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ABSTRACT

A four-dimensional variational (4D-Var) data assimilatimethod is implemented in an improved intermediate coupled
model (ICM) of the tropical Pacific. A twin experiment is dgséd to evaluate the impact of the 4D-Var data assimilation
algorithm on ENSO analysis and prediction based on the ICh&. Model error is assumed to arise only from the parameter
uncertainty. The “observation” of the SST anomaly, whiclsasnpled from a “truth” model simulation that takes default
parameter values and has Gaussian noise added, is dirssiiyilated into the assimilation model with its parametss
erroneously. Results show that 4D-Vdieetively reduces the error of ENSO analysis and therefopgaues the prediction
skill of ENSO events compared with the non-assimilatiorecdhese results provide a promising way for the ICM to achiev
better real-time ENSO prediction.
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1. Introduction real-time ENSO predictions in advance with reasonable suc-
S.

ENSO is the strongest interannual phenomenon in tRe> : L .
However, certain challenges still exit in the real-time-pre

tropical Pacific, directly inducing climate anomalies vabrl diction of ENSO events. For example, model biases cause

wide. Thus, accurgte!y andffectwely predicting ENSO ENSO simulations to depart far away from observations,
events is of great significance to society. In recent decade€s ing model state estimation and prediction inaccurate
great advancements have been made in understanding E'\E%ng et al., 2005¢). In addition, high-quality ocean ob-
;n:rk?wz\;elfg éngg Vrvn; ?k? Isléc;rS.ltl\s/lcrg?;-;lrmelgégfjggﬂrel é?gﬁ"ervations are very scarce, which results in uncertaiiies
11986' Zh'an et’ al 20’13) A:[ resent }\l/’arious’t es of ai(r')’gean state estimation (Wang et al., 2000). Accordingfi; di
' 9 N . b ' ) ypes culties emerge in providing accurate initial ocean coodai
sea coupled models have been developed, including inter € ENSO orediction. Thus, it is essential to find a way to

. ) . f
diate coupled models (I_CMS’ €.g., Zebiak and Ca_\ne, 19 n%;lke model solutions coherent with observations by produc-
Balmaseda et al., 1994; Zhang et al., 2003), hybrid COUpIFﬁ optimal initial conditions for predictions. To this end
models (e.g., Neelin, 1990; Barnett et al., 1993; Zhang P P ) S

al., 2015), and fully coupled general circulation modelg.(e f:ﬁi;is;:]?';2:'O£N'§§ngﬁgluvseis\’\§]y dto r%EXL?OGnOpﬂ?vjle:,rg; a
Philander et al., 1992; Rosati et al., 1997). Currentlys¢he y P | '

coupled models enable us to make six-month to one—yereellrated issu_e _is .hOW tofiectively use limited o_bservaf[ions

in data assimilation (Mu et al., 2015). To achieve this, ob-
serving system experiments need to be performed to identify
* Corresponding author: Rong-Hua ZHANG target observations with sensitive domains where datanassi

Email: rzhang@qdio.ac.cn ilation can be usedfiectively to improve prediction. Thus,
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an dfective data assimilation system necessarily includes nér method is more dynamically and mathematically consis-
only highly-quality data and a good data assimilation salement in dfering an initial ocean state for improving forecast
but also a method for these two aspects to be combined inauracy, we specifically address the following question in
smart way, ultimately providing much more realistic inlitiathis paper: Can the ENSO forecast skill generated by the ICM
analysis fields for predictions (Mu et al., 2015). be increased by using the 4D-Var method?

Various data assimilation algorithms have been used to Herein, we provide a detailed description of the incorpo-
initialize ENSO prediction. Originally, the nudging metho ration of the 4D-Var data assimilation method into the afore
which directly forces the model solution to approximate olmentioned ICM, including the development of the associated
servations, was used to force the modeled SST to reflect tdmgent linear model and adjoint model. Based on the suc-
served values to initialize ENSO prediction (e.g., Cherl.et acessful implementation of the 4D-Var data assimilatior for
1995; Kirtman and Zebiak, 1997; Kumar et al., 2014; Zhu etulation into the ICM, we then report the preliminary result
al.,, 2015). Later, ensemble Kalman filters (Evensen, 199%f)a series of sensitivity experiments. Previously, Zheraj.e
were introduced into ocean modeling, providing probabili$2009) incorporated an ensemble Kalman filter method into
tic forecasts of ENSO (e.g., Houtekamer and Mitchell, 199&)e ICM and achieved improved ENSO prediction.

Zheng et al., 2006, 2009; Zhang et al., 2007; Tang et al., The paper is organized as follows: Section 2 describes
2014; Wu et al., 2014). As an important branch of data athie ICM and 4D-Var data assimilation method. The experi-
similation, variational (three- and four-dimensional)threds mental setup is introduced in section 3, and the assimilatio
(3D-Var and 4D-Var, respectively) are also widely used iimpacts are analyzed in section 4. Finally, a conclusion and
ENSO analysis and prediction. For example, the 4D-Var datescussion are presented in section 5.

assimilation method pursues the analysis solutions by min-

imizing the distance between the model trajectory and ob-

servation time series [i.e., the so-called cost functiag.(e 2. M ethodology

Tang and Hsieh, 2001; Zhang et al., 2001; Han et al., 2006, ) ) ) )

2015; Peng and Xie, 2006; Zhang et al., 2015b)]. Compared I_n this section, we briefly descrlbe_the ICM that has been
with economic 3D-Var analysis (Derber and Rosati, 198g’;ut|nely used to make ENSO predictions [see a summary of
Zhu et al., 2006), the 4D-Var data assimilation method tee model ENSO forecasts at the International Researdh Inst
more dynamically and mathematically consistent (e.g., Doriyte for Climate and Society (IRI) website: hiffi.columbia.
menget and Stammer, 2004; Sugiura et al., 2008). For ﬁ-prC_hmateiENSchrrentlndeST_tabIe.htmI];_thereal-tlme
stance, Weaver et al. (2003) assimilataditu temperature prediction results are posted on the_ IRl website every month
data into an OGCM by the 3D-Var and 4D-Var method§OW referred to as the IOCAS (Institute of Oceanol@fyi-

and demonstrated that 4D-Var is mofieetive than 3D-Var Nese Academy of Sciences) ICM. Then, the 4D-Var data as-
in producing a consistent ocean state between model sdilipilation procedure is described, including its tangeredr
tions and observations. Additionally, the 4D-Var method h&hodel and adjoint model and the corresponding minimization
been applied to ENSO prediction using various models aREPCESSes.

has achieved some success (Kleeman et al., 1995; Galaggrft Descrinti f the |CM

al., 2003; Dommenget and Stammer, 2004). The main dif-™~ escription of the

ficulty in 4D-Var-based initialization of ENSO predictios i The ICM consists of a dynamic ocean model, an SST
that the method requires the development of an adjoint modalomaly model, and two statistical anomaly modelsTer

to compute the gradient of the cost function with respect émdr. The atmosphere component is a simple empirical sta-
the control variables, which is very complicated and timdistical model for ther anomaly, which depicts the response
consuming. of 7 to an SST field. It is constructed by the SVD method,

Our goal in this study is to implement the 4D-Var methollased on historical data of the SST andgymbolically, the
to an improved intermediate coupled model (ICM) that waelation between these two anomalous fields is expressed as
developed for ENSO studies (e.g., Zhang et al., 2003; Zhang a-F: (SSTnter), in which F; is the relationship between
et al., 2005b). The ICM used is a simplified coupled oceamnd SSTer derived using statistical methods from historical
atmosphere model with two statistical submodels for the tewhata, andr, is a scalar parameter indicating the strength of
perature of subsurface water entrained into the mixed layeind forcing. The combined SVD method is used to obtain
(Te) and wind stressr). Te is optimally calculated in terms the covariance between the SST and zonal and meridional
of sea level (SL) anomalies using an EOF analysis technigfields. The seasonality of interannualariability is taken
Wind stress anomalies are estimated based on an SVD airdb account with 12 models constructed for each month.
ysis between SST anomalies andnomalies (Zhang et al., Ther field is then used to drive the ocean model.

2003, 2015). Therefore, the wind anomalies are representedThe ocean component of the ICM includes a dynamical
as a response to SST, and the subsurface therfiegt ®@n ocean model, an SST anomaly model, and a statistical model
SST is parameterized by the ocean dynamical field. Adf T.. The dynamical ocean model was developed by Keenly-
though the ICM has been used for realistic predictions efde and Kleeman (2002), based on the McCreary (1981)
ENSO (Zhang et al., 2013), it has not yet applied the 4D-Vharoclinic model. It includes linear and nonlinear parts. |
method to initialize the real-time prediction. Since the-4LCthe vertical direction, the modal decomposition approach i
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adopted to solve the linear part, which retains the first Dirrent velocitiesly andV) in the ICM; X is the initial value
baroclinic modes, whereas the higher 11 to 30 modes are repX; andF is the nonlinear forward operator.
resented only in the two surface layers. The nonlinear parti For the 4D-Var algorithm, the cost function can be for-
highly simplified and represented as the residual term in thmlated as (Kalnay, 2003)
momentum equation and is used to make a correction to the
linear solutions that are ignored by the linear assumptiah t  J(Xo) = =[X(to) — Xp] " B[ X(to) — Xp] +
can be broken down in the equatorial region. It is worth not- 2
ing that by introducing the horizontal stratification vaioa
and partial nonlinearféects, the dynamic ocean model can
simulate features of the actual equatorial current systeth w
such as the equatorial undercurrent and surface current dgre the superscript “T” represents the transpose of a ma-
their seasonal variability (Keenlyside and Kleeman, 2002) trix and subscripts “b” and “o” represent the backgroundifiel
The SST anomaly model, which is embedded in the dgnd observation, respectively; indicates the number of in-
namical ocean model, describes the evolution of interanniggrations in the minimization time window, represents
temperature anomalies over the surface mixed layer. Thee titie observation; an®, R andH represent the background
tendency of the SST anomaly is determined by its horizon&{For covariance matrix, the observation error covarianae
advection and diusion terms, vertical advection andfdi trix and the observation operator, respectively. In thislgt
sion terms and thermal dissipation. The diagnostic armly® andR are simply set as the identity matrix multiplied by
of the SST budget demonstrates that the vertical advectibg standard deviation of the observational error.
and difusion terms (which are related to tfiganomaly) are An optimization algorithm is needed to obtain the optimal
important in determining the variation in the SST anomal§olutions. The input arguments of an optimization algenith
The SST anomaly model is equipped with a parameterizatiti¢lude the initial guess and the number of control variable
for Tethat is diagnosed by the sea level anomalySi field the cost function and the gradient of the cost function with
based on an EOF. The relationship betweenTthanomaly respect to the control variable. The computation of theigrad
(TZ) and Sliger can be written ag’ = ateFre (Slinter), in €Nt of the cost function involves the backward integratibn o
which Fre is the relationship betwe€F, and Sl derived the adjoint model. Mathematically, if we consider the adjoi
using statistical methods from historical data, and is a model as an operator, the adjoint model is the transpose of th
scalar parameter introduced as the subsurface thermal féa@gent linear model that is the linearization of the nazdin
ing strength. forward model. Whether an optimization algorithm can cor-
For each time step, the integration of the ICM can bi€ctly yield an analysis solution depends on the accuracy of
sequentially implemented as follows (Zhang et al., 20054 gradient. Thus, it is necessary to examine the accufacy o
First, the SST anomaly equation is integrated to update fii¢ gradient computed by the adjoint model. Atthis poirg, th
SST anomaly, which is used to calculate tranomaly based tangent linear model is arffective tool to perform the above-
on ther model. Second, the obtainednomaly field is used mentioned verification. In this section, we simply introduc
as the forcing to drive the dynamic ocean to update the She tangent linear model and the adjoint model of the ICM,
current fields in the mixed layer, and vertical velocity a thas well as the optimization algorithm used in this study.
bottom of the mixed layer. Third, th€ anomaly is calcu- 2.2.1. Thetangent linear model
lated using the updated SL anomaly based onTthmodel, The tangent linear model results from the linearization of
which is then used to simulate the vertical thermi@@ in the original nonlinear model. The model is not directly in-
the SST anomaly equation. Repeating these processes\gsiled in the 4D-Var data assimilation procedure, but it is
provide interannual variations of the oceanic and atmasphenelpful for developing the adjoint model and testing whethe
wind fields. Further details regarding the ICM can be founfle adjoint model is correct.

N
3 D (HIXW)] - Yo(t) TRAHIX()] - Yo(t)(2
i=1

in the study by Zhang and Gao (2015). The tangent linear model of the ICM can be expressed as
2.2. The4D-Var data assimilation method (Kalnay, 2003)

The 4D-Var method achieves the analysis solution of ini- oX = fo =M(X)X’,
tial fields through minimizing the distance between the nhode ot (8 ()
trajectory and observation, which is constrained stribty Xl = X5,

the model dynamical equations (Klinker et al., 2000).

In general, the governing equations of the ICM can BENere X’ is a small perturbation vector o and M(X) =
symbolically expressed as follows (Kalnay, 2003): OF(X)/0Xis t_he tangent linear operator Bf which is a first-
order approximation.

aX _ F(X), To verify whether the established tangent linear model of
ot (1) the ICM is correct, one can use a formula based on the first-
Xlt, = Xo , order approximation as follows (Navon et al., 1992):

wheret is time andg is the initial time;X is the vector of con- IF(X+6X") - F(X)Il

RV

trol variables, which includes SST, SL and horizontal ocean S TTAMOOO 1+0(3), 4)



878 4D-VAR BASED ON THE ICM FOR ENSO PREDICTION VOLUME 33

where|| - || is the L2-norm;s is a small value ranging from where(,) represents the inner product between the two vec-
0 to 1, andO(¢) is the high-order small perturbation. RV istors. For the LHS of Eq. (6), the tangent linear model is inte-
the ratio of the dferences between the ICM variable tendemrated forward using the initial conditioky to obtainM Xo,

cies caused by a small perturbation drto the perturbation which is then used to compute its own inner product. For the
calculated by the tangent linear model, which ideally sHouRHS of Eqg. (6), the adjoint model is integrated from the ini-
approach 1. The test results (double precision) of the taingdal conditionM X to obtainM*M X, which is used to com-
linear model in association with the 4D-Var method based puite the inner product with the initial conditiofy. Then,

the ICM are shown in Table 1. Asgradually decreases byhow one inner equals the other can be checked with a given
one order of magnitude from 1bto 10°°, the value of RV precision.

consistently approaches 1. It should also be noted that whenFollowing the above-described approach, we perform a
¢ is too small, e.g., with a decrease by one order of magskit of sensitivity experiments to demonstrate how the accu-
tude from 10° to 10719, the value of RV conversely becomesacy of the adjoint model of the ICM idkected by the length
slightly larger, which is the result of a truncation errohug, of the assimilation time window in the 4D-Var data assimila-
it is evident that the established tangent linear model ef thion process. Table 2 presents the test results for the exper
ICM is correct. iments, obtained using flerent assimilation time windows
2.2.2. Theadjoint model (days). The results show that at least the first 10 valid dig-

Generally, the adjoint model is arfieient solution for 'tS.Of<MX0’ MXo) are equal_to tho_se M MX_O’X_O> when
. . : : sing diferent assimilation time windows, indicating that the
evaluating the gradient of the cost function with respect 10,. : . .
) . . . . . adjoint model is accurate. Additionally, as the length @ th
high-dimensional control variables in the 4D-Var datarassi L .
a%smllatlon window becomes longer from 4 days to 28 days,

|!at|on methoq. T_he model is the transpose of the tange[He equal valid digits become shorter from 12 to 10; this is be
linear model, i.e., it features the reverse of the tempardl a

o : o cause the nonlinearity becomes stronger as the length of the
spatial integration and other characteristics. o . .
. o assimilation window becomes longer. Note that the experi-
The equations of the adjoint model of the ICM can be : : . .
. i mental settings in the tangent linear model and adjoint thode
written as follows (Kalnay, 2003): : . - . X
must remain the same as in the original nonlinear model, in-
cluding the resolution, time step, physical processes amd s

.
) X =MTX* = M*X*, (5) plified dynamics.

Xt (9F(X)
o |\ oX

X*li=n =0, 2.2.3. The minimization procedure

. o After the adjoint model of the ICM is properly con-
whereX* is the adjoint ofX andM* = (9F (X)/0X)" = MT structed, a minimization algorithm is used to find the 4D-Var
is the adjoint ofM, which is the tangent linear model of theyna|ysis solution. First, the ICM model is integrated foriva
ICM. The gradient of the cost function is obtained by a backrom an initial guess oXo to obtain the cost functiod. Sec-
ward integration of the adjoint model. _ond, the ICM is integrated backward with the adjoint model

Based on the relationship between the tangent linggr gptain the gradient of with respect toXo. Third, the
model and the adjoint model, one can verify the accuracy IE’ifnited-Memory BFGS (L-BFGS) algorithm (Liu and No-
the adjoint model using the following formula (Navon et al gaqq|. 1989) is used to minimize the cost function to obtain
1992): the analysis solution aXo (Zou et al., 1993). The L-BFGS

(MXo, MXo) = (M"MXo. Xo) . (6) algorithm is an improved version of the BFGS algorithm,

Table 1. Test results (double precision) obtained for the tangent IiWhICh Is a quasi-Newton algorithm. The L-BFGS requires

ear model in association with the 4D-Var method based onGhe | Table 2. Test results (double precision) for the adjoint model of

Here ¢ is a small value gradually approaching 0, and RViis the raltjg s o in the 4D-Var data assimilation process, obtainedgis

of the diferences between the ICM variable tendencies caused byia. .t assimilation time windows (days). HeM, is the tan-

small perturbation i to the perturbation calculated by the tangerﬁem linear model operatoM* is the adjoint model operator; and

linear model, which ideally should approach 1. Xo is the initial condition. The tangent linear model is intzgd
forward using the initial conditiorXg to obtain MXg, which is

0 RV saved agMXg, MXq), and the adjoint model is integrated back-
101 0.9969131317710270 ward from the initial conditionM Xy to obtainM*MXg, which is
1072 0.9996664164813890 saved agM*MXg, Xp). The diference betweetM Xy, MXg) and
103 0.9999692317079850 (M*MXgq,Xp) is an indicator of the accuracy of the 4D-Var data
104 0.9999969328883560 assimilation process.

105 0.9999996029827230 — - -

106 0.9999993932446230 | IMe window (MXo, MXo) (M"MXo, Xo)

1077 1.0000248186382400 4 Days 38243.9322968130 38243.9322965545
108 1.0002195754411600 7 Days 101439.163365451 101439.163359537
1079 1.0005791264619800 14 Days 306869.173465571 306869.173491971

10710 1.0024624889518900 28 Days 789400.566949510 789400.566192024
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four input arguments: an initial guess for the valueXgf the codficient between the SST anomaly andanomaly, o,
dimension ofXg, the cost functiord, and the gradient of the which is varied from 1.03 to.03x 1.01; the vertical diu-
cost function with respect to. sivity coeficient,Ky, which is varied from Dx 1073 to 1.0x
An example of the convergence of the cost function with0~2x 0.95; and the thermal damping deient, A, which is
respect to the iteration number is shown in Fig. 1. The figaried from %(100x 86400) to ¥(100x 86400)x 1.01. The
ure shows that the cost function rapidly reaches equilibriumodifications of these parameters cause the trajectortas of
after four iterations. Thus, the 4D-Var based on the ICM &ssimilation model to depart from those of the “truth” model
efficient and reliable. To save on computational cost, we ddbwever, the basic ENSO features simulated by the assim-
the maximum value of the iteration number to 20, which iation model, such as the spatiotemporal structure and the
suficient to satisfy the convergence of the cost function. Atmplitude, remain unchanged. Starting from the same linitia
this point, the 4D-Var data assimilation based on the ICM hasnditions, these two simulations are respectively cotetlic
been established. for 200 model years. Note that each model calendar month is
assumed to have 30 days in this study. Figure 2a shows the
o ) time series of the Nifi03.4 indices for the “truth” model and
3. Assimilation experiments the assimilation model in the first 100-year simulations. It

To partly reflect reality, we design a biased twin expeis- clear that both model simulations can simulate the promi-
iment (Zhang et al 2014'. Zhang et al., 2015a;: Wu et apent ENSO features. Note that the stochastic forcing of the

2016) to test the 4D-Var method, and report the results :ﬁf‘mospheric wind field is not included in t_he ICM; thus the
this section. The twin experiment includes the observirg n&NSO ever.1ts depicted by the ICM are qurFq regular (Zhang
work, model error and the assimilation schemes. Note tk?a[tal" 2008; Zhang and Gao, 2015). In addition, even though

the model settings are the same for all data assimilation 2§ O hmod_el sllmu(ljatlc_)ps sta_rtdf_rom thedsarlTedlnltlaI con-
prediction experiments, which prevents the “initial sHocka!tions, the simulated Nifio3.4 indices gradually depantrf

that can result from the inconsistency of the coupled modech other. To detect the significant periods of ENSO events
physics and initial conditions in the transition from theias Produced by the two simulations, we perform a power spec-

ilation phase to the prediction phase using the ICM (Keenlff—um analysis of the Nifio3.4 indices with the total 200+yea

side et al., 2005) outputs (Fig. 2b). The results indicate that both model simu
B ' lations have a 2—7-year period that passes the 95% confidence
3.1. Observing network and model error level. The “truth” model has a dominant period of 3.81 years,

We assume that only the SST anomaly is observed appereas the assimilation model has a dominant period of 3.92

sampled once a day from the “truth” model that takes tHEArS:

default values of model parameters. The observed positi®h  a«gmilation designs

of the SST anomaly is assumed to be the same as that of _ )

the model grids. To simulate the observational error, Gaus- N this study, three experiments are conducted to evalu-
sian noise with a mean and standard deviation of 0 and 0.2f§ the AD-Var data a55|m.|lat|on meth‘(‘)d bzased on the ICM:
added to the sampled “truth” daily SST anomaly. Expt. 1 is the control experiment of the “truth” model, used t

For the assimilation model, we assume that the moo{gpduce the “observation” field; Expt. 2 is the 4D-Var assim-

error only arises from parameter perturbations to rougHl@tion experiment, which provides the optimal initial abn

mimic the model error in the real situation. The defayfons Py assimilating the “observation” of the SST anomaly;

values of three model parameters are modified: the coupli"ﬁ Expt. 3 is the n_on-as_5|mllat|9n experlment of the assimi
lation model. The simulation period comprises 20 years from

model time 2081/01 to 209912/30.

4
2 pld Figure 3 is a schematic diagram illustrating the experi-
1.95} mental configuration for Expt. 2. From the initial condition
19 | —Cost Function (restart0) at model time 20@@1/01 (which is represented as
1851 1 January 2000, in the model time), both the “truth” model

and the assimilation model are integrated for 80 years. It is
clear that the two simulations diverge from each other (see
175 Fig. 2a). Then, the “truth” model is further integrated for
20 years from restartl at model time 208001 to gener-
165 ate the “observations”. The assimilation model is then-inte
0 10 20 30 40 grated forward by assimilating “observations” from retar
Iteration at model time 208@1/01. In this 4D-Var data assimilation
process, the “observed” SST anomaly is assimilated into the
Fig. 1. Variation in the cost function with respect to the iter-  assimilation model at the first step of every day. The len§th o
ation number. Here, the cost function is defined as the sum the minimization time window in this 4D-Var is determined
of t_he background error term and observational error term, by trial and error. In this study, considering the nonlinear
which decreases rapidly and converges to a constant value. ity effect and the computationaffiiency, the minimization

Cost Function
(o)

_.
N
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Fig. 2. (a) Time series of the Nifio3.4 indices for the “truth” modelue) and the assim-
ilation model (red) in the first 100-year simulations. (bRo spectrum analysis of the
Nifio3.4 indices during the first 200-year simulations toe ttruth” model (blue) and the
assimilation model (red), with the 95% confidence leveléatid by the dashed curve.

restartQ
restart2 Optimal | A’
Assimilation restart | -
Model

Fig. 3. Schematic diagram illustrating the process of the 4D-Vda desimilation. The
“truth” model and the assimilation model are integratedrirthe same initial condition
(restart0), and the models gradually diverge from eachroftteen, the “truth” model is in-
tegrated for 20 years from restartl to sample “observatjavisich are assimilated into the
assimilation model with 4D-Var to obtain the optimal initt@ndition for ENSO prediction.

time window is set to 15 days in length. For example, sta is the total number of model grids. When the RMSE falls to
ing from restart2 at model time 2081/01, the assimilation a value that changes only slightly, the assimilation meikod
model is subject to assimilating daily “observations” of thconsidered to have a converged solution. The assimilagen p
SST anomaly within a 15-day window to obtain the optimalod is chosen to have 20 model years. The results show that
initial condition at model time 20801/01. The assimilation the spin-up period of the state estimation is approximaztely
model is then integrated with the optimal initial conditiam  years.
til model time 208(01/16 to enter the next data assimilation
cycle. Thus, each month has two data assimilation cycles.

The key measure for assessing assimilation quality is te  Assessing the impacts of data assimilation

prior RMSE, which is defined as
The principles of the twin experiment are introduced in

1 & section 3, where the assimilation model is assimilated with
RMSE= 45 Z(Xi = Xirutn)? » (7)  the “observation” field to retrieve the analysis solutioro T
i=1 assess the success of this 4D-Var data assimilation method
where X is the control vectorXyumn is the corresponding Pased on the ICM, the focus will be on ENSO phenomena
“truth” vector obtained from Expt. 1i;is the grid index; and When performing the twin experiment. In this section, the ef
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Fig. 4. Time series of RMSEs for prior anomalies of (a) SST (urfi@), (b) zonak (units: dyn
cm2) and (c) SL (units: cm) over the full tropical Pacific regi@0{N-30°S, 124E-78W).
Here, the RMSE is calculated on the first day of each montharfitst 10-year simulations for
the assimilation (red) and non-assimilation (blue) experits.

fect of assimilation on ENSO analysis is demonstrated firsthere X represents the vector of the anomaly variables, in-
and that on ENSO prediction is then discussed. cluding SST, zonal and meridiongl SL andTe; Xyt is the
) corresponding “truth” value oX; i and j represent thei(j)
4.1 Impact on ENSO analysis grid; tis the time index; antd is the total number of analysis
In this section, we first check the time series of the RMimes. The RMSEs of all variables for Expt. 2 (Figs. 5a—e€)
SEs of several key variables. Figure 4 shows the time sera@e much smaller than those for Expt. 3 (Figs. 5f—j), but the
of RMSEs for prior anomalies of SST, zorahnd SL over spatial patterns are quite similar. For the SST anomaly bot
the full tropical Pacific region (SWN-30°S, 124E-78W) maximum RMSEs [0.18C for Expt. 2 (Fig. 5a) and 0°&
for Expt. 2 and Expt. 3. Being directly assimilated, the RMStor Expt. 3 (Fig. 5f)] are centered in the eastern and central
of the SST anomaly (Fig. 4a) is rapidly reduced. Because tbguatorial Pacific. For the zonalanomaly, the maximum
T anomaly is directly diagnosed from the SST anomaly usiMSEs are located in the central equatorial Pacific, with val
its SVD model, it is the first beneficiary of the assimilatiomes of 0.027 dyn cn? and 0.16 dyn cit? for Expt. 2 (Fig.
of the SST anomaly. The RMSE of the zonal wind anomaBb) and Expt. 3 (Fig. 5g), respectively. Similar results are
(Fig. 4b) is rapidly reduced, similar to the RMSE of the SSdbtained for the meridional anomaly (Figs. 5¢ and h), SL
anomaly. In contrast, the SL anomaly is indirecteated anomaly (Figs. 5d and i) an@e anomaly (Figs. 5e and j).
by the SST anomaly assimilation, causing most RMSEs Gknerally speaking, theftiérences in the RMSESs of the SST
the SL anomaly produced in Expt. 2 to be smaller than thoaredr (zonal and meridional components) anomalies between
produced in Expt. 3 (Fig. 4c). All the RMSEs indicate thaExpt. 2 and Expt. 3 are much larger than those offthand
assimilating the “observations” of the SST anomaly into tH8L anomalies. The reason is the fact that only the “observa-
ICM by 4D-Var can improve the model state estimate, thti®ns” of the SST anomaly are assimilated in Expt. 2 and
being able to provide optimal initial conditions. anomalies are directly calculated from the SST anomaly field
Secondly, we examine the spatial RMSEs for Expt. 2 amging ther model. Thus, the assimilation process has a direct
Expt. 3. Figure 5 plots the spatial distributions of RMSEsffect on the SST anomaly field and thereby ontla@omaly
for prior anomalies of SST, zonal and meridiomalSL and field. In contrast, the SL anfk fields are indirectly impacted
Te for Expt. 2 and Expt. 3. The RMSE here for each grid iBy the SST anomaly assimilation through the model physi-
calculated as follows: cal processes. In general, the RMSEs produced by Expt. 2
LN are slightly smaller than those produced by Expt. 3. These
RMSE | = J S Z(Xi,j,t_ Xtruth,j,t)z, 8) results demonstrate tha}t _the 4D—V_a_r method cﬁeceve_ly
= reduce the error in the initial conditions, thereby leading
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Fig. 5. Spatial distributions of RMSEs for prior anomalies of (aS§T (units:°C), (b, g) zonal (units: dyn cn12), (c, h)
meridionalr (units: dyn cnT?), (d, i) SL (units: cm), and (e, jJe (units: °C). Here, the RMSE is calculated from results
obtained for the first 20-year simulations for the assinatafleft panels) and non-assimilation (right panels) expents.

more accurate state estimations for ENSO events. represented in the ICM. Excluding the spin-up period of 4D-
Thirdly, we check the temporal evolution of the SST andar, Expt. 2 (Fig. 6b) can retain nearly the same variabdity

7 anomalies. Figure 6 shows the longitude—time sectionstbe SST anomaly as in the “truth” simulation (Fig. 6a). For

the SST anomalies along the equator during the first 12-y&apt. 3 (Fig. 6¢), the biases arise from the initial condiso

simulations (model time from 20801/01 to 209112/30) for and the three model parameter perturbations cause the mod-

the “truth” fields, Expt. 2 and Expt. 3. It can be seen that trided SST anomaly to fier greatly from the “truth” field. For

ENSO period, spatial structure and phase transition ark wetample, the amplitude of the modeled SST anomaly exhibits
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Anomalies along the equator
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Fig. 6. Longitude—time sections of SST anomalies along the eqdiatahe (a) “truth” value, (b) assimilation exper-
iment and (c) non-assimilation experiment during the fildlygar simulations (model time period of 208001 to
209%/12/30). Contour interval: 0.8C.

some bias, especially in the eastern Pacific. Additionddly, very well, whereas Expt. 3 (blue dashed) shows some devia-
phase transition time of the SST anomaly alsfieds from tion. For clarity, the time series of the absolute errorshef t
the “truth” value. Similar to Fig. 6, Fig. 7 illustrates theNifio3.4 indices in Expt. 2 and Expt. 3 are presented in Fig.
longitude—time sections of zonaknomalies along the equa-9b. Itis evident that the absolute error produced by Ex. 2 i
tor. The spatiotemporal structure and amplitude of the zomauch smaller than that produced by Expt. 3. Furthermore, the
7 anomaly produced by Expt. 2 (Fig. 7b) are much more coabsolute error produced by Expt. 3 gradually becomes larger
sistent with the “truth” field than those produced by Expt. @ven reaching approximately *) due to the existence of
(Fig. 7c). model error. This finding again demonstrates that the 4D-var
The ocean subsurface fields play an important role data assimilation can recover ENSO conditions well. Thus,
the development of the ENSO events. To capture the EN8&@ high level of agreement between the assimilation result
events, it is necessary to adequately depicfitheld. Fig- and the “truth” value can provide a better initializatiorr fo
ure 8 shows the longitude—time sectionsTaf anomalies ENSO prediction.
along the equator for the “truth” fields, Expt. 2 and Expt. 3. o
Through the model adjustment achieved by assimilating “ofs2- I mpact on ENSO prediction
servations” of the SST anomaly, the spatiotemporal evahuti  In general, a better prediction of ENSO events is a strict
of Te produced by Expt. 2 (Fig. 7b) is in good agreememést for model simulation and analysis through data assim-
with the “truth” field (Fig. 7a) compared with that producedation. Therefore, improved prediction accuracy is an im-
by Expt. 3 (Fig. 7¢). portant indicator for assessing the quality of the 4D-Vaada
Finally, we check the analysis quality of ENSO produceassimilation approach. Based on state estimation with a
by 4D-Var by taking the Nifio3.4 index as the key param@-year spin-up period, we perform an array of 1-year fore-
ter of ENSO. Figure 9a shows the time series of the NifioX4st experiments starting from the analysis solutions en th
indices during the first 10-year simulations for the “truthfirst day in each month between the model time 208®1
value, Expt. 2 and Expt. 3. It can be seen that Expt. 2 (redd 209%12/01. Thus, there are 2812 = 216 forecast ex-
dashed) can keep tracking the “truth” value (green dottepgriments in total, which are used to perform the statiktica
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Fig. 9. (a) Time series of the Nifio3.4 indices (unit<) for the “truth” value (green), assimi-
lation experiment (red) and non-assimilation experimbhig) during the first 10-year simula-
tions. (b) Time series of the absolute errors of the Nifid@dices (unit:°) for the assimilation
(red) and non-assimilation (blue) experiment during th& fiD-year simulations.
4 'Truth" & predicted SST at Nino3.4 \ similat_ion dur_ing_ the_model time _pe_riod 2083-209912.
Lead time: 12 months The Nifio3.4 indices in the assimilation case are very close
- 5 to the “truth” value, whereas those in the non-assimilation
case depart to a certain extent from the “truth” value. The
2 1 -2 correlation cofficient between the “truth” and the predicted
@ Nifl03.4 index in the assimilation case is 0.99, whereas tha
‘E» [y B between the “truth” and the predicted Nifio3.4 index in the
g 0 \ ‘ 0 non-assimilation case is 0.84. The RMSEs of the predicted
° \ / Nif03.4 index for the assimilation and non-assimilatiases
3 1 L are 0.05 and 0.66 in the 1-year lead time. The results are
likely idealized to a certain extent because they are evalu-
—21 =2 ated in a twin experiment, but these experiments provide us
5 ] - with important information about the way the 4D-Var data as-
similation approach canffectively improve the model state
_g4) T MTruth® = Ass  — Non , , , estimation and prediction of ENSO events using the ICM.
208¢ 2086 2088 2090 2092 /2094 2096 2098
ime (years

Fig. 10. Time series of the Nifi03.4 indices for the “truth” value
(green) and predictions made at 12-month lead times using in
tial conditions with (red) and without (blue) data assirida
during the model time period 2088 to 209%12.

5. Conclusion and discussion

Data assimilation is anfiective way to improve the accu-
racy of model simulations and analyses for weather and cli-
mate through an optimal combination of model solutions and
observations. In particular, the advanced 4D-Var datarassi

analysis. The prediction results with and without datarassiilation method is more dynamically and mathematically con-

ilation are compared below.

sistent in constraining numerical models with observation

Figure 10 presents the time series of the Nif03.4 ite achieve the optimal initialization for ENSO analysis and
dices for the “truth” value and predictions made at 12-mongtediction. In this study, we implement the 4D-Var method
lead times using initial conditions with and without data apased on an improved ICM that has been routinely used for
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real-time ENSO prediction. The construction of the 4D-Vassimilation in a more realistic way by including stochasti
assimilation system includes the tangent linear model dnd atmospheric forcing in the ICM, whosé&ects on ENSO sim-
joint model of the ICM and a minimization procedure. Strictilations were evaluated by Zhang et al. (2008).
testing justifies the accuracy of the adjoint model and the ef Furthermore, the 4D-Var method can also be used to opti-
fectiveness of the 4D-Var in constraining dynamical modetsize the model parameters, as demonstrated by the ensemble
with observations. Kalman filter (Wu et al., 2012, 2016). For example, the per-
The impacts of the optimal initialization produced by 4Dformance of the ICM is sensitive to. andate (Zhang et al.,
Var on ENSO analysis and prediction are evaluated througb05a; 2008); we plan to use 4D-Var to optimally determine
a biased twin experiment. In this study, only “observationshese two parameters to further improve the ENSO prediction
of the SST anomaly are assimilated into the model to ogkill. In addition, the oceanic subsurface state has a densi
timize the initial conditions. Results show that, compareztable &ect on SST in the tropical Pacific; thus, in addition
with the non-assimilation case, the assimilation resulés &o assimilating the observed SST field, observed subsurface
more consistent with the “truth” value, and the RMSEs of thhermal fields need to be assimilated into the ICM. In additio
anomalies for the SST, SL andT, fields are much smaller to the assimilation of oceanic fields, that of atmospherta da
(especially for the SST andfields). Additionally, the pre- can also be considered. Note that during the 4D-Var assimi-
diction accuracy is improved by optimizing the initial cand lation process (the forward and backward time integratidns
tions. The results obtained in this study provide some hitsighe model and its adjoint modek,anomalies are internally
into the way in which ENSO prediction can be improved witdetermined using its anomaly model from the corresponding
the 4D-Var algorithm. SST anomalies. Thus, the ICM with the 4D-Var has already
The work performed in this study is a first step towardsken into account the coupling between the ocean and atmo-
improving real-time ENSO analysis and prediction by apphere. So, the observedcanomaly field can be introduced
plying the 4D-Var algorithm in the ICM. Further modelingnto the 4D-Var assimilation processes in a fairly straight
studies using the 4D-Var are underway. As noted aboweard way (that is, the coupled data assimilation). Takirg al
the ICM has been successfully used for real-time ENSO ptbese together, it can ultimately be expected that rea-tim
diction, whose result, now named IOCAS ICM, is collecteENSO forecasting using the ICM can be improved through
and posted every month at [Rlolumbia University, a multi- optimal initialization and parameter optimization usirng t
model product for real-time ENSO monitoring and predictiodD-Var data assimilation method.
(see the IRI website). In this application, however, ho $&ph
ticated data assimilation is applied in the ICM; insteadpa s Acknowledgements. We would like to thank Mu MU, Shao-
ple initialization method is currently taken for the modmid- ging ZHANG, Guijun HAN, Xuefeng ZHANG, Fei ZHENG, Qiang
cast, as follows: The observed interannual SST anomali®8NG, and Hui XU for their comments. The authors wish to
are the only field used in the prediction initialization (Ziga thank the two anonymous reviewers for their comments, which
et al., 2013). In real-time practice, experimental praditg helped to improve the original manuscript. This researchuis-
are typically conducted near the middle of each month, whparted by the National Natural Science Foundation of Chiat
the monthly mean SST fields from the previous month ambs. 41490644, 41475101 and 41421005), the CAS Strategic Pr
the weekly mean SST fields from the first week of the cuerity Project (the Western Pacific Ocean System; Project. Nos
rent month are available from NOAAs Environment ModXDA11010105, XDA11020306 and XDA11010301), the NSFC-
eling Center (Reynolds et al., 2002), which can be obtainstlandong Joint Fund for Marine Science Research Centeasi{Gr
online from the IRI data library. Then, the observed SSNo. U1406401), and the NSFC Innovative Group Grant (Prdject
anomalies are used to derive interannty@d, fields using the 41421005).
empiricalr model. The derivedin fields are taken to force
the ocean model to produce an initial ocean state for the first Open Access. This article is distributed under the
day of each month, from which predictions are made. Addierms of the Creative Commons Attribution 4.0 Interna-
tionally, as part of the initialization procedure, the aolveel tional License (httg/creativecommons.oficensegby/4.0),
SST anomalies are directly inserted into the ICM when makhich permits unrestricted use, distribution, and repodida
ing predictions. Based on results from this paper, the 4D-Via any medium, provided you give appropriate credit to the
method will be incorporated in the ICM for real-time ENS@riginal author(s) and the source, provide a link to the Cre-
predictions. ative Commons license, and indicate if changes were made.
Additionally, even without data assimilation, the fore-
casts using the ICM show a fairly high level of skill (Fig. 10,
blue line) because the ENSO events simulated are so regular.
This is attributed to the fact that stochastic atmospheimgw Balmaseda, M. A., D. L. T. Anderson, and M. K. Davey, 1994:
forcing is not included in the ICM (Zhang et al., 2008). In ENSO prediction using a dynamical ocean model coupled to
a more realistic global coupled climate model, however, the  statistical atmosphere$ellus A, 46(4), 497-511.
forecast skill of Nifio 3.4 SST initialized by the SST-nuagi  Bamett, T. P., N. Graham, S. Pazan, W. White, M. Latif, and M.
scheme is very limited (Kumar et al., 2014; Zhu et al., 2015).  Flugel, 1993: ENSO and ENSO-related predictability. Part
In the future, we plan to assess the impact of the 4D-Var data Prediction of equatorial Pacific sea surface temperatute wi
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