zhang et al. (2008).

Furthermore, the 4D-Var method can also be used to opti-
mize the model parameters, as demonstrated by the ensemble
Kalman filter (Wu et al., 2012, 2016). For example, the per-
formance of the ICM is sensitive toατ andαTe (Zhang et al.,
2005a; 2008); we plan to use 4D-Var to optimally determine
these two parameters to further improve the ENSO prediction
skill. In addition, the oceanic subsurface state has a consid-
erable effect on SST in the tropical Pacific; thus, in addition
to assimilating the observed SST field, observed subsurface
thermal fields need to be assimilated into the ICM. In addition
to the assimilation of oceanic fields, that of atmospheric data
can also be considered. Note that during the 4D-Var assimi-
lation process (the forward and backward time integrationsof
the model and its adjoint model),τ anomalies are internally
determined using its anomaly model from the corresponding
SST anomalies. Thus, the ICM with the 4D-Var has already
taken into account the coupling between the ocean and atmo-
sphere. So, the observedτ anomaly field can be introduced
into the 4D-Var assimilation processes in a fairly straightfor-
ward way (that is, the coupled data assimilation). Taking all
these together, it can ultimately be expected that real-time
ENSO forecasting using the ICM can be improved through
optimal initialization and parameter optimization using the
4D-Var data assimilation method.
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