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ABSTRACT

Roots are responsible for the uptake of water and nutrignfddnts and have the plasticity to dynamically respond to
different environmental conditions. However, most land serfaodels currently prescribe rooting profiles as a function
only of vegetation type, with no consideration of the sundings. In this study, a dynamic rooting scheme, which diessr
root growth as a compromise between water and nitrogenadititiy, was incorporated into CLM4.5 with carbon-nitroge
(CN) interactions (CLM4.5-CN) to investigate thffexts of a dynamic root distribution on eco-hydrological relgth. Two
paired numerical simulations were conducted for the Tapijational Forest km83 (BRSa3) site and the Amazon, one using
CLM4.5-CN without the dynamic rooting scheme and the otheluiding the proposed scheme. Simulations for the BRSa3
site showed that inclusion of the dynamic rooting schemeegmed the amplitudes and peak values of diurnal gross igrima
production (GPP) and latent heat flux (LE) for the dry seasmdl, improved the carbon (C) and water cycle modeling by
reducing the RMSE of GPP by 0.4 g C#d~1, net ecosystem exchange by 1.96 g &rd~1, LE by 5.0 W n12, and soil
moisture by 0.03 mm~3, at the seasonal scale, compared with eddy flux measuremrilis having little impact during the
wet season. For the Amazon, regional analysis also revélad¢degetation responses (including GPP and LE) to sehsona
drought and the severe drought of 2005 were better captutbdive dynamic rooting scheme incorporated.
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1. Introduction very important for hydrological, ecological and climateano

Roots are the primary pathway for the uptake of WatgrIIng (Zheng and Wang, 2007; Jing et al., 2014)'
As a consequence of a lack of appropriate global root

and nutrients by plants and play an important role in terre&- . . . . L
trial carbon (C) and water cycling (Nepstad et al., 1994kJa atasets owing to theﬁilcullty of measuring entire root distri-
N ' utions throughout the soil profile (Jing et al., 2014; Warre

son et al., 1997; Dickinson et al., 1998; Barlage and Zeneq, al., 2015), the description of root distributions in LSMs

2004; Zheng and Wang, 2007). They connect the soil MY often simplified or ignored (Zeng et al., 2002; Warren

ronment to the atmosphere through water and energy flux ex- S

. t al., 2015). In most LSMs, root distribution is treated as

changes between the vegetation canopy and the atmosphere . . o

: A a static component, and three rooting parameterizatians ar

(Feddes et al., 2001). Root vertical distribution, one @& th'. L )

. . : . widely used. The first is a one-parameter asymptotic root

most important properties of roots, is an essential compxon% uation, proposed by Jackson et al. (1996), which describe
of many eco-hydrological models (Lai and Katul, 2000) and? » Prop y X !

land surface models (LSMs) (Zeng et al., 1998; Feddes et r(])é(’)etndhs;r;l;uitrllog gigzaﬁga e(é%%r;intfglg GV)V';hngEiﬂtehgrsn le
2001; El Maayar and Sonnentag, 2009); it mainly contro . P

the extent of root water uptake among soil layers, and there'pSIOhere Model (Baker et al,, 2008). The second is a two-

fore soil water stress. The soil water stress further infbesn parameter asymptotic root distribution decreasing expone

o L tially with depth (Zeng, 2001), which is used in NCAR’s
transpiration, C assimilation, and subsequently other € a LM (Oleson et al., 2010, 2013). And the third is a lo-

water fluxes (Bonan, 1996; Zeng et al., 2002; lvanov et a jistic dose-response curve root profile proposed by Schenk
2008). Thus, a realistic representation of root distritnufs 9 P P prop y

and Jackson (2002), which has two shape parameters that

describe the soil depth above which 50% and 95% of the

* Corresponding author: Binghao JIA root mass occurs. This parameterization is employed in the
Email: bhjia@mail.iap.ac.cn Conjunctive Surface—Subsurface Process Model (Yuan and
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Liang, 2011) and Mechanistic Multilayer Canopy—Soil-Roaictive, N limitation on photosynthesis is prognostic araf le
System Model (Drewry et al., 2010; Le et al., 2012). Alarea, stem area indices and vegetation heights are all deter
parameters in these three root distribution schemes deperided prognostically by the model (Lawrence et al., 2011).
only on vegetation types, with root distributions spagialhd A detailed description of its biogeophysical and biogeoche
temporally invariant. However, substantiaffdrences in root ical parameterizations and numerical implementationvsmi
distributions are apparent even for the same type of vegeata©Oleson et al. (2013).

tion, as determined from measuring root profiles ifiedent A root distribution function determines the fraction of
irrigation and fertilization experiments (Weaver, 1926:et roots in each soil layer. CLM4.5 uses the root distribution
al., 1998; Fan et al., 2012). Furthermore, it has been demexuation of Zeng (2001):

strated that plants tend to allocate C to enhance the aequisi
0.5 EXPCTazni-1) + €XP-Thzni-1)=

tion of a limited resource (Hutchings and de Kroon, 1994), eXPETaZni) — EXPETtzZni) for 1<i<10
and thus tend to grow more roots in zones where soil mols= PTazni PETbzhi )
ture is more freely available, especially whetfeting from 0.5[exp(razhi_1) + €XPErpzni_1)] fori =10
water deficit (Coelho and Or, 1999; Collins and Bras, 2007; (1)

Sivandran and Bras, 2013), and where more nutrients canvitgerez,j (m) is the depth from the soil surface to the inter-

acquired (McMurtrie et al., 2012). These aspects imply thiice between layerandi+ 1, andr, andry are two PFT-

root systems have the plasticity to dynamically responahto edependent root parameters.

vironmental conditions, such as water and nutrient aviilab, . . . .

ity (Schenk and Jackson, 2002; Hodge, 2004; Schenk, 20831:.2. Dynamic rooting scheme and its implementation

Smithwick et al., 2014; EI Masri et al., 2015), indicatingth  Atpresent, although the root C pool does vary temporally,

the three rooting schemes mentioned above ardfiogntin due to the static rooting scheme there is no net change to the

their representation of the actual root distribution, amast root fraction within each soil layer. To represent actuaitro

need to be improved. growth in CLM4.5 dynamically, we adopted a dynamic root-
In this study, a dynamic root distribution scheme that dég scheme proposed by Hatzis (2010), which allows the total

scribes root growth as a compromise between water and fgw root C gain at each time step to dynamically allocate to

trogen (N) availability, was implemented in CLM4.5 (Olesogach soil layer according to the surrounding environment, i

et al., 2013). The respective impacts on terrestrial C and wacompromise between soil water and soil mineral N, as ex-

ter cycles were evaluated over the Amazon. The evaluatigfessed by Eq. (2):

focused on the model prognostic skill with respect to gross WAZ nAZ

primary production (GPP), net ecosystem exchange (NEE), ACt; = ACs |(1—pt) 10' + Bt 10' ,

latent heat flux (LE) and soil water content (SWC). Section ZicaWiAZ Do NiAZ

2 dgscribes the model development,_ stud_y area, experimeqfRereAC, (units: g C n2 s°1) is the newly assimilated C

design and data used. Results are given in section 3, followfiocated to rootsAz (units: m) is the soil layer thickness,

by conclusions and discussion in section 4. (units: g N nT3) is soil mineral N content, andg; is the plant

wilting factor of layeri. A; is the soil water stress due to water

deficiency, depending om; and root fractiont), expressed

)

2. Methods as:

2.1. Model development 10

2.1.1. CLM4.5 Br= ZWifi’ 3
CLMA4.5, a state-of-the-art LSM, is the latest version =

of the CLM family of models and the land component of W = max(O,min[l, Vo= ¥i Osati ~ bhce D , (4)

CESML1.2 (Oleson et al., 2013). It succeeds CLM4, with up- Ye—Yo  Osa

dates to the photosynthesis, soil biogeochemistry, firadyn wherey; is the soil water matric potential (units: mm), and
ics, cold region hydrology, lake model, and biogenic végati andy, are the soil water potential (units: mm) when stomata
organic compounds model (Li et al., 2013). The spatial hetre fully closed or fully open, respectivelisa; andficei are
erogeneity of the land surface is represented in CLM astee saturated volumetric water and ice content, respégtive
nested sub-grid hierarchy, and vegetation is classifi@dliit (units: n? m=3). The functions; ranges from 0 to 1, with
plant functional types (PFTs) according tdfdrent photo- larger values indicating higher water availability. Theto
synthesis parameters and optical properties (leaf andrstemdistribution after the new dynamic allocation is then ugdat
flectance and transmittance in visible and near-infraragwa based on the root G j; units: g C n72) of layeri and the
bands). The soil columns have 15 vertical layers, but hydrabtal root C (% Cyj; units: g C nt2):

ogy calculations are only made for the top 10 layers. CLM4.5 Ce

also has an option to run with an interactive C—N (CN) cy- ri = % . (5)
cle (denoted as CLM4.5-CN), which is fully prognostic with 21 Crr

respect to all C and N state variables in vegetation, litter & To incorporate this scheme into CLM4.5, the total N (TN)
soil organic matter. When the CN biogeochemistry moduledgta from the Global Soil Dataset for Earth System Mod-
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eling, developed by the Land—Atmosphere Interaction R&MODIS land cover data in CLM4.5 (Lawrence and Chase,
search Group at Beijing Normal University, were used to r@007). The driving climatic forcing of energy, water and C
place the vertical soil mineral N content, as the verticedly cycles in the Amazon is the spatial and temporal distrilutio
solved soil mineral N is not predicted in CLM4.5. The TNof precipitation (Ichii et al., 2007). The dry seasons ang-us
data have a resolution of 30 arc-seconds, with the vertiedly defined as months with less than 100 mm precipitation
variation captured by eight layers to a depth of 2.3 m (i.e. @Baker et al., 2008). Mean monthly precipitation in the Ama-
0.045,0.045-0.091,0.091-0.166, 0.166-0.289, 0.28930.4zon (Fig. 2b) is 185.35 mm morth with a range of 29.14—
0.493-0.829, 0.829-1.383 and 1.383-2.296 m), consist8fR.64 mm montht, based on CRU-NCEP reanalysis data
with the vertical layers of CLM4.5 (Shangguan et al., 2014)CRUNCEP) from 1982—-2010 (Viovy, 2011). The dry season
Here, we up-scaled the TN data from 30 arc-seconds to Oléngth increases from the northwestern to southeasterr Ama
by means of an area-weighted average and used linear regzes; along with a transition from evergreen broadleaf fores
sions (Hatzis, 2010) to estimate TN values for the residualdeciduous broadleaf forest and §rass (Fig. 2c).
two layers. The Large Scale Biosphere—Atmosphere Experiment

The dynamic rooting scheme influences the ec@:=BA) inthe Amazon (Avissar et al., 2002) monitored water,
hydrological modeling in CLM4.5 in multiple ways (Fig. 1).energy and C exchange between ecosystems and the atmo-
First, the varying root distribution has a direct impact@dn sphere. BRSa3 (3.03, 54.97W) is a typical site of LBA,
as in Eg. (3). On the one hang, influences photosynthe-located within the Tapajos National Forest, Para, Brdad (
sis by multiplying it by the maximum catalytic capacity ofb), covered by BET Tr. During the study period of 2001—
the Rubisco enzymeé/tmay. On the other hangs; further 2003, the mean annual air temperature and solar radiation
influences plant transpiration through stomatal condwetanwere 25.9C and 188.7 W m?, respectively. The mean an-
as stomatal conductance is linearly related;tm the model. nual total precipitation was 1658 mm, with less rainfall-dur
Second, the varying root fraction influences the calcutedio ing the dry season of July—December (Fig. 3). The seasonal
the dfective root fraction, which féects the water extractedvariation of monthly air temperature was quite smal2{C)
from each layer, and therefore the SWC. In addition, the saihd the solar radiation of the dry season was slightly higher
N plays an important part, it not only influences root fraatio than that of the wet season. At BRSa3, an eddy covariance
as Eq. (2) shows, but also controls the amount of N that caystem was installed to measure the fluxes of carbon diox-
be absorbed by plants, and thus limits photosynthesis.  ide, LE and all meteorological variables required for rungni

CLM4.5.

2.2. Study area

The Amazon region shown with a black border in Fig. 8-3- Experimental design and data
(Zeng et al., 2008; Marthews et al., 2014), which contains Two pairs of experiments were conducted to study the ef-
about 50% of the world’s tropical forests, is crucial to gibb fects of dynamic root distribution on eco-hydrological mod
hydrological and C cycles, and changes in its biophysiagling: one for the BRSa3 site and the other for the Ama-
state can exert a strong influence on global climate (Bakayn region. For each pair of experiments, twflioe simu-
et al., 2008). It is mainly covered by tropical broadleafrevelations were conducted, both with CLM4.5-CN: simulations
green tree (BET Tr), tropical broadleaf deciduous tree (BDIsing the default model (control run, “CTL") and the model
Tr), Cz grass (G NA) and G, grass (G) (Fig. 2a), according with dynamic root distribution (new run, “NEW?”). For estab-

| Effective root fraction l—)‘ Soil water sink term

Soil water content

| Stomatal resistance H Transpiration |—>| Latent heat flux

Root fraction

A

Soil wateﬁ mI:
| Vemax l—)l Photosynthesis |—>| GPP |—>| NEE |
]

Soil nitrogen

Fig. 1. Conceptual diagram of the impacts of a dynamic root distidimon eco-hydrological
modeling in CLM4.5.
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Fig. 2. (&) The dominant PFTs in the Amazon [bare soil (Bare); teatpeneedleleaf evergreen tree (NEM Tr); boreal needle-
leaf evergreen tree (NEB Tr); boreal needleleaf decidumes(NDB Tr); tropical broadleaf evergreen tree (BET Trinperate
broadleaf evergreen tree (BEM Tr); tropical broadleaf decus tree (BDT Tr); temperate broadleaf deciduous treeMBD
Tr); boreal broadleaf deciduous tree (BDB Tr); temperatableaf evergreen shrub (BE Sh); temperate broadleaf umaesd
shrub (BDM Sh); boreal broadleaf deciduous shrub (BDB SB)afztic grass (C3 AR); C3 grass (C3 NA); C4 grass (C4); and
Crop]. (b) Average monthly (1982—2010) precipitation animm month) over the Amazon according to CRUNCEP, and
the location of Tapajos National Forest km8 (BRSa3). (c) Henof dry months per year, defined as monthly precipitagss |
than 100 mm (the two black boxes represent the two study aresgzed in section 3.2, denoted as R1 and R2, respectively)
The border of the Amazon is shown as a black line.

lishing the C and N pools and fluxes (Castillo et al., 20183WC measured at 10 and 20 cm), corresponding with the
Hudiburg et al., 2013), the 1200-year spun-up results wesidy period, were used to assess the models’ abilities.
used as initial conditions for both site-level and regimiia- For the regional case, CRUNCEP was used as the atmo-
ulations (e.g. the soil C pool of the BRSa3 site was init&diz spheric forcing. This is a 110-year (1901-2010) obsermatio
from 0 to about 5.89 kg C n?). The two simulations of each based atmospheric forcing dataset, which is a combination
pair of experiments shared the same initial conditionss thaf two existing datasets: the CRU TS3.50x 0.5° monthly
eliminating changes other than those from dynamic root didata covering the period 1901-2002, and the NCEP reanal-
tribution (Yan and Dickinson, 2014). ysis 25° x 2.5° six-hourly data from 1948 to 2010 (Viovy,
For this study, half-hourly, daily and monthly gap2011). The dataset comprises six-hourly data on precipita-
filled observations at the BRSa3 site were downloaded frdian, solar radiation, air temperature, pressure, hugatid
FLUXNET (www.fluxdata.org). For site-level simulationswind. We utilized CRUNCEP for 1901-81 in the spun-up
the meteorological data, including wind speed, 2-m air teraimulation and results for 1982-2010 at.&°0< 0.5° resolu-
perature, specific humidity, air pressure, incident sadai-r tion. Since evaluating GPP and LE from LSMs at regional
ation and precipitation, measured at 30-min intervals at thcales is hindered by a lack of extensive observations, two
BRSa3 site during 2001-03, were used to force thi#ne products were used as reference for benchmarking our com-
simulations. Observed GPP, NEE, LE and SWC (mean périsons in the Amazon region: the global GPP (monthly,
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Fig. 3. Average monthly precipitation (PR; units: mm monthbars), shortwave down-
ward radiation (SWDR; units: W n#; solid line with asterisks) and air temperature
(TA,; units: °C; solid line with circles) at the BRSa3 site according toeskations from
2001-03 (grey area indicates the dry season).

0.5° x 0.5°) and LE (monthly, ®° x 0.5°), up-scaled from site are presented in Fig. 4, together with their correspand
FLUXNET observations using the machine learning teclslimate variables (precipitation, solar radiation and pena-
nigue, and model tree ensembles (MTE) data for 1982—-2t@e). GPP and LE in from CTL and NEW showed the same

(Jung et al., 2009, 2011). diurnal cycle as observed, with a peak value at noon (Figs.
. : , 4e, g, m and o), which was mainly driven by solar radia-
24. Mathematical Indices for Model’s Performance tion (Figs. 4b and j). Furthermore, the two simulations did

To evaluate the agreement between model simulatiamst differ from one another regarding GPP and LE during the
and observations, four indices were used: agreement inadeat season, which had ficient rainfall (Fig. 4a) for no soil
(d) (Li et al., 2012), correlation cdicient (R), mean bias er- water stressg; = 1; Fig. 4d), and agreed well with observa-
ror (MBE) and root mean square error (RMSE), defined &isn. However, during the dry season, with little precipda
follows: (Fig. 4i) and thus severe water stregs< 0.8; Fig. 4l), CTL
N _ _ obviously underestimated daytime GPRIQ% at noon; Fig.
_ 2iz1 (Xsimi —Xsim) (Xobsi —Xobs) . (6) 4m)and LE (typically>20% around noon; Fig. 40). By in-
N % )2 N % )2 corporating the dynamic rooting scheme in NEW, more root
\/Zizl(xsmu Xsim) \/zizl(XObs' Xobo) C was allocated into deeper soil layers (Fig. 5). Compared

Zi'\il (Xsimi — Xobsi) 7 with the observed root distribution data (Jackson et aBg)9
N ’ ) the dynamic root scheme realistically captured the observe
N 2 root profile, better than the static root distribution, wiie
RMSE = \/Zizl(xsimi — Xobsi) (8) largest fraction of roots in deep layers, and thus more water
N | could be taken up by roots. This further reduced the soil wa-
Zi'il(xsimi — Xobsi)? ter stress (Fig. 4l), and so the amplitudes and peak values of
d=1-—x _ T (9 cpPP (Fig. 4m) and LE (Fig. 40) for the dry season increased.
Zi= (1% = Xobd + [Xobsi —Xobd) That said, part of the underestimation still remained,datii

where Xsim is model simulation either from CTL or NEW, ing that other mechanisms apart from the dynamic rooting
Xobs is the corresponding observatioky, and Xops are the Scheme still need to be considered.

mean ofxsim and Xops respectively. Fod, a value of 1 in- NEE is an expression of net C exchange between ecosys-
dicates a perfect match and 0 indicates no agreement attgin and atmosphere, with positive values indicatifitue
RMSE provides an estimate of the absolute bias in the modp the atmosphere and negative values indicating uptpke b
simulation and the smaller the value of RMSE, the better tHee biosphere, calculated as per Eq. (10):

agreement between the simulation and observation is. NEE = —(GPP- ER) = —(GPP— AR — HR)

= —(GPP-GR-MR-HR), (10)

MBE =

3. Results where GR is the growth respiration, MR is the maintenance
For optimal evaluation of thefiects of a dynamic root respiration, HR is the heterotrophic respiration, AR isdhe
distribution on eco-hydrological modeling, the diurnat cytotrophic respiration (AR= GR+ MR), and ER is the total
cles of3;, GPP, NEE, LE and SWC (mean of the top 20 cngcosystem respiration (ERAR + HR). For the wet season,
for the wet (April) and dry (October) seasons at the BRSd®th the two runs captured the amplitudes and peak value of
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Fig. 4. Diurnal (a) precipitation (PR; units: mnTH), (b) shortwave downward radiation (SWDR; units: W4) (c) air temperature
(TA; units: °C), (d) B, (€) GPP (units: g C n? h™1), (f) NEE (units: g C m2 h™1), (g) LE (units: W nT2) and (h) SWC (mean of
0—20 cm units: m~3) for wet (April) months at the BRSa3 site, aggregated ovéx1203. Panels (i—p) are the same as panels (a—h)
but for the dry (October) season.

observed NEE well, with the biosphere acting as a C soungared with observation (Figs. 4h and p). SWC showed little
in the morning and evening, but a C sink at noon (Fig. 4fliurnal variation and was underestimated both for the ddy an
However, for the dry season, CTL greatly underestimated tivet seasons — more severely for the dry season. The under-
peak value of C uptake at noon (Fig. 4n), due to the severgtimation of SWC for the top layers in the dry season was
water stress. However, during the dry season, GR, MR asldjhtly reduced in NEW (Fig. 4p), because the dynamic root-
HR all increased due to the increase in photosynthesishwhing scheme allowed the roots to absorb water from the deep
then led to higher ER (not shown). Because GPP increassil (Fig. 5). However, despite improvement due to the incor
more than ER, the NEE values (negative) became smalleoration of a dynamic root distribution, significant biages
and thus NEW improved the simulation of NEE, with mor&WC simulations remained.
C uptake at noon, closer to that observed. Figures 6a—e show the mean dagly GPP, NEE, LE
For the limited SWC observation, just the mean value ahd SWC (0-20 cm), respectively, averaged for 2001-03,
SWC from the top layers (0-20 cm) of the two runs was cormand the diferences in GPP, NEE, LE and SWC between the
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0 Fig. 6a) were found in CTL, which were much lower than
A new pbserved, possibly caused by the model’s excessive ;en.siti
1.75 1 ity to drought (Baker et al., 2008). However, NEW, with its
ct dynamic rooting scheme, improved the simulation for GPP
4.51 ———obs and LE during the dry season, which were closer to their cor-
responding observations, by reducing the underestimafion
9.06 - GPP and LE by highes: (lower soil water stress), resulting
’g in lower MBE (Figs. 7b and j) and RMSE (Figs. 7c and k).
o 16.55 For NEE, CTL simulated positive values during the dry sea-
< son, indicating the biosphere acted as a C source, contrary
& 28.91 ~ to observation (Fig. 6¢). When a dynamic root distribution
= was considered, the biosphere was altered to a C sink or the
'cg 49.29 - magnitude of C emissions was reduced for July—-December,
which was closer to observations. This reduced the MBE
82.89 from 1.25 to 0.40 g C ? d~! (Fig. 7f) and the RMSE from
3.91t01.95g C m? d~! (Fig. 7g). For the mean SWC of the
138.28 top 0—20 cm, both runs gave large underestimations. How-
2 ever, NEW reduced the underestimation for July—-December,
9.61 7 with the RMSE lowered from 0.18 to 0.15%m3, as the
380.19 dynamic root distribution allowed roots to absorb more wate
) ' ' from deeper soil layers (Fig. 6e). Overall, GPP, NEE, LE and
0 0.1 0.2 0.3 SWC were better estimated using the new model, with lower
Root fraction MBE and RMSE and higheR andd, especially during dry
months.
Fig. 5. Mean root profile over the 3-year (2001-03) simulations ~ To further evaluate how a dynamic root distribution af-
of the two runs. fects the response of terrestrial C and water cycles to sabso

droughts in the Amazon, two study regions (denoted R1 and
two runs were all significant at the 95% confidence level ar2), dominated by BET Tr and4Qyrass, respectively, were
cording to the Student'stest. Decreases in GPP and LEselected for analysis (Fig. 2c). The mean monthly precipi-
for July-December (Figs. 6b and d) due to dryngks<(1; tation for R1 and R2 was 180.48 and 136.35 mm mohth

1.2 — (a)
-~ 08 4/ W
= 1 —new
04 4 —ctl
| —obs
0 T T T T T T T T T T T T
NN R IR

15 1 ©)

RN AR

GPP (g Cm™>d")
NEE (g C m>d™")

EORR A

Fig. 6. Difference among the simulated mean daily values ofab) GPP, (c) NEE, (d) LE and (e) SWC (mean of
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Fig. 7. Comparison between the results of CTL and NEW at the BRSa3mi{a—d) GPP, (e-h) NEE, (i—) LE, and (m—p) SWC (mean
of 0—20 cm) compared with corresponding observations fdrmanths, dry months and the whole year. The four indices ased
defined as Eq. (6-9) in section 2.4.

respectively. Figure 8 shows the annual cycle of simulatéations showed significant decreases in GPP and LE, simi-
and observed GPP and LE averaged over the two study af@ago observation, but too steep in CTL. In contrast, NEW
across 1982-2010, together wigh For R1, the dry seasonshowed similar improvements in GPP and LE in R2 as R1
lasted four months: June—September. Both GPP and LE sifffigs. 8e and f), with the mean GPP increasing from 128.84
ulated by CTL showed obvious reductions due to the decre#s-146.93 g C m? month?, and LE from 78.0 to 87.69 W
ing Bt (Fig. 8a) during the dry season, with large negative bin=2, during June to September. Furthermore, the RMSE re-
ases compared to observation (Figs. 8b and c). In contnast,duced from 65.70 to 54.42 g Cthmonttr! for GPP, and
monthly variations of GPP and LE for NEW became smallérom 22.0 to 19.62 W ¢ for LE, compared to observations.
than those of CTL, with the RMSE reduced from 39.52 tdo summarize, the plant response to seasonal drought was
29.87 g C m? monttt?! for GPP, and from 18.80 to 17.65 Whetter captured with a dynamic root distribution considere
m~2 for LE. During the dry season, the mean GPP and LtEough some divergence still remained.

increased from 195.95 to 211.62 g Cfmonth?, and from In 2005, the Amazon experienced a severe drought— the
91.47 to 98.83 W ¢, respectively—closer to the correspondworst for over a century (Saleska et al., 2007; Chen et al.,
ing MTE observations. In R2, both simulated and observ@®09). Amazon rainfall reductions were the most exten-
GPP and LE were lower than that of R1 due to thiéedence sive for July—September 2005 when the subtropical North
of parameters for photosynthesis and transpiration betwektlantic SST was at its highest (Zeng et al., 2008). Based
the two vegetation types (Figs. 8b and e). In this region tloa the 29-year climatology for 1982—-2010 from CRUNCEP,
dry season was May—September, withobviously decreas- the drought in 2005 was captured (Fig. 9a) and the black-
ing from 1 to 0.6. During this period, both the two simuboxed region with the largest negative precipitation angma
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indicate the dry season).

(< =50 mm month') was analyzed (hereafter R3). Figurgl. Conclusionsand discussion

9b shows that the mean rainfall of R3 from July to Septem-

ber in 2005 was the lowest during the 29 years, at just 41.4 In this study, a dynamic rooting scheme that describes
mm montht. Note that the 2005 rainfall anomaly based orpot growth as a compromise between water and N availabil-
CRUNCEP for 1982-2010 was similar to that for 1901-2010y in the subsurface, was incorporated in CLM4.5-CN and
but for temporal consistency only the former is shown and aits effects on C (GPP and NEE) and water cycle (LE and
alyzed. Figures 9c—e show the annual cycle of simulated a88@C) modeling were evaluated over the Amazon. At the
observed GPP and LE averaged over R3 for 2005 and av@RSa3 site, the two simulationsfiéired little in their results
aged across 1982-2010, together with During the 2005 during the wet season. However, during the dry season (July—
drought, the simulated GPP and LE decreased in R3 (Fifcember), CTL underestimated GPP, LE and SWC, possi-
9d and e), substantially lower than the observed multi-yealy as a result of the model’s excessive sensitivity to driug
average, but more rapidly in CTL than in NEW, especially irlowever, with the new rooting strategy, more root C was al-
July—September, as a result of the decreaginigdicative of located into deeper soil layers and more water was able to
more severe soil water stress (Fig. 9c). However, NEW mitde absorbed by the roots. This further reduced the soil wa-
gated the underestimation of GPP and LE in July—Septembarstress, and thus improved the C and water cycle modeling
during the 2005 drought by increasing the soil water avathy reducing the RMSE in GPP by 0.4 g Cfrd~, NEE by
ability, with the RMSE reduced from 30.3 to 23.1 g Cim 1.96 g C m? d™1, LE by 5.0 W n72, and SWC by 0.03 /
monthr! for GPP and from 16.9 to 14.3 Wthfor LE. In  m™3, compared with observations. Additionally, NEW was
general, the vegetation response to the severe 2005 drowgiteé to overcome part of the underestimation, indicatirg th
was better captured with a dynamic rooting scheme incorg-dynamic root distribution is not the only mechanism that
rated. needs to be considered. For the Amazon region, the default
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Fig. 9. (a) Monthly precipitation (PR) anomaly (units: mm monthfor July—September 2005, based on the 29-year
climatology from 1982—-2010 calculated from CRUNCEP (thecklbox represents the study region analyzed in section
3.3, denoted as R3). (b) Time series of monthly mean PR (umits montit?) for July—September averaged over R3
from 1982-2010. (c—e) Annual cycle of simulaigd GPP and LE averaged over R3 for 2005 and averaged across
1982-2010, compared with their corresponding obsensi{BITE GPP and LE). The border of the Amazon is shown
as a black line.

model showed obvious reductions in simulated GPP and LE However, only including a dynamic root distribution is in-
due to the decreasingy during the dry season in both R1 anduficient to improve the simulations to match observations,
R2, with large negative biases. The C and water simulatioespecially for SWC. To test the sensitivity of SWC to soiktex
were improved in NEW, with the RMSE for GPP reducetlre, we replaced the soil type using observational data fro
from 39.52 to 29.87 g C nf monthrt in R1, and from 65.70 Li et al. (2012) and Yan and Dickinson (2014) at the BRSa3
to 54.42 g C m? monttr in R2; and for LE, from 18.80 to site, where the soil type is mainly clay latosol (80% clay,
17.65W nT2in R1, and from 22.0t0 19.62 WTAin R2. In  18% sand and 2% silt), into CLM4.5 instead of the IGBP
the severe 2005 drought, the region with the largest negatilata (35% clay, 45% sand and 20% silt). Thus, the water
precipitation anomaly (R3) showed obvious decreases in G&¥htent at saturation (i.e. porosity) varied from 0.30 860.
and LE — substantially lower than the observed multi-year am® m~3, and the saturated hydraulic conductivity varied from
erage. The soil water availability during this period wakab0.021 to 0.019 mms. The simulation from observational
to be increased in NEW, and thus mitigated the underestinsail types agreed better with ground-based SWC obsengtion
tion of GPP and LE, with the RMSE reduced from 30.3 tthan that from the original IGBP data. The mean SWC of the
23.1 g C m? monthr! for GPP, and from 16.9t0 14.3 WTh top 0-20 cm increased from 0.34 to 0.43 m=3 for April,

for LE. In general, the vegetation response (including GRd from 0.20 to 0.30 Am~3 for October (Figs. 10a and b).
and LE) to seasonal drought and the severe 2005 drought Wwass suggests that soil texture is a critical factor for taxdic
better captured when a dynamic root distribution was incqeroperties, and observational soil type can reduce thebias
porated, although some divergence still remained. of SWC simulations in CLM4.5.
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the dynamic rooting scheme; 1, the run with observed sdilitex 2, the run with new stomatal parameters; 3,

the run with the observed root profile).

The soil potential values (mm) when stomata are fully33000 mm fony,) in the simulations. The results showed
closed (/¢) or fully open (o) in CLM4.5, which are PFT- that the diferenty andy, values caused largeftiérences
dependent, are from White et al. (2000). However, Verhofefr the GPP and LE simulations (Figs. 10c—f).
and Egea (2014) found that thie and y, values are not To see if additional improvements could be made by using
always realistic. In CLM4.5y. andy, values of tropical the observed root distribution data, another experimest (d
broadleaf evergreen tree (the dominant PFT at the BRSa®ed as “3") was conducted for the BRSa3 site, in which the
site) are—255 000 mm and-66 000 mm, respectively. To observed root distribution data were used to force CLM4.5.
test the sensitivity of GPP and LE tofiirenty: andy, val- The results showed that the two runs (i.e. the new run and
ues, we used another set of valued2Z7500 mm foryc and the run with observed root data) did not show larggedti
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ences in GPP and LE during both the wet and dry seasons as measured by GRACE and estimated by climate models.
(Figs. 10c—f). This suggests that, in addition to the dyrami Geophys. Resl14, B05404, doi: 10.1022008JB006056.
rooting scheme, many other root-related mechanisms,daclu Coelho, F. E., and D. Or, 1999: A model for soil water and ma-
ing deep root systems up to 18 m (Canadell et al., 1996), tric potential distributiqn under drip i’rr.igation.wi.th wetex-
hydraulic redistribution (Ryel et al., 2002) and preferaint traction by rootsPesquisa Agropecuaria Brasileirad, 225—

. . 234.
root water uptake (Lai and Katul, 2000), also contribute tOCoIIins, D.B.G. and R. L. Bras, 2007: Plant rooting strégegn

dry season water uptake and consequ_ently_d rought FESPONSES - ater-limited ecosystemVater Resour. Res43, W06407,
and should therefore be further examined in modeling stud- ... 10.10292006WR005541.

ies. Previous studies (Tomasella et al., 2008; Miguez-Machpjckinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 899
and Fan, 2012) suggest that groundwater in the Amazon can |nteractive canopies for a climate modél. Climate 11,
reduce wet season soil drainage and lead to larger soil wa- 2823-2836.

ter stores before the dry season arrives. This is one of thgrewry, D. T., P. Kumar, S. Long, C. Bernacchi, X. Z. Liang,
reasons for the observed absence of dry season water stress. and M. Sivapalan, 2010: Ecohydrological responses of dense
In addition, more field observations and experiments will im  canopies to environmental variability: 1. Interplay betwe
prove our understanding of how to represent root activities ~ Vertical structure and photosynthetic pathway.Geophys.

in plant physiological and ecological aspects (Yan and Dick Res, 115(G4), 1-25. o
inson, 2014). This paper presents only preliminary compalEI Maayar, M."_ a_md O._Sonnentag, 2009: erp model validation
. . . and sensitivity to climate change scenaridbmate Research
isons in the Amazon, and more analysis on tifeas of a

d . distributi hvdrological and cli 39(1), 47-59.
ynamic root distribution on eco-hydrological and ¢ |mateE| Masri, B., S. J. Shu, and A. K. Jain, 2015: Implementatiébn o

modeling at the global scale is needed in the future. a dynamic rooting depth and phenology into a land surface
model: Evaluation of carbon, water, and energy fluxes in the
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